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approach that enables us to translate problems with several “time-like variables” into

age-dependent population problems and so permits use of the tools developed by

Webb in [Web85].

Time since infection models regained popularity in the 1980s [see for example

DM82, HT85, and references therein], but not with any concrete application. It was

not until the early 1990s that Thieme and Castillo-Chavez suggested that time since

infection was very important for modeling the dynamics of human immunodeficiency

virus (HIV) and disease acquired immunodeficiency syndrome (AIDS), because infec-

tion with this virus includes variable periods of infectiousness and variable infectiv-

ity [TCC93]. This paper was very influential in further applied mathematical studies

of HIV/AIDS, where differences in infectivity were considered, although generally not

in a continuous manner.

A very important step in time since infection models was the work in the early

2000s by Feng and Thieme [FT00a, FT00b]. The authors formulated a very general

model with an arbitrary number of “infected” classes (for example latent, infectious,

quarantine, recovered) each one structured by time since the individual entered the

class. They analyze how changes in the the minimum length of the quarantine can

make the endemic equilibria lose stability and how this minimum length can change

under different assumptions for the length distributions of the exposed and infectious

periods. Thus, the authors show that considering time since infection can signifi-

cantly affect a practical eradication problem (they use it for the case of scarlet fever).

Additionally, [FT00a] states that the model represented by a Cauchy problem with a

transport partial differential equation “cannot in general be solved in a strong, but

only a generalized sense”. We will go into more details about the relation between

transport equations and time since infection models in Section 2.2 of the present work.

More recently, time since infection models have been employed for the analysis of

the epidemiology of tuberculosis [FIM02], cholera [BSvdD13] and nosocomial bacterial

infections [WDM+05], among many others.
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Generally, citations of [KM27] do not pay attention to the time since infection part

of the model and concentrate in the ordinary differential equations form. Notable

exceptions are Chapter VII of Iannelli’s book [Ian95], the “Kermack and McKendrick

revisited” of Brauer [Bra05] and of Inaba [Ina01] and the “Appraisal of Kermack and

McKendrick” by Breda, Diekmann, de Graaf, Pugliese, and Vermiglio [BDdG+12].

We should add that Brauer has contributed significantly to the literature of time

since infection models, for example, discussing their relation with the final size of an

epidemic [Bra08].

In [BDdG+12], the authors produced an similar model as the one considered in this

work. After presenting preliminary results of the current dissertation at the Society

for Mathematical Biology Meeting in 2012, Professor Pugliese informed me that my

model was close to one that was then on revision for publication. Earlier this year

(2013), I was able to present my work at The Fourth Conference on Computational

and Mathematical Population Dynamics. Professors Pugliese and Diekmann were

present and I gained much with subsequent discussions with them. By this time

[BDdG+12] was already published.

The particular part that makes the model in the current dissertation different from

previous time since infection models is the consideration of only two classes and a

susceptibility to reinfection that depends on the time since last infection. [BDdG+12]

has the same ingredients as well, although their model is formulated as a scalar renewal

equation, instead of a differential equation model and assumes a constant recruitment

to the susceptible class, instead of a constant fraction of the population. We consider

only the case of constant death rates, which is a particular case in [BDdG+12], but

for this case we solve several open problems stated in [BDdG+12].

1.2 About the removed class

Just as models structured by time since infection, the idea of removing individu-

als from the infected class, by recovery or death, goes back to the classical work of
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Kermack and McKendrick [KM27]. Recovery events are considered in most epidemi-

ological models as the flow of individuals from the infected class to the recovered (or

removed) class.

The time that an individual needs to recover, or the time an individual is in-

fected with an agent, is not the relevant factor in the transmission of a disease in a

population. What is fundamental is the infectious status of the individual and its

susceptibility to acquire the disease.

In the classical sense the use of “recovery” has the underlying assumption is that

“complete immunity is conferred after a single infection” [KM27]. If we want a model

that can more accurately describe diseases that do not have this characteristic, the use

of a recovered class (in the usual sense) can be a limitation. An important novelty of

this work is the absence of a recovered (or removed) class to overcome this limitation.

1.3 About the terms “infected”, “infectious”, “exposed”, and “latent”

For simplicity, most “standard” epidemiological models either do not draw any

distinction between an infected individual (one that has the infectious agent in his

or her body) and an infectious individual (one that is able to transmit the infectious

agent to another individual), or accomplish this distinction by the inclusion of another

class, generally called the exposed class (meaning already exposed to the pathogen

but not infectious). “Exposed” however is not the best term for this class, since some

individuals that are exposed to the infectious agent do not develop an infection.

Another common term for this type of class is latent class. In pathology, the

latent period is the time from infection to infectiousness. “Latent” in this case means

present but not active. Since the word latent can also mean present but not visible,

there is confusion about the latent period, and the incubation period, and sometimes

these two terms are used as synonyms. The incubation period is the time between

infection and the onset of symptoms. While sometimes these two periods are almost

identical, in some infectious agents they differ significantly.



7

In this work, we do not account for exposed, latent, incubating or infected individ-

uals, and center our attention just in differences in infectiousness and susceptibility.

1.4 About the terms “time since infection” and “age of infection”

In mathematical epidemiology literature it is common to use the term “age of

infection” to refer to the time that has elapsed since an infectious agent has infected

an individual. This use comes from the metaphor of the infection having an age

(being alive) and probably from the fact that epidemiological models structured by

age became more popular than those structured by other types of time-like variables.

The term “age of infection” may cause confusion because outside of mathematical

epidemiology it is understood as the age at which an individual develops an infection.

We therefore choose to use of the term “time since infection” instead. “Time since

infection” also has the advantage of adapting to diseases where individuals can get

reinfected, as exemplified by this work.

1.5 The model

We divide the population into two classes, one for the individuals that have been

infected at least once in their lives (once-infected class) and one for those individuals

that have never been infected (never-infected class). In this sense, if this model is

applied to a disease where recovery events take place, the infected and the recovered

individuals are kept together in the once-infected class.

There are two time variables in the model. The first is chronological time, which

we denote with the letter t, and generally just call just “time”. The second time

variable is for individuals that have been infected at a certain moment in their life.

If an individual belongs to the once-infected class, we call the amount of time that

has elapsed since his or her last infection, the time since last infection (TSLI) of the

individual. We use the notation τ for the TSLI.
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We denote by N(t) the total amount of individuals in the never-infected class at

time t. On the other hand, for individuals that have been infected at least once, we

consider at a given time t, the density of the individuals that have TSLI τ , and denote

this density by o(τ, t). In other words the quantity∫ τ2

τ1

o(τ, t) dτ

is the number of individuals at time t whose last infection was between τ1 and τ2

units of time ago.

We denote the total population at time t by P(t). Because, we only have two

classes, we have

P(t) = N(t) +

∫ ∞
0

o(τ, t) dτ.

We use the function Π(τ) to represent the probability that a contact between an

individual in the never-infected class and one with TSLI τ , results in an infection of

the never-infected individual. An example of this function is given in Figure 1.1. In

this example, the probability of causing an infection increases with the TSLI until

day two and then decreases until there is no chance of provoking an infection by the

ninth day.

