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ABSTRACT 

 

Archaeologists and animal behaviorists have provided increasingly sophisticated descriptions of 

how hominids and animals construct operational sequences. The ability to translate these detailed 

descriptions into a measureable, comparative format of relative complexity would provide a 

useful tool for describing patterns of evolutionary change. Cyclomatic Complexity, k-paths, and 

k-cycles are three metrics from computer science and graph theory that can index the Operational 

Complexity of an operational sequence. These methods are applied to the production of an 

Acheulean handaxe and five nonhuman animal operation sequences.  
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INTRODUCTION 

Claims of increasing cognitive complexity are common in the study human cognitive evolution. 

Such claims are usually framed in qualitative terms. This presents difficulty in comparing change 

through time. Some behaviors seem to be more cognitively demanding than others. However, the 

nature and relative magnitude of these demands is rarely explored in a precise and comparable 

way. In Cognitive Archaeology, “complexity” is not well defined and there are no available 

methods with which measure “more” or “less” of it. Presumably, objective measures of the 

complexity of different cognitive phenomena should be applicable across hominid taxa as well as 

hominids and non-hominid animals.  

     Closely related disciplines are also attempting to come to terms with this problem. In the area 

of comparative primate cognition, Rumbaugh (1969) introduced a simple quantitative method of 

indexing the cognitive flexibility of different species, the transfer index. Following Rumbaugh’s 

example, this paper explores the use of simple complexity measures from graph theory and 

computer science for the measurement of the operational complexity of tool making and similar 

forms of object manipulation.  

     Tool-use was once believed to be a unique and defining trait of hominids. It was hypothesized 

that tool use may have may have been catalytic in the evolution of the human body, mind, and 

culture (Oakely 1950; Washburn 1960, 1959). Over the past sixty years, evidence of tool-use in 

diverse taxa from the great apes to birds has steadily accumulated (Seed and Byrne 2010). The 

analyses of human and animal tool production and use have also become increasingly 

sophisticated (i.e. Byrne and Stokes 2002; Byrne and Russon 1998, Pelegrin 2005; Lemmonier 

1992; Moore 2011).  To describe toolmaking and use processes, or operational sequences, 

archaeologists and other researchers studying stone toolmaking and tool use have produced 

detailed flowcharts describing sequences of inter-related technical actions. Chimpanzee nut 

cracking (Carvalho et al. 2008), Oldowan tool manufacture and use (Haidle and Bauer 2011), 

Magdalenian blade production (Karlin and Joulien 1995), or wooden spear production (Haidle 

2009) all have been graphically described this way.  Byrne and collaborators have produced 

extraordinarily detailed program-level descriptions of the actions and decisions involved in the 

techniques chimpanzees use to roll thorny “defended” leaves (Stokes and Byrne 2003) or those 

that gorillas use to eat similarly defended foods like nettles and gallium (Byrne and Russon 

1998).    

     These graphical descriptions of operational sequences contain valuable information regarding 

the technologies and techniques that they depict, but as detailed qualitative representations they 

do not lend themselves to comparative evolutionary analysis beyond presence or absence. These 

flowcharts often include a mix of ontological categories such as actions, intentions, and 

knowledge whose interpretation involves potentially idiosyncratic subjective interpretation.  

     A few quantitative methods proposed. Moore (2011) has proposed an analytical method based 

on Greenfield’s (1991) “action grammar” approach. This approach’s comparative scope, between 

species as well as between research traditions, would be increased by a more direct integration 

with Chomsky’s (1956) hierarchy of formal and natural language.  

     In this paper I propose a simple alternative method to supplement other approaches to the 

description and analysis operational complexity. Graph theory offers techniques to supplement 

these analyses by abstracting quantitative information from an operational sequence. A formal 

graph is very similar to qualitative flowcharts, but when ontologically consistent and empirically 

valid terms are used formal graphs make quantitative comparison possible.  
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     Graph theory has the advantage of being well-understood, conceptually simple, and widely 

accepted in disciplines such as chemistry (Balaban 1985; Schultz 1989), physics (Gutman and 

Trinajstic 1972), social network analysis and ethnography (Alvin 1978; Wasserman and Faust 

1994), epidemiology (Christakis and Fowler 2007; Morris 1993) and biology (Bunn et al.2000; 

Mason and Verwoerd 2007). Formal graphs are used to model relational data. Such graphs can 

be represented mathematically as adjacency matrices. As an adjacency matrix, relational data can 

be analyzed using a variety of well-established metrics and statistical analyses. Furthermore, 

these graphs can also be related to Hidden Markov Models, Bayesian Graphs, and other 

sophisticated modeling techniques.  

     Rugg (2011) has recently introduced the use of graph theory to archaeological analyses, 

applying it to explore the depth of the socio-economic activities required for the production 

Acheulean hand axes, ground stone axes, and copper axes. Following the classical concept of the 

the chaine operatoire (or “operational chain”) (Lemmonier 1992), Rugg includes all phases in 

the use-life of the artifact from the techniques of acquiring raw materials to the final discard and 

deposition in archaeological contexts. Description as a graph allows Rugg to quantify these 

differences in “fabricatory depth” in operational chains.  An increase in fabricatory depth 

through time index increases in the temporal and spatial scale of technologies as well the 

elaboration and accumulation of socially transmitted knowledge (Gibson, 2002).   

     As with the traditional graphical flowchart approach, Rugg’s graphs are useful for come 

comparisons but not others. His graphs are fundamentally holisitic in that they combine 

intentions and a variety of social and cognitive processes. This is problematic when attempting to 

understand the emergence of particular cognitive capacities. In order to grapple with particular 

problems, such as potential changes in working memory over human evolutionary history 

(Coolidge and Wynn 2009), we need to break down these holistic complexes into simpler, 

comparable units consistent across a sample. 

     The goal of this paper is to explore a few possible avenues of approach to this problem. I 

compare operational chains across humans producing stone tools as well as nonhuman animals 

producing tools. To do this, I will include the individual object manipulations involved in each 

task. In the case of stone toolmaking, aspects of the task before and after tool production will be 

ignored to make the available descriptions of toolmaking comparable. The further development 

of these or similar techniques will allow researchers to generate increasingly more complex and 

compelling models of the ancient hominid mind. 

 

OPERATIONAL COMPLEXITY AND COGNITIVE CAPACITIES  

If the differences in early Early Stone Age (ESA) and late ESA technologies are the result of an 

increase in cognitive capacity, then later technologies should be more complex to produce than 

earlier ones. This paper assumes that quantitatively complex action sequences are correlated with 

increased cognitive capacities or “cognitive complexity.” However, it is not the purpose of this 

paper to test the validity of this assumption. There are reasons to be concerned about this 

proposed correlation. It could be the case that increase in cognitive abilities involved in planning 

or problem solving might lead to simpler, more efficient solutions to adaptive problems rather 

than more complex ones. For instance, later ESA ‘Kombewa’ flake tools or large cutting flakes 

removed from a boulder core are an elegant but simple solution to the problem of producing a 

handaxe or cleaver-like tool without the thousands of sequenced actions involved in making a 

Late Achuelean handaxe described in this paper. Sophisticated insight may lead to simplicity, not 
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complexity. That said, more complex processes should involve increased planning abilities with 

changes to memory systems, cognitive control, and other affiliated systems.  

     This paper will explore methods for assessing the complexity of operational sequences, or 

“Operational Complexity.” Operational Complexity will be operationalized two ways. First, it is 

operationalized as the number of decisions that have to be made during the performance of the 

operational sequence. This approach is widely used in computer programming where it is termed 

“cyclomatic complexity.” Second, Operational Complexity is operationalized as the number of 

potential relationships between the actions or operations that comprise the operational sequence. 

This combinatorial potential will described in the terms of k-paths and k-cycles.  