We assume that the number of contacts that an individual of the once-infected

class has, is the same for all individuals with the same TSLI. We further assume that

a contact is equally likely with any individual in the population. If we denote the

number of contacts for an individual of TSLI τ by C(τ), and its transmission rate

per unit of time by T (τ), then we have

T (τ) = C(τ)Π(τ).

We consider a “susceptibility function”, S(τ), that represents a factor of reduction

in the probability of being infected, and that depends on the TSLI of the vulnerable

individual. In other words, S(τ1)Π(τ2) is the probability that a once-infected indi-

vidual with TSLI τ1 is reinfected when it comes into contact with a once-infected
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Figure 1.1. A hypothetical example of the function Π(τ).

individual with TSLI τ2. From now on, we will no longer require the functions C and

Π, since they will always appear together as a product in the transmission rate.

A very common case in the dynamics of infectious agents is that individuals be-

come resistant to the infectious agent, be it a virus, a bacteria, etc., right after their

immune system clears the infection, but their immunity wanes after recovery due to

loss of lymphocytes specific to the agent, or because the infectious agent mutates

in the population and is not longer recognized by the immune system. Immediately

after infection, the individual is completely immune to reinfection and as the TSLI

increases, the individual becomes more and more susceptible to reinfection. An exam-

ple of such a special case of S(τ) is given by Figure 1.2. In this example, individuals

become more susceptible as their TSLI increases and their susceptibility approaches

1, which is the level of susceptibility of a never-infected individual. Nevertheless,
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no restrictions on monotonicity or whatsoever are imposed for the moment on the

functions S, or T .
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Figure 1.2. A hypothetical example of a susceptibility function S(τ).

We are not interested in the evolution of the total population, but we want to see

how our results change when we consider an influx of new never-infected individuals

in the model. Therefore, we assume that the vital dynamics of the population are

given by a birth rate and a death rate that are the same for every individual in the

population and equal to each other. We call this rate µ.

We also set initial conditions for the problem at time t = 0, namely a number of

initially never-infected individuals N0 and a distribution Θ(τ) for the once-infected

class.

We are now ready to set up the equations of the problem. The equations read as

follows:
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d

dt
N(t) = −

[∫ ∞
0

T (υ)
o(υ, t)

P(t)
dυ

]
N(t)− µN(t) + µP(t),

N(0) = N0,

Do(τ, t) = −
[∫ ∞

0

T (υ)
o(υ, t)

P(t)
dυ

]
S(τ)o(τ, t)− µo(τ, t),

o(0, t) =

[∫ ∞
0

T (υ)
o(υ, t)

P(t)
dυ

] [
N(t) +

∫ ∞
0

S(τ)o(τ, t) dτ

]
,

o(τ, 0) = Θ(τ),

P(t) = N(t) +

∫ ∞
0

o(τ, t) dτ,

(1.1)

where the differentiation operator D is defined as:

D`(τ, t) = lim
h→0+

`(τ + h, t+ h)− `(τ, t)
h

, (1.2)

for any function ` defined in some domain that is a subset of R+×R+ and has its range

defined in some Banach space. Notice that this is the generalization of a derivative

with respect to time if we have two time variables.

For the mathematical results we do not require strong conditions for the functions

T and S. Nevertheless, biological feasible conditions require these functions to be

non-negative and bounded. We will make use of the following notation.

Definition 1.5.1 For T : R+ → R+, we define

T̂ = sup
τ≥0

T (τ).

Definition 1.5.2 For S : R+ → R+, we define

Ŝ = max

{
1, sup

τ≥0
S(τ)

}
.

The first quantity can be interpreted as the maximum transmission rate per unit of

time that an individual can attain. On the other hand, because individuals of the

never-infected class are assumed to have a baseline susceptibility of 1, the second

quantity represents the maximum susceptibility that an individual can attain.

The quantity
∫∞

0
T (υ)o(υ, t)/P(t) dυ in the System (1.1) might not be well de-

fined. To avoid these cases, we give the following basic assumption:
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Assumption 1.5.1 T, S : R+ → R+ are bounded functions such that

(i) 0 <
∫∞

0
T (τ) dτ <∞, or

(ii) S(τ) = 0, almost everywhere (a.e.) for τ > 0 and
∫∞

0
T (τ) dτ > 0.

Notice that when o(υ, t) and P(t) are non-negative, if
∫∞

0
T (τ) dτ < ∞, then∫∞

0
T (υ)o(υ, t)/P(t) dυ is well defined. We still want to be able to apply the model

for diseases that create chronic infections and for which perhaps
∫∞

0
T (τ) dτ = ∞,

but in this case the susceptibility function is identically zero (there are no reinfections

in a chronic infection). Of course, we need the disease to be contagious, and so∫∞
0
T (τ) dτ > 0.

In addition to the assumption above, some of our results will require more con-

ditions on the functions T and S. A very common case for infectious agents is the

existence of a finite time during which individuals are infectious. If we consider that

reinfections do not occur during that time, we have the following:

Assumption 1.5.2 T, S : R+ → R+ are bounded functions and there exists τ0 > 0

such that

(i)
∫∞

0
T (τ) dτ > 0,

(ii) T (τ) = 0 if τ > τ0, and

(iii) S(τ) = 0 if τ < τ0.

Clearly Assumption 1.5.2 implies Assumption 1.5.1.

We provide two more assumptions, stronger than Assumption 1.5.2, that we can

employ for diseases where immunity eventually wanes, that is where S is eventually

increasing.

Assumption 1.5.3 T, S : R+ → R+ are bounded functions, and there exists τ0 > 0

such that

(i)
∫∞

0
T (τ) dτ > 0,
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(ii) T (τ) = 0 if τ > τ0,

(iii) S(τ) = 0 if τ < τ0, and

(iv) limτ→∞ S(τ) = supS > 0.

An even stronger condition is that after a finite time, the individuals are as sus-

ceptible as they ever would be:

Assumption 1.5.4 T, S : R+ → R+ are bounded functions, and there exists 0 <

τ0 < τ1 such that

(i)
∫∞

0
T (τ) dτ > 0,

(ii) T (τ) = 0 if τ > τ0,

(iii) S(τ) = 0 if τ < τ0, and

(iv) S(τ) = supS if τ > τ1.

As mentioned in Sections 1.2 and 1.3, an important quantity in epidemiology

is the number of infectious individuals. Under our setting of the problem, we can

calculate the number of infectious individuals by adding all those that have a positive

transmission rate. We define the number of infectious individuals at time t as:

Definition 1.5.3

I(t) =

∫
T (τ)>0

o(τ, t) dτ.

Another very important number is the average secondary cases produced by an

infected individual in a completely susceptible population, commonly denoted by R0.

We will interpret a completely susceptible population as one where every individual

belongs to the never-infected class. In our model, T (τ) is the average number of

never-infected individuals that a once-infected individual with TSLI τ infects per

unit of time in a completely never-infected population. Moreover, e−µτ represents the

probability that a once-infected individual remains in that class for τ units of time.