     As already mentioned, the classic concept of the operational sequence describes the entire use 

life of an artifact from source to discard (Lemmonier 1992). As such, it is a complex cognitive-

behavioral process involving multiple cognitive domains such as manual activity and conceptual 

knowledge.  For the ESA, we lack high enough resolution of hominid conceptual knowledge 

structures. Instead, we have records of sequenced actions in stone. Similarly, we do not have 

intersubjective access to the thought processes of nonhuman animals, though they do perform 

operational sequences of interest to researchers. To render a series of comparable graphs, we will 

only consider the actions that can be observed visually and ignore, for now, the intentions that 

inform them. This methodological behaviorism will allow the comparison of a wide range of 

species including modern people, human ancestors, and nonhuman animals. 

     It is assumed here that simple 

processes involve fewer 

contingent decisions for the 

agent performing it. As a result, 

there are fewer potential 

combinations of the observed 

actions. Theoretically, the 

simplest operational sequences 

would look like a “string-of-

beads” (Wynn 1995) with no 

branches (Figure 1). Actions tend 

to be performed in sequences 

with little or no variation in the 

order of operations. More 

complex operational sequences 

are comprised of branching and 

looping structures.  

     Transforming the flowchart of 

a lithic reduction into a graph is a 

fairly simple procedure. A graph 

is comprised of a series of nodes 

indicating states or events and a 

series of edges or links that 

connect these nodes (Figure 1). If the graph has edges (or “arcs”) connecting nodes in an 

assymetric relationship (     then it is referred to as a directed graph or a digraph.  

Figure 1: A simple “string-of-beads” graph and a more complicated, branching 

structure. An edge (or “arc”) is a link between two nodes. Branches imply a point 

at which a decision has to be made, requiring active monitoring and allowing 

increased flexibility over a simpler process. 
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     Graphs can be described as an 

adjacency matrix that describes which 

nodes are adjacent, or linked, to other 

nodes (Figure 2). In the adjacency 

matrix the presence of a transition 

from one state to another is 

represented as a “1” while the absence 

of such a transition is a “0.” The 

representation of graphs as adjacency 

matrices means that they are 

mathematically and statistically 

tractable. 

     When an operational sequence is 

presented graphically, each action is 

represented as a node. The edges 

between them represent the transitions 

from one action to another. If there is 

more than one possible transition, 

then the branching structure indicates 

an instance of decision-making. This 

is the case even if we do not fully 

know what the criterion for the 

decision is or what type of mechanism 

is involved in monitoring and 

deciding between alternatives.  

     Descriptions of toolmaking or 

object manipulation procedures across 

a wide range of taxa were collected 

observationally or from the literature 

for the purposes of the demonstration 

of the techniques involved in indexing 

operational complexity (Figure 3). 

These included: 

 

1. Caledonian Crows manufacturing hooks tools from twigs to hunt hidden insects 

(Hunt and Gray 2004) 

2. Chimpanzee Leaf Processing of thorny, defended leaves (Stokes and Byrne 2003) 

3. Chimpanzee Probe Tools to fish for ants (Nishida and Hiraiwa 1982) 

4. Gorilla Nettle Processing (Byrne and Russon 1998)  

5. Gorilla Gallium Processing to remove small, hook-like thorns (Byrne and Russon 

1998)  

6. The videotaped production of a Late Achulean-like hand axe by an expert stone 

knapper
1 

(Figure 4) 

                                                           
1 Nicholas Toth was videotaped for 40 minutes with an AIPTEK HD-DV 1080P high definition digital video camera as he made 

a late Acheulean Handaxe out of a piece of high quality Texas flint at the Stone Age Institute in Gosport, Indiana in Fall 2010.  
 

Figure 2: An adjacency matrix for the production of a Late Acheulean-

type hand axe. In the adjacency matrix the presence of a link from one 

state to another is represented as a “1” while the absence of such a link is a 

“0.” 

 

Figure 3: Graphs produced in R 1.2.1 with the igraph function tkplot. 
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Component Actions of Hand axe Production 

 

1  a   Left Hand. Place blank on thigh 

2  b   Left Hand. Orients lateral edge horizontally 

3  c Left Hand. Orients lateral edge, raises by lowering opposite edge 

4  d  Left Hand. Orients lateral edge, lowers by raising the opposite edge 

5  e Left Hand. Rotates lateral edge up, into view, with blank on thigh 

6  f Left Hand. Rotates lateral edge up, into view, after lifting blank 

7  g Left Hand. Lifts blank. 

8  h Left Hand. Flips blank. 

9 j Right Hand. Touches platform with percussor (“aims”) 

10 k Right Hand. Strikes blank. 

11 l Left Hand. Rotates counter-clockwise.Right Hand. “Chisel-like” platform  

preparation. 

12 m Right Hand. Abrasion with hammer. 

13 o Right Hand. Picks up debitage between fingers. 

14 p Right Hand. Sweeps away debitage with finger or percussor. 

15 q  Right Hand. Set down hammer, pick up baton. 

16 r Right Hand. Set down baton, pick up hammer. 

Table 1: Component actions performed during the operational sequence for hand axe production. 

 

7. A “Hypothetical 

Oldowan” graph was produced by 

removing actions associated with 

platform preparation from the 

Acheulean graph. For the purposes 

of this methodological paper, it is 

reasonable to assume that most of 

the actions involved in examining 

positioning the core would 

otherwise be the same in both forms 

of stone toolmaking. 

 

The video recording of the hand axe 

production (6 above) was analyzed 

by coding the component actions 

into sixteen distinct technical 

actions (Table 1). While there are 

many descriptions of animal 

toolmaking behavior available in 

the literature, only those that 

provide detailed descriptions of the 

actual actions used and the sequence of progression through the series of procedures were 

included.   

     Graphs are generated and analyses performed in the open-source statistical software R 1.2.1 

using the igraph package (Csardi and Nepusz 2006), network, (Butts 2008) and sna packages 

(Butts 2008) in the statnet package suite (Handcock et al. 2003.). Graphs are produced in R using 

the tkplot( ) function in the igraph package. The open-source statistical software PAST (Hammer 

et al. 2011) is used to generate k-path and k-census graphs. 

 

 

 

Figure 4: The production of a Late Acheulean-type hand axe from initial 

shaping through thinning. An expert stone knapper (N. Toth) was videotaped 

for 40 minutes with an AIPTEK HD-DV 1080P high definition digital video 

camera as he made a late Acheulean Handaxe out of a piece of high quality 

Texas flint at the Stone Age Institute in Gosport, Indiana in Fall 2010. 
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Table 2: Cumulative counts of edges, nodes, and the cyclomatic number for each operational 

sequence. 

 

First Index: Cyclomatic Complexity 

Computer science provides a metric called Cyclomatic Complexity to quantify the amount of 

branching in a graph description of a program. Cyclomatic Complexity is used by programmers 

to index the control flow of a program and determine the number of diagnostic tests required to 

maintain and debug software (McCabe 1976; Capers 2008).  For programmers, it is important to 

remove unnecessary complexity which may create unintended interactions within their code.     

     If there is more than one possible path from a node in a graph, the execution of a control flow 

statement determines which branch will be selected. A cyclomatic number is an index of the 

number of decisions within a program. It is calculated with the formula: 

 

            
 

where e is the number of edges in a graph (G), n is the number of nodes, and 2 is a constant. A 

simple graph with no branches has a v(G) of 1: 

 

            

                         
 

A process this simple is paradigmatic of a “string-of-beads action sequence.” Alternatively, if 

there are 5 edges and 3 nodes in a c more complex graph it will have a v(G) of 4: 

  

            

                         
 

     Using this 

formula, we can 

measure the 

complexity of the 

procedures. The 

higher the cyclomatic 

number, the more 

complex the control 

flow. When applied 

to the operational  

collected for this 

paper, we receive the 

following results 

(Table 2). Hand axes 

have the largest number of edges (55) and nodes (16) as well as the highest Cyclomatic Number, 

v(G) =41. It is followed by Hypothetical Oldowan (v(G) = 25), Chimpanzee Probe Tools (v(G) = 

14), Chimpanzee Leaf Processing (v(G) = 11), Crow Hook Tools (v(G) = 5), Gorilla Nettle 

Processing (v(G) = 4), and Gorilla Galliium Processing (v(G) = 2). In this example, hand axe 

production has a more complex control flow than similar activities performed by great apes and 

Caledonian Crows.  