So, if we assume that a reinfection does not take place during the infectious period,

we have:
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Definition 1.5.4

R0 =

∫ ∞
0

T (τ)e−µτ dτ.

Notice that R0 ≤
∫∞

0
T (τ) dτ and if µ > 0 and T is bounded, R0 ≤ T̂ /µ, so that, if

T is integrable or bounded when µ > 0, R0 is well defined.

1.6 Notation and terminology

In this section, we introduce standard notation that we will employ throughout

this work.

Definition 1.6.1 For any A ⊂ X, we denote with 1A, the function 1A : X → {0, 1}
defined as

1A(x) =

1 if x ∈ A,

0 if x /∈ A.

Definition 1.6.2 Let Rn denote the n-dimensional vector-space with norm:∣∣∣∣∣∣∣∣∣


x1

...

xn


∣∣∣∣∣∣∣∣∣ =

n∑
i=1

|xi|,

where |xi| denotes the absolute value in R of xi.

We will denote vectors in Rn simply as (x1, . . . , xn) whenever it is clear from

context that they are vectors and not matrices 1× n.

Definition 1.6.3 We define the projection function to the i-th entry πi : Rn → R as

πi(x1, . . . , xn) = xi;

for m ∈ N, 0 < m < n, the projection to the first m entries π(m) : Rn → Rm as

π(m)(x1, . . . , xn) = (x1, . . . , xm);

and for k ∈ N, 0 < k < n, the projection to the last k entries π(−k) : Rn → Rk as

π(−k)(x1, . . . , xn) = (xn−k+1, . . . , xn).
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Definition 1.6.4 Let X and Y be two normed vector spaces with norms ‖·‖
X

and

‖·‖
Y

, respectively. We denote B(X, Y ) the Banach algebra of bounded linear operators

from X to Y , with norm:

‖L‖op = sup{‖Lx‖
Y

: x ∈ X and ‖x‖
X

= 1}.

Definition 1.6.5 Let L1 = L1(Rn) be the Banach space of the equivalence classes of

Lebesgue integrable functions from (0,∞) to Rn that agree a.e. on (0,∞), with the

norm:

‖φ‖ =

∫ ∞
0

|φ(a)| da,

where φ ∈ L1 is any representative of the equivalence class in L1.

Definition 1.6.6 For t̄ > 0, let Lt̄ = C([0, t̄ ];L1) be the Banach space of continuous

L1-valued functions on [0, t̄ ] with the norm:

‖`‖Lt̄ = sup
0≤t≤t̄

‖`(t)‖,

where ` ∈ Lt̄.

We can identify in a natural way an element of Lt̄ with an element of L1((0,∞)×
(0, t̄ );Rn) [Web85, Lemma 2.1], so we use the same symbol for both elements, that is

`(t)(τ) = `(·, t)τ = `(τ, t),

where 0 ≤ t ≤ t̄, and a.e. τ > 0.

Definition 1.6.7 R+ = {x ∈ R : x ≥ 0}.

Definition 1.6.8 Rn
+ = {(x1, . . . , xn) ∈ Rn : xi ∈ R+ for all i = 1, . . . , n}.

Definition 1.6.9 L1
+ = L1

+(Rn) = {φ ∈ L1 : φ(τ) ∈ Rn
+ a.e. τ > 0}.

Definition 1.6.10 Let X and Y be normed spaces with norms ‖·‖
X

and ‖·‖
Y

, re-

spectively, and let H : X → Y . We say that H is Lipschitz on norm-balls of X if for

all r > 0, there exists c(r) > 0 such that

‖H(x1)−H(x2)‖
Y
≤ c(r)‖x1 − x2‖X ,
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for all x1, x2 ∈ X such that ‖x1‖X , ‖x2‖X ≤ r.

If c(r) can be chosen to be the same constant for all r > 0, then H is said to be

globally Lipschitz.

Definition 1.6.11 Let X and Y be normed spaces with norms ‖·‖
X

and ‖·‖
Y

, re-

spectively, and let D ⊂ X. We say that H : D → Y is F-differentiable relative to D

at x0 ∈ D if there exists H′(x0) ∈ B(X, Y ), such that, given any ε > 0, there exists

δ > 0 such that if x ∈ D, and ‖x− x0‖X < δ, then

‖H(x)−H(x0)−H′(x0)(x− x0)‖
Y
≤ ε‖x− x0‖X .

H is said to be continuously F-differentiable relative to D on A ⊂ D if it is F-

differentiable relative to D at each x ∈ A and if the map x 7→ H′(x) is continuous

from A to B(X, Y ).

H′(x) is called the F-derivative of H at x.
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2. Links between ADP problems and models with multiple

time-variables

In this chapter we will describe a method to set up models that involve ordinary

differential equations coupled with partial differential equations in two time variables

(or a milder version of it) in the form of ADP problems. ADP stands for “age-

dependent population”, but for our case we will not deal necessarily with ages, but

time variables.

Setting a model as an ADP problem has the advantage of allowing us to use results

already proved for existence, uniqueness, positivity, and regularity of the solutions,

as well as existence and stability of equilibria for the system.

In Chapters 3 and 4 we will use this method to analyze the model that we described

in Section 1.5.

We start by stating what we mean by such a coupled model.

2.1 Models with multiple time-variables

By a coupled model we mean one that can have m different classes that depend

on secular time, and k different classes that depend on secular time and another time

variable. We will use the notation t for the time variable common to all classes and

τ for the other time variable. The other time variable generally describes how much

time an individual has spent in that particular class or the age of the individual.

For example, in the model described in Section 1.5, we have the never-infected class

that only depends on time (t), and the once-infected class that depends on time (t)

and TSLI (τ). Any age-structured model that has some classes that are not age-

structured also satisfies the requirement. Think, for example, of ecological models
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with one species structured by age and another not structured by age. We provide

more examples from epidemiology in Section 2.1.1.

If we denote by X(t) the vector of classes dependent only on time, and y(τ, t) the

vector of classes structured by the other time variable, the general model we want to

describe has the following form:

dX(t)

dt
= Fx(X(t), y(·, t)) +Mx(X(t), y(·, t))X(t), (2.1)

X(0) = X0, (2.2)

Dy(τ, t) = Gy(X(t), y(·, t))(τ), (2.3)

y(0, t) = Fy(X(t), y(·, t)), (2.4)

and

y(·, 0) = φy, (2.5)

where Fx : Rm×L1(Rk)→ Rm, Mx : Rm×L1(Rk)→ B(Rm,Rm), Gy : Rm×L1(Rk)→
L1(Rk), Fy : Rm×L1(Rk)→ Rk, X0 ∈ Rm and φy ∈ L1(Rk). Recall that the operator

D is defined as

D(`(τ, t)) = lim
h→0+

`(τ + h, t+ h)− `(τ, t)
h

.

We search for solutions, X and y, of this problem that satisfy the above equations

for t in a certain interval [0, t̄ ] and a.e. for τ ∈ (0,∞).