 

 

  Edges Nodes Cyclomatic Number 

Hands Axe Production 55 16 41 

Oldowan  (Hypothetical) 38 15 25 

Caledonian Crow: Hook 8 5 5 

Gorilla: Galliium Processing 5 5 2 

Gorilla: Nettle Processing 9 7 4 

Chimpanzee: Nutcracking 5 4 3 

Chimpanzee: Probe 

Production 27 15 14 

Chimpanzee: Leaf Processing 27 18 11 
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Table 3: Path and Cycle Censuses. Maximum k darkened.   

 

Second Index: k-path census and k-cycle census 

Another way to measure Operational Complexity is to take a census of the path and cycles in a 

graph. Paths and cycles are concepts from graph theory and network analysis (Bang-Jensen and 

Gutin 2010; Wasserman and Faust 1994). Both describe the ways in which it is possible to move 

through a graph under specified conditions. A path is the route from one node to another node in 

which intervening nodes and edges are only crossed once. A cycle is a path that begins and ends 

at the same node. Both paths and cycles represent sets of possible ways of sequencing a series of 

actions, providing an index of the combinatorial possibilities within each graph of an operational 

sequence. 

    

  

 

Paths k 1 2 3 4 5 6 7 8 9 10 11 12 

1

3 

1

4 

  Hand axe 

5

0 

16

5 

46

3 

107

0 

208

4 

342

3 

464

6 

498

9 

403

4 

224

0 

74

9 

12

2 8 0 

  

Hypothetical 

Oldowan 

2

8 70 

14

4 241 332 372 331 210 79 18 2 0 0 0 

  

Chimpanzee 

Probe Tool 

1

9 31 39 44 28 12 0 0 0 0 0 0 0 0 

  

Chimpanzee 

Leaf 

Processing 

2

4 25 17 10 3 0 0 0 0 0 0 0 0 0 

  

Gorilla 

Galliium 

Processing  6 5 2 1 0 0 0 0 0 0 0 0 0 0 

  

Gorilla 

Nettle 

Processing 8 7 4 3 2 1 0 0 0 0 0 0 0 0 

  

Caledonian 

Crow Hook 

Tool 6 6 3 1 0 0 0 0 0 0 0 0 0 0 

  

              

  

Cycles k 1 2 3 4 5 6 7 8 9 10 11 12 

1

3 

1

4 

  Hand axe 5 14 30 43 58 69 73 59 15 0 0 0 0 0 

  

Hypothetical 

Oldowan 3 8 12 16 18 17 18 13 3 0 0 0 0 0 

  

Chimpanzee 

Probe Tool 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

Chimpanzee 

Leaf 

Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

Gorilla 

Galliium 

Processing  1 1 0 0 0 0 0 0 0 0 0 0 0 0 

  

Gorilla 

Nettle 

Processing 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

  

Caledonian 

Crow Hook 

Tool 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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 In describing a path or cycle, the number of participating nodes is k. For instance, the number of 

3-paths (k =3) in a graph indicates the number of paths that involve three other nodes. Census 

statistics developed by Butts (1996) and implemented in the sna package in R (Butts 2008) allow 

us to measure the Cycle and Path Censuses in a graph. An operational sequence with a large 

number of nodes and many linkages and loops between nodes will have a higher number of 

possible paths and cycles at any k and may also have the longest k. A graph with a small number 

of actions or with a low density of linkages between nodes will tend to have lower values. 

     When applied to our sample, a 

number of things stand out (Table 

3). Considering k-paths first, it is 

first apparent that the production of 

the Hand axe had the largest 

number of paths of any length at 

24043, compared to 1827 for 

Hypothetical Oldowan, 173 for 

Chimpanzee Probe Tools, 79 for 

Chimpanzee Leaf Processing, 25 

for Gorilla Nettle Processing, 16 for 

Crow Hook Tools, and 14 for 

Gorilla Gallium Processing. The 

hand axe also had the longest k-

paths, with 8 paths with 13 

participants. It is followed by 

Hypothetical Oldowan (k = 11, 2 

paths), Chimpanzee Probe Tools (k 

= 6, 12 paths), Chimpanzee Leaf 

Processing (k = 5, 3 paths), Gorilla 

Nettle Processing (k = 6, 1 path), 

Crow Hook Tools (k = 4, 1 path), 

and Gorilla Gallium Processing (k 

= 4, 1 path). Hand axe production 

has by the far the largest 

cumulative number of paths and the 

longest paths. 

     If we focus on the k value at 

which each operational sequence 

had its maximum number of 

potential paths then Hand axes had the highest number of paths at maximum k (k = 8, 4989 

paths), followed by Hypothetical Oldowan (k = 6, 372 paths), Chimpanzee Probe Tools (k = 4, 

44 paths), Chimpanzee Leaf Processing (k = 2, 25 paths), Gorilla Nettle Processing (k = 1, 8 

paths), Gorilla Gallium Processing (k = 1, 6 paths), and Crow Hook Tools (k = 1, 6 paths). When 

the logged path census ratios are graphed (Figure 5) we can see the maximum k for Hand axes is 

approximately one order of magnitude larger than maximum k for Hypothetical Oldowan and 

more than two orders of magnitude greater than the other operational sequences. 

Figure 5: Logged Path Census Ratios. A path is defined as a walk from 

one node to another through any number of other nodes, but it can only 

pass over each edge and node once. A k-path census uses an equivalent 

random graph model process to estimate the number of paths in a graph. 

More complex processes should have larger path censuses than simpler 

processes. 
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     Moving on to k-cycles, it is first 

apparent that the production of the 

Hand axe had the largest number of 

cycles of any length with 366, 

compared to 188 for Hypothetical 

Oldowan, 2 for Gorilla Nettle 

Processing, 2 for Gorilla Gallium 

Processing, and 1 for Chimpanzee 

Probe Tools. Chimpanzee Leaf 

Processing and Crow Hook Tools 

both were acyclic. Hand axe 

production and hypothetical 

Oldowan debitage both had the 

longest k-cycles at 9 participating 

nodes. It is followed by Gorilla 

Nettle Processing (k = 3, 1 path), 

Gorilla Gallium Processing (k = 3, 

1 path), and Chimpanzee Probe 

Tools (k = 2, 1 path).  Both hand 

axe production and the hypothetical 

Oldowan graph contain a far larger 

number of cycles and the longest 

cycles. 

     When the logged cycle census 

ratios are graphed (Figure 6) we can 

see the maximum  k for Hand axes 

and Hypothetical Oldowan are  

approximately oe order of 

magnitude greater than those for 

the other operational sequences in 

the sample. 

 

DISCUSSION  

Using graphs in this way reduces complexity to single, formal dimension describing the ways in 

which actions can be potentially combined. This is operationalized in terms of the number of 

decisions to be made and the number of sequences that can be generated within a graph. Of 

course, many of these potential sequences are not realistic given the constraints of a particular 

toolmaking tradition. The goal of a stone knapper, for instance, is obviously not to string together 

actions for the sake of creating long sequences. Obviously, they string together actions in order 

to achieve a pragmatic goal such as solving a problem emerging while shaping a biface such as 

hinged flake or incongruous mass. That said, this method does index the relative formal 

complexity of a graphed operational sequence in a consistent, principled manner. 