A very important notion in epidemiological or population models is that of equi-

libria. An equilibrium is a solution of the model that does not depend on time. In

our case, we mean solutions that do not depend on t:

Definition 2.1.1 An equilibrium solution for the coupled model presented by Equa-

tions (2.1)-(2.5), is a solution X : R+ → Rm, y : R+ → L1(Rk) of those equations,

that satisfies X(t) = X0 and y(·, t) = φy for all t ≥ 0.
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2.1.1 Examples of epidemiological models with multiple time-variables

Many epidemiological models structured by time-like independent variables fit

the general formulation of Section 2.1. In this section, we include three examples

of epidemiological models that have a similar structure as the model presented in

this study and could be analyzed using the same methodology as in the current

dissertation.

A model by Brauer, Shuai and van den Driessche

Brauer, Shuai and van den Driessche describe in [BSvdD13] an epidemic model for

cholera that has three classes: susceptible individuals (S(t), only dependent on time),

infected individuals (i(t, ·), structured also by time since infection), and pathogen in

contaminated water (p(t, ·), structured by the time that the pathogen has remained

in the water).

The model can be stated in the form described in Section 2.1 by using

X(t) = S(t),

and

y(·, t) =

i(t, ·)
p(t, ·)

 .

The functions are

Fx(X(t), y(·, t)) = A,

Mx(X(t), y(·, t)) = −µ−
∫ ∞

0

(
βdk(τ) βiq(τ)

)
y(τ, t) dτ,

Gy(X(t), y(·, t))(τ) = −

θ(τ) 0

0 δ(τ)

 y(τ, t),

and

Fy(X(t), y(·, t)) = X(t)

∫ ∞

0

βdk(τ) βiq(τ)

ξ(τ) 0

 y(τ, t) dτ.
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The initial conditions are

X0 = S0,

and

φy =

i0
p0

 .

A model by Bhattacharya and Adler

Bhattacharya and Adler describe in [BA12] an SIRS epidemic model, in which the

susceptible class S and infected class I depended only on time, whereas the recovered

class R(·, t) is structured by time since recovery.

The model can be stated in the form described in Section 2.1 by using

X(t) =

S(t)

I(t)

 ,

and

y(·, t) = R(·, t).

The equations are

Fx(X(t), y(·, t)) =

∫∞0 ρ(τ)y(τ, t) dτ

0

 ,

Mx(X(t), y(·, t)) =

−βπ2(X(t)) 0

βπ2(X(t)) −γ

 ,

Gy(X(t), y(·, t))(τ) = −ρ(τ)y(τ, t),

and

Fy(X(t), y(·, t)) = γπ2(X(t))

where π2 is the projection as in Definition 1.6.3. The initial conditions are

X0 =

S0

I0

 ,

and

φy = 0.
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A model by Magal and McCluskey

Magal and McCluskey describe in [MM13] a two-group SIR epidemic model in

which there are two susceptible classes (S1 and S2) and two recovered classes (R1 and

R2) that depend only on time, and two infected classes (i1(t, ·) and i2(t, ·)) that are

structured by the time since infection.

The model can be stated in the form described in Section 2.1 by using

X(t) =


S1(t)

S2(t)

R1(t)

R2(t)

 ,

and

y(·, t) =

i1(t, ·)
i2(t, ·)

 .

The equations are

Fx(X(t), y(·, t)) =

Λ− π(2)(X(t)) •
∫∞

0
B(τ)y(τ, t) dτ∫∞

0
M(τ)y(τ, t) dτ

 ,

Mx(X(t), y(·, t)) = −

D 0

0 D

 ,

Gy(X(t), y(·, t))(τ) = −(M(τ) +D)y(τ, t),

and

Fy(X(t), y(·, t)) = π(2)(X(t)) •

∫ ∞
0

B(τ)y(τ, t) dτ

∫ ∞
0

M(τ)y(τ, t) dτ,

where • represents the dot product between two vectors, π(2) is the projection as in

Definition 1.6.3 and we use the notation in their paper,

Λ =

λ1

λ2

 ,



22

B(τ) =

 0 β2(τ)

β1(τ) 0

 ,

M(τ) =

m1(τ) 0

0 m2(τ)

 ,

and

D =

d1 0

0 d2

 .

The initial conditions are

X0 =

S0

R0

 ,

and

φy = i0.

2.2 The operator D and its relation to a transport equation

Many age-structured epidemic models are stated in terms of a transport partial

differential equation of the form

∂

∂τ
`(τ, t) +

∂

∂t
`(τ, t) = f(`), (2.6)

where f is a certain function. We will explain in this section why we stated the

coupled problem in Section 2.1 with the operator D instead.

Classical solutions of a partial differential equation like the one in Equation (2.6),

are functions that satisfy the equation and are C1, that is, they must have continuous

partial derivatives. If ` ∈ C1, we can show that D(`(τ, t)) exists and satisfies

D`(τ, t) =
∂

∂τ
`(τ, t) +

∂

∂t
`(τ, t).

Indeed, suppose that ` : R+× [0, t̄ )→ R2 is a C1 function in a neighborhood of (τ, t).

Let ε > 0. There exists δ > 0 such that if 0 < h < δ then∣∣∣∣ ∂∂τ `(τ, t+ h)− ∂

∂τ
`(τ, t)

∣∣∣∣ < ε

5
,
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∣∣∣∣`(τ, t+ h)− `(τ, t)
h

− ∂

∂t
`(τ, t)

∣∣∣∣ < ε

5
,

and ∂
∂τ
`(τ, t+ h) exists. Given any such h > 0, there exists h′ > 0 such that∣∣∣∣`(τ + h, t+ h)

h
− `(τ + h′, t+ h)

h′

∣∣∣∣ < ε

5
,

∣∣∣∣`(τ + h′, t+ h)− `(τ, t+ h)

h′
− ∂

∂τ
`(τ, t+ h)

∣∣∣∣ < ε

5
,

and ∣∣∣∣`(τ, t+ h)

h′
− `(τ, t+ h)

h

∣∣∣∣ < ε

5
.

Therefore∣∣∣∣`(τ + h, t+ h)− `(τ, t)
h

−
(
∂

∂τ
`(τ, t) +

∂

∂t
`(τ, t)

)∣∣∣∣
≤
∣∣∣∣`(τ + h, t+ h)

h
− `(τ + h′, t+ h)

h′

∣∣∣∣+

∣∣∣∣`(τ, t+ h)− `(τ, t)
h

− ∂

∂t
`(τ, t)

∣∣∣∣
+

∣∣∣∣`(τ + h′, t+ h)− `(τ, t+ h)

h′
− ∂

∂τ
`(τ, t+ h)

∣∣∣∣+

∣∣∣∣`(τ, t+ h)

h′
− `(τ, t+ h)

h

∣∣∣∣
+

∣∣∣∣ ∂∂τ `(τ, t+ h)− ∂

∂τ
`(τ, t)

∣∣∣∣
< ε,

for any 0 < h < δ. In other words, D`(τ, t) exists and is equal to ∂
∂τ
`(τ, t) + ∂

∂t
`(τ, t).

So, any solution of a transport equation as in Equation (2.6) will also be a solution

of the same equation with the operator D.