     The emergence of Acheluean technologies 1.8 million years ago (Lepre et al. 2011) is of 

particular interest to Paleolithic archaeologists. While the earlier Oldowan flake industry appears 

to be within the competence of modern nonhuman apes (Wynn et al. 2001; Toth and Schick 

2009) the production of Acheluean tools may represent the appearance of something different. 

Figure 6: Logged Cycle Census Ratios. A cycle is defined as a walk that 

begins and ends at the same node, but it can only pass over each edge and 

node once. A k-cycle census uses an equivalent random graph model process 

to estimate the number of cycles in a graph. More complex processes should 

have larger cycle censuses than simpler processes. 
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The production of Late Acheulean-style hand axes involves that hierarchical integration of long 

sequences of operations involving an active decision-making process (Stout et al. 2008). 

Measures of formal complexity regarding decision-making and combinatorial potential should be 

high relative to earlier hominid technology.    

     None of the human or nonhuman animal operational sequence fit the description of a “string-

of-beads,” but it is clear that there are vast differences in the complexity between them. If we 

define a loop as the repetition of a single action (    ) or the cycle involving two or more 

actions (        , then Crow Hook tools and Gorilla Gallium and Nettle Processing appear 

to involve a single loop and a string of simple actions. It could be the case that these represent to 

different elements; one requiring monitoring while the preceding or following string is simply 

elicited. Chimpanzee Leaf Processing and Probe Production are primarily branching structures 

with few loops within them. Hand axe production, on the other hand, is a much more densely 

connected graph.  

     As may be the case in the Crow Hook Tools and Gorilla food processing graphs, it could be 

the case that the graph for Hand axe production includes multiple, compiled processes. However, 

the example observed here is best described as involving at least four repetitive phases bracketed 

by single or multiple flake removals: information collection, processing, the ballistic gesture, and 

assessment. During information collection, the knapper tended to spend most of his time 

manipulating the object, presumably actively collecting visual information from different 

incident angles as well as different sensory modalities, such as proprioception. After placing the 

blank on the thigh in the desired orientation, the knapper placed the hammerstone on it for a 

moment, pausing before the strike. Both the orientation and placing of the core indicate a period 

in which the information is being actively processed, perhaps involving simulation of the 

anticipated strike (Jeannerod 2001) and its product (Nonaka et al. 2008).  During assessment, the 

knapper matches anticipated with actual results. This is not simply visual. As anyone who spends 

even a small period of time around a stone knapper in action can report, it is possible to tell from 

the sound of the strike if it was successful. Assessment begins with aural information as soon as 

the hammer makes contact with the platform.  

Most of the actions in the hand axe graph occur during the active collection of 

information by the knapper. These include the weighing the blank and using a series of repeated 

rotations to view its facets from multiple angles of incidence. As with the phonemes in a 

morpheme or the phrases of a sentence, the individual actions occurring during all four phases 

are meaningless outside of the overall context of the process. To rotate a rock in order to view it 

from different angles is not the same thing as to rotate it in order to determine the best spot from 

which to detach a thinning flake which will remove a persistent island of cortex which is 

restricting your ability to thin the opposite edge. Considering this, including all of these actions 

into a single graph may be justified.  

 

CONCLUSION 

The use of graphs is an important tool in the analysis of trends in the earliest stone tool 

technologies. They provide a means of quantifying changes in the overall fabricatory depth of 

the operational chain. Additionally, they can provide a method of measure the formal complexity 

of a series of operations used in the processing of food or production of tools. Stout (2010) has 

argued for an increase in cognitive control during the long Early Stone Age. The hierarchical 

structure present in the production of Late Achuelean hand axes is shared by technologies and 

techniques skillfully exhibited by the great apes (Byrne 2008). However, the fact that it is present 
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in a reductive lithic medium is significant given the unique computational demands of the 

ballistic knapping gesture. Analysis of this trend will require valid comparative measures. Using 

graphs and the matrices that represent them allow analysts to measure operational complexity 

across a wide range of technologies and taxa.   
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