Additionally, if our objective is interpretation of our model, we should not aim to

find functions with their domain defined in R+×R+. Recall that what we are actually

interested in is how many individuals in a class have their time variable τ within a

certain range. Because we are assuming the time variable τ to be continuous, we are

interested in values of the form: ∫ τ2

τ1

`(τ, t) dτ,

for τ1 < τ2. Therefore, we should not care about solutions that differ in a set of

measure zero in τ . A way to avoid this is to search instead for solutions that have
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their domain in R+ (in t) and go to L1 (in τ). That is why our solutions will be in

the set L1
∞ as in Definition 1.6.6.

Moreover, from the epidemiological modeling point of view, the operator D better

describes the change per unit of time in individuals:

D(`(τ, t)) ≈ `(τ + h, t+ h)− `(τ, t)
h

,

for small h. Note that, as time passes from t to t+h, the individuals with time variable

τ will have time variable τ+h instead. In this sense, D should be employed for models

that have two types of time variables, in the same way that we use derivatives with

respect to t to set up ordinary differential equations models.

In any case, rarely in the literature are solutions of epidemiological (or popula-

tion) models stated in terms of a transport partial differential equation proved to be

classical solutions. Instead, most work goes about finding solutions of an integral

equation obtained by the method of solving through characteristics. This integral

equation is not equivalent to the partial differential equation, but implied by it. As

we will see in Section 2.3, a solution of an integral equation can be understood as

a mild solution of the problem, but more conditions are required for it to even be a

solution of an equation with the operator D.

2.3 The generic ADP problem

We define an ADP problem as it is described in [Web85, Chapter 1]. An ADP

problem consists of three parts. The first part is an initial condition at time t = 0,

or initial distribution of values that start the dynamics:

`(τ, 0) = φ(τ), (2.7)

for some φ ∈ L1.

The second part is a function that depends on the state of the solution at each

time, and that describes the flow in and out of each class for τ different than 0. It
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involves the operator D, because this operator describes the change of the function

with respect to both time variables:

D`(τ, t) = G(`(·, t))(τ), (2.8)

for some G : L1 → L1. Webb calls such an equation a Balance Law.

The last part is the one that describes the boundary condition, which for the case

of an ADP problem can be (and in general is) non-local. The boundary condition is

set up at τ = 0 and describes how each class receives individuals:

`(0, t) = F (`(·, t)), (2.9)

for some F : L1 → Rn. Webb calls such an equation a Birth Law.

Definition 2.3.1 Let t̄ > 0. Let F : L1 → Rn, G : L1 → L1, and φ ∈ L1. We say

that a function ` ∈ Lt̄ is a solution of the ADP problem for the initial distribution φ

on [0, t̄ ] provided that ` satisfies Equations (2.7), (2.8) and (2.9) for all t ∈ [0, t̄ ] and

a.e. for τ ∈ (0,∞).

The usual way to go about problems involving the operator D is to solve through

the characteristics to obtain an integral equation. If we assume that ` is a solution of

the ADP problem on [0, t̄ ] and c > t̄ then we can define a “cohort function”:

wc(t) = `(t+ c, t),

for every tc ≤ t ≤ t̄, where tc = max{−c, 0}. Using Equation (2.8) we can show that

the right derivative of this function exists and satisfies

w′c(t+) = lim
h→0+

wc(t+ h)− wc(t)
h

= G(`(·, t))(t+ c), (2.10)

a.e. for t ∈ (tc, t̄). If G is Lipschitz on norm-balls of L1, the function G(`(·, t)(τ) is

integrable as a function from (0,∞)×(0, t̄ ) to Rn [Web85, Lemma 2.2], and so w′c(t+)

is also integrable in [0, t̄ ]. Therefore, we have that any function of the form

t 7→ C +

∫ t

tc

w′c(s+) ds,
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has a derivative equal to w′c(t+) a.e. t ∈ (tc, t̄) [Roy88, Chapter 5, Theorem 10]. So,

we can integrate Equation (2.10) and obtain

wc(t) =


wc(t− τ) +

∫ t
t−τ G(`(·, s))(s+ c) ds a.e. τ ∈ (0, t),

wc(0) +
∫ t

0
G(`(·, s))(s+ c) ds a.e. τ ∈ (t,∞).

Substituting back for c = τ − t, and using Equation (2.9), we obtain the integral

equation:

`(τ, t) =


F (`(·, t− τ)) +

∫ t
t−τ G(`(·, s))(s+ τ − t) ds a.e. τ ∈ (0, t),

φ(τ − t) +
∫ t

0
G(`(·, s))(s+ τ − t) ds a.e. τ ∈ (t,∞).

(2.11)

In conclusion, if G is Lipschitz on norm-balls of L1, every solution of the ADP

problem satisfies Equation (2.11). Clearly, not every solution of Equation (2.11) is

a solution of the ADP problem, because the function ` in Equation (2.11) need not

be differentiable in the sense of the operator D. The converse is true under certain

conditions [see Web85, Theorem 2.9, and Rue08, Theorem 2.3], a fact that we will

use later.

If both functions F and G are Lipschitz on norm-balls of L1, then a function `

satisfies Equation (2.11), for t ∈ [0, t̄ ], if and only if ` is a mild solution of the ADP

problem [Web85, Theorem 2.2] according to the following definition:

Definition 2.3.2 Let t̄ > 0 and let ` ∈ Lt̄. Let F : L1 → Rn, G : L1 → L1. Let

φ ∈ L1, we say that ` is a mild solution of the ADP problem on [0, t̄ ] for the initial

distribution φ provided that ` satisfies:

lim
h→0+

∫ ∞
0

|h−1[`(τ + h, t+ h)− `(τ, t)]−G(`(·, t))(τ)| dτ = 0, (2.12)

lim
h→0+

h−1

∫ h

0

|`(τ, t+ h)− F (`(·, t))| dτ = 0, (2.13)
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and

`(·, 0) = φ, (2.14)

for 0 ≤ t ≤ t̄.

Definition 2.3.3 For 0 < t̂ ≤ ∞, we say that ` is the solution (respectively mild

solution) of the ADP problem on [0, t̂ ) for the initial distribution φ, provided that for

all t̄ < t̂, ` restricted to [0, t̄ ] is the solution (respectively mild solution) of the ADP

problem on [0, t̄ ] for the initial condition φ restricted to [0, t̄ ].

Definition 2.3.4 If there exists a mild solution of the ADP problem on [0, t̄ ], for

some t̄ > 0, we denote by t̄φ, the maximal t̂ > 0, such that there exists a mild solution

of the ADP problem in [0, t̂ ).

We can define equilbria for the ADP problem just as we do for any problem

dependent on time:

Definition 2.3.5 Given φ ∈ L1, F : L1(Rn) → Rn and G : L1(Rn) → L1(Rn), we

define an equilibrium solution of the ADP problem for the functions F , G and the

initial condition φ, as a solution of the ADP problem for the same functions on [0,∞)

such that `(·, t) = φ for all t ≥ 0.

A very important result in the theory of ADP problems is that if F : L1
+ → Rn

+

and G : L1
+ → L1 are Lipschitz on norm-balls of L1 and there exists a function c3

that satisfies (ii) in the proof of Proposition 3.2.3 then φ is an equilibrium solution

of the ADP problem if and only if φ is absolutely continuous, φ′ ∈ L1,

φ′ = G(φ),

and

φ(0) = F (φ).

[Web85, Proposition 4.1]. We will make use of this result later.
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2.4 From coupled models to ADP problems

We pose the coupled model of Section 2.4 as an ADP problem by considering the

functions F : L1(Rm+k)→ Rm+k and G : L1(Rm+k)→ L1(Rm+k) defined as

F

φx
φy

 =

Fx (∫∞0 φx(τ) dτ, φy
)

Fy
(∫∞

0
φx(τ) dτ, φy

)
 , (2.15)

and

G

φx
φy

 (τ) =

Mx

(∫∞
0
φx(υ) dυ, φy

)
φx(τ)

Gy

(∫∞
0
φx(υ) dυ, φy

)
(τ)

 . (2.16)

Theorem 2.4.1 Suppose that we have a model as given by Equations (2.1)-(2.5).

Let

φ =

φx
φy

 , (2.17)

where φx ∈ L1(Rm) is a function such that∫ ∞
0

φx = X0.

Suppose that F and G defined by Equations (2.15) and (2.16) are Lipschitz on

norm-balls of L1. If the ADP problem has a solution ` ∈ Lt̄ for the functions F and

G and the initial condition φ, then Equations (2.1)-(2.5) have a solution X(t), y(τ, t)

for t ∈ [0, t̄ ] and a.e. for τ ∈ (0,∞).

Actually, if ` is the solution of the ADP problem, then

X(t) = π(m)

(∫ ∞
0

`(τ, t) dτ

)
and

y(·, t) = π(−k) (`(·, t)) ,

solve Equations (2.1)-(2.5), and thus any property of these two functions translates

into a property of the solution of the coupled model in Section 2.4.
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Proof Consider Equations (2.1)-(2.5) and let t̄ > 0 such that ` ∈ Lt̄ is a solution

of the ADP problem on [0, t̄ ] for the functions F and G defined by Equations (2.15)

and (2.16) and the initial condition φ in Equation (2.17).

Define

X(t) = π(m)

(∫ ∞
0

`(τ, t) dτ

)
,

and

y(·, t) = π(−k) (`(·, t)) ,

where π(m) and π(−k) are the projections in Definition 1.6.3.

Applying π(m) to Equation (2.7) we have

π(m) (`(τ, 0)) = φx(τ);

integrating we obtain Equation (2.2).

Applying π(−k) to Equation (2.8), and using the definition of G in Equation (2.16),

we obtain Equation (2.3). In the same way, from Equation (2.9) and the definition of

F in Equation (2.15), we obtain Equation (2.4). Also, applying π(−k) to Equation (2.7)

yields Equation (2.5).

It remains to prove that X satisfies Equation (2.1). Notice that

π(m)

(
F (`(·, t)) +

∫ ∞
0

G(`(·, t))(τ) dτ

)
= Fx (X(t), y(·, t)) +Mx (X(t), y(·, t))X(t),

so all we need to show is that

d

dt
X(t) = π(m)

(
F (`(·, t)) +

∫ ∞
0

G(`(·, t))(τ) dτ

)
.

We will accomplish this by showing that the left and right derivatives of X(t) agree

on that value.
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Recall from Section 2.3 that if F and G are Lipschitz on norm-balls of L1, a

solution of the ADP is also a mild solution of the ADP. So, if h > 0:∣∣∣∣h−1 [X(t+ h)−X(t)]− π(m)

(
F (`(·, t)) +

∫ ∞
0

G(`(·, t))(τ) dτ

)∣∣∣∣
=

∣∣∣∣h−1π(m)

(∫ ∞
0

`(τ, t+ h) dτ −
∫ ∞

0

`(τ, t) dτ

)
− π(m)

(
F (`(·, t))−

∫ ∞
0

G(`(·, t))(τ) dτ

) ∣∣∣∣
=

∣∣∣∣h−1π(m)

(∫ h

0

`(τ, t+ h) dτ +

∫ ∞
h

`(τ, t+ h) dτ −
∫ ∞

0

`(τ, t) dτ

)
− π(m)

(
F (`(·, t)) +

∫ ∞
0

G(`(·, t))(τ) dτ

) ∣∣∣∣
≤
∣∣∣∣h−1π(m)

(∫ h

0

`(τ, t+ h)− F (`(·, t)) dτ

)∣∣∣∣
+

∣∣∣∣π(m)

(∫ ∞
0

h−1 [`(τ + h, t+ h)− `(τ, t)]−G(`(·, t))(τ) dτ

)∣∣∣∣
≤h−1

∫ h

0

∣∣π(m) (`(τ, t+ h)− F (`(·, t)))
∣∣ dτ

+

∫ ∞
0

∣∣h−1π(k) (`(τ + h, t+ h)− `(τ, t))− π(m) (G(`(·, t))(τ))
∣∣ dτ

≤h−1

∫ h

0

|`(τ, t+ h)− F (`(·, t))| dτ

+

∫ ∞
0

∣∣h−1 [`(τ + h, t+ h)− `(τ, t)]−G(`(·, t))(τ)
∣∣ dτ,

which tends to zero as h → 0+ by Equations (2.12) and (2.13). This shows that the

right derivative of X exists and it is equal to π(m)
(
F (`(·, t)) +

∫∞
0
G(`(·, t))(τ) dτ

)
for every t ∈ [0, t̄ ].
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Now, for the left derivative, let h > 0. Then,∣∣∣∣h−1 [X(t)−X(t− h)]− π(m)

(
F (`(·, t)) +

∫ ∞
0

G(`(·, t))(τ) dτ

)∣∣∣∣
=

∣∣∣∣π(m)

(
h−1

∫ ∞
0

`(τ, t)− `(τ, t− h) dτ − F (`(·, t))−
∫ ∞

0

G(`(·, t))(τ) dτ

)∣∣∣∣
≤
∣∣∣∣h−1

∫ ∞
0

`(τ, t)− `(τ, t− h) dτ − F (`(·, t))−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣
≤
∣∣∣∣h−1

∫ h

0

`(τ, t) dτ − F (`(·, t))
∣∣∣∣

+

∣∣∣∣h−1

[∫ ∞
h

`(τ, t) dτ −
∫ ∞

0

`(τ, t− h) dτ

]
−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣
=

∣∣∣∣h−1

∫ h

0

`(τ, t) dτ − F (`(·, t))
∣∣∣∣

+

∣∣∣∣h−1

[∫ ∞
h

`(τ, t) dτ −
∫ ∞

0

`(τ, t− h) dτ

]
−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣ .
The first factor in the last sum goes to zero as h→ 0+, by the Fundamental Theorem

of Calculus and the fact that ` is a solution of the ADP problem (in particular

Equation (2.9)):

lim
h→0+

h−1

∫ h

0

`(τ, t) dτ = `(0, t) = F (`(·, t)).

For the second factor, recall that if F and G are Lipschitz on norm-balls of L1 then `

is a mild solution of the ADP problem if and only if it satisfies the integral equation of

the problem, that is, Equation (2.11) [Web85, Theorem 2.2]. Using Equation (2.11),

for any 0 < h < min {τ, t}, we have

`(τ, t)− `(τ − h, t− h) =

∫ t

t−h
G(`(·, s))(s+ τ − t) ds,
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and so if h < t,∣∣∣∣h−1

[∫ ∞
h

`(τ, t) dτ −
∫ ∞

0

`(τ, t− h) dτ

]
−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣
=

∣∣∣∣h−1

[∫ ∞
h

`(τ, t)− `(τ − h, t− h) dτ

]
−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣
=

∣∣∣∣h−1

[∫ ∞
h

∫ t

t−h
G(`(·, s))(s+ τ − t) ds dτ

]
−
∫ ∞

0

G(`(·, t))(τ) dτ

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(
h−1

[∫ t

t−h
G(`(·, s))(s+ τ + h− t) ds

]
−G(`(·, t))(τ)

)
dτ

∣∣∣∣
=

∣∣∣∣∫ ∞
0

h−1

[∫ t

t−h
G(`(·, s))(s+ τ + h− t)−G(`(·, t))(τ) ds

]
dτ

∣∣∣∣
≤
∫ ∞

0

∣∣∣∣h−1

[∫ t

t−h
(G(`(·, s))(s+ τ + h− t)−G(`(·, t))(τ)) ds

]∣∣∣∣ dτ

≤h−1

∫ t

t−h

∫ ∞
0

|G(`(·, s))(s+ τ + h− t)−G(`(·, t))(τ)| dτ ds

≤h−1

∫ t

t−h

∫ ∞
0

|G(`(·, s))(s+ τ + h− t)−G(`(·, t))(s+ τ + h− t)| dτ ds

+ h−1

∫ t

t−h

∫ ∞
0

|G(`(·, t))(s+ τ + h− t)−G(`(·, t))(τ)| dτ ds

≤ sup
t−h≤s≤t

‖G(`(·, s))−G(`(·, t))‖

+ sup
t−h≤s≤t

∫ ∞
0

|G(`(·, t))(s+ τ + h− t)−G(`(·, t))(τ)| dτ.

In the last inequality, the first factor in the sum tends to zero as h → 0+ because

the function t 7→ G(`(·, t)) is continuous [Web85, Lemma 2.2], and the second factor

tends to zero by the continuity of the translation in L1.

2.5 Equilibria of the coupled model and the ADP problem

For any coupled model where we can use Theorem 2.4.1, an equilibrium solution

of the respective ADP problem translates into an equilibrium solution of the coupled

model by the method of applying the projection π(m) and integrating to obtain the

equilibrium for X or applying the projection π(−k) to obtain the equilibrium for y. In

some cases, those are the only equilibrium solutions of the coupled model, as stated

by the following:
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Theorem 2.5.1 Suppose that we have a coupled model as in Equations (2.1)-(2.5).

Let F and G defined by Equations (2.15) and (2.16) be Lipschitz on norm-balls of L1.

If the ADP problem for the functions F and G, has an equilibrium solution φ,

then

X0 = π(m)

(∫ ∞
0

φ(τ) dτ

)
,

φy(τ) = π(−k) (φ(τ)) ,

is an equilibrium solution of the coupled model.

Conversely, suppose that X0, φy is an equilibrium solution of the coupled model

such that

(i) φy is absolutely continuous,

(ii) φ′y ∈ L1, and

(iii) all eigenvalues of Mx(X0, φy) have negative real parts.

Then,

φ(τ) =

eMx(X0,φy)τFx(X0, φy)

φy(t)


is an equilibrium solution of the ADP problem for the functions F and G defined by

Equations (2.15) and (2.16).

Proof Under the hypothesis of the theorem, if the ADP problem has an equilibrium

solution φ, then we can apply Theorem 2.4.1 to obtain a solution of the coupled model.

Because the equilibrium solution of the ADP problem does not depend on the variable

t, neither will the solution of the coupled model.

On the other hand, if X0, φy is an equilibrium solution of the coupled model that

satisfies (i), (ii) and (iii) and we define

φ(τ) =

φx(τ)

φy(τ)

 =

eMx(X0,φy)τFx(X0, φy)

φy(τ)

 ,
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then∫ τ̄

0

φx(τ) dτ = (Mx(X0, φy))
−1eMx(X0,φy)τ̄Fx(X0, φy)− (Mx(X0, φy))

−1Fx(X0, φy).

Recall that we are assuming that all eigenvalues of the matrix Mx(X0, φy) have neg-

ative real parts, so (Mx(X0, φy))
−1 exists. Moreover, if all eigenvalues of a square

matrix A have negative real parts then limτ→∞ e
Aτx0 = 0, for any vector x0 of the

same dimension as A [Per01, Chapter 1, Theorem 2]. So,∫ ∞
0

φx(τ) dτ = −(Mx(X0, φy))
−1Fx(X0, φy).

By Equation (2.1) and the fact that, if X0, φy is an equilbrium solution of the

coupled model, it satisfies X ′(t) = 0, we have

−(Mx(X0, φy))
−1Fx(X0, φy) = X0.

So,
∫∞

0
φx(τ) dτ = X0.

Because of the definition of φx and the fact that φy is absolutely continuous, φ is

absolutely continuous. Moreover,

φ′x(x) = Mx(X0, φy)φx(τ),

so φ′x ∈ L1. Also, because we are assuming that φy ∈ L1, then φ′ ∈ L1.

Now we can show that φ is indeed a solution of the ADP problem:

φ(0) =

Fx(X0, φy)

φy(0)

 =

Fx(X0, φy)

Fy(X0, φy)

 = F (φ),

where F is as in Equation (2.15), and

Dφ(τ) = φ′(τ) =

Mx(X0, φy)φx(τ)

φ′y(τ)

 = G(φ)(τ),

where G is as in Equation (2.16).

Notice that the functions Mx of the first and last example presented in Sec-

tion 2.1.1 satisfy condition (iii) in the last theorem. The second example satisfies

the condition for the non-trivial equilibrium.
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3. Solutions of the model

We start by defining what we mean by a solution of the model.

Definition 3.0.1 Let N0 ∈ R+ and Θ ∈ L1
+(R) be such that

N0 +

∫ ∞
0

Θ(τ) dτ > 0.

We define a solution of the model given by the System (1.1) for the initial conditions

N0 and Θ, as a pair of functions N : R+ → R+ differentiable, and o : R+ → L1
+(R)

continuous, that solve the equations in System (1.1) for all t ≥ 0 and a.e. for τ ∈
(0,∞).

3.1 Our model as an ADP problem

Our ADP problem will be defined by the method in Theorem 2.4.1 for the coupled

problem:

d

dt
N(t) = −

[∫ ∞
0

T (υ)
o(υ, t)

P
dυ

]
N(t)− µN(t) + µP(t),

N(0) = N0,

Do(τ, t) = −
[∫ ∞

0

T (υ)
o(υ, t)

P
dυ

]
S(τ)o(τ, t)− µo(τ, t),

o(0, t) =

[∫ ∞
0

T (υ)
o(υ, t)

P
dυ

] [
N(t) +

∫ ∞
0

S(τ)o(τ, t) dτ

]
,

o(τ, 0) = Θ(τ),

P = N0 +

∫ ∞
0

Θ(τ) dτ,

P(t) = N(t) +

∫ ∞
0

o(τ, t) dτ.

(3.1)

Notice that this is the same as our original model (System (1.1)), as long as P(t) = P

for all t. We show now that this is the case.
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Proposition 3.1.1 Let µ ≥ 0. Let T, S : R+ → R+ be functions that satisfy As-

sumption 1.5.1 is satisfied. Let N0 ∈ R+ and Θ ∈ L1
+(R) be such that

N0 +

∫ ∞
0

Θ(τ) dτ > 0.

Then any solution N : R+ → R+, o : R+ → L1
+(R) of System (1.1) satisfies

P(t) = N0 +

∫ ∞
0

Θ(τ).

Proof Suppose that N : R+ → R+, o : R+ → L1
+(R) is a solution of System (1.1).

To simplify the notation, define

B(t) =

∫ ∞
0

T (υ)
o(υ, t)

P(t)
dυ,

and

wc(t) = o(t+ c, t),

for any c ∈ R and t ≥ tc, where tc = max {−c, 0}.
We have,

lim
h→0+

wc(t+ h)− wc(t)
h

= lim
h→0+

o(t+ c+ h, t+ h)− o(t+ c, t)

h

= Do(t+ c, t)

= −B(t)S(t+ c)wc(t)− µwc(t),

so the right derivative of w′c(t+) exists a.e. Now, B(t)S(t+c) is bounded by
∫∞

0
T (τ) dτ

or is zero a.e., because of Assumption 1.5.1. Therefore, w′c(t+) is integrable in [0, t̄ ]

for any t̄ > 0, whenever wc(t) is integrable in [0, t̄ ]. Because, o : R+ → L1
+(R) is

continuous, this is the case for any t̄ > 0. So, we can integrate w′c(t+) to obtain that

wc satisfies a.e. the integral equation:

wc(t) =

∫ t

tc

−B(s)S(s+ c)wc(s)− µwc(s) + wc(tc);

that is,

wc(t) =

wc(0)−
[∫ t

0
B(s)S(s+ c)wc(s) + µwc(s) ds

]
if c > 0,

wc(−c)−
[∫ t
−c B(s)S(s+ c)wc(s) + µwc(s) ds

]
if c < 0.
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Letting τ = t + c and using the fourth and fifth equations in System (1.1), we

obtain:

o(τ, t) = Θ(τ − t)−
[∫ t

0

B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds

]
,

a.e. for τ < t, and

o(τ, t) =B(t− τ)

[
N(t− τ) +

∫ ∞
0

S(υ)o(υ, t− τ) dυ

]
−
[∫ t

t−τ
B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds

]
,

a.e. for τ > t. Integrating, we have∫ ∞
0

o(τ, t) dτ

=

∫ t

0

B(t− τ)

[
N(t− τ) +

∫ ∞
0

S(υ)o(υ, t− τ) dυ

]
dτ

−
∫ t

0

∫ t

t−τ
B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds

+

∫ ∞
t

Θ(τ − t) dτ

−
∫ ∞
t

∫ t

0

B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds.

(3.2)

Changing the limits of integration and making the change of variable υ = τ − t + s

yields ∫ t

0

∫ t

t−τ
B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds

=

∫ t

0

∫ s

0

B(υ)S(υ)o(υ, s) + µo(υ, s) dυ ds,

and ∫ ∞
t

∫ t

0

B(s)S(τ − t+ s)o(τ − t+ s, s) + µo(τ − t+ s, s) ds

=

∫ t

0

∫ ∞
s

B(υ)S(υ)o(υ, s) + µo(υ, s) dυ ds.

A change of variable of s = t − τ and υ = τ − t in the other two integrals of

Equation (3.2) imply that∫ ∞
0

o(τ, t) dτ =

∫ t

0

B(s)N(s) ds− µ
∫ t

0

‖o(·, s)‖ ds+

∫ ∞
0

Θ(υ) dυ.
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Finally, integrating the first equation in System (1.1) we obtain

N(t) = −
∫ t

0

B(s)N(s) ds+ µ

∫ t

0

‖o(·, s)‖ ds+N0.

Adding the last two equations we have the result.

This proposition allows us to consider a simpler version of the model (“less non-

linear”), namely System (3.1). Taking

Fx(X,φy) = µX + µ

∫ ∞
0

φy(τ) dτ,

Mx(X,φy) = −
∫ ∞

0

T (τ)
φy(τ)

P
dτ − µ,

Gy(X,φy) = −
[∫ ∞

0

T (τ)
φy(τ, t)

P
dτ

]
S(τ)φy(τ, t)− µφy(τ),

Fy(X,φy) =

[∫ ∞
0

T (τ)
φy(τ)

P
dτ

] [
X +

∫ ∞
0

S(τ)φy(τ) dτ

]
,

X0 = N0,

and

φy = Θ,

this system is of the form described in Section 2.1, and we can use the functions

F

φn

φo

 =


µ
∫∞

0
φn(τ) + φo(τ) dτ

[∫∞
0
T (υ)φ

o(υ)
P

dυ
] [∫∞

0
φn(τ) + S(τ)φo(τ) dτ

]
 , (3.3)

and

G

φn

φo

(τ) =


−
[∫∞

0
T (υ)φ

o(υ)
P

dυ
]
φn(τ)− µφn(τ)

−
[∫∞

0
T (υ)φ

o(υ)
P

dυ
]
S(τ)φo(τ)− µφo(τ)

 , (3.4)

to translate it into an ADP problem.

To simplify the notation, we will use the following conventions:
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Definition 3.1.1 For 0 < t̄ ≤ ∞, and φ ∈ L1((0, t̄ ),R2), let

φn = π1 ◦ φ,

and

φo = π2 ◦ φ,

where π1, π2 : R2 → R are the projections to the first and second entries as in Defini-

tion 1.6.3.

In this sense, φn will be the never-infected part of φ and φo the once-infected part.

Further, we use notation for the force of infection at a certain state:

Definition 3.1.2 We define F : L1 → R by

F(φ) =

∫ ∞
0

T (τ)
φo(τ)

P
dτ.

We also give notation for the weighted sum of the entries of a state with respect to

susceptibility:

Definition 3.1.3 We define W : L1 → R by

W(φ) =

∫ ∞
0

φn(τ) + S(τ)φo(τ) dτ.

And the non-weighted one:

Definition 3.1.4 We define W : L1 → R by

W(φ) =

∫ ∞
0

φn(τ) + φo(τ) dτ.

Notice that W(φ) = ‖φ‖ if φ ∈ L1
+.

Now we can rewrite the functions F and G in a more compact way. For φ ∈ L1:

F (φ) =

 µW(φ)

F(φ)W(φ)

 ,

and

G(φ)(τ) =

 −F(φ)φn(τ)− µφn(τ)

−F(φ)S(τ)φo(τ)− µφo(τ)

 .
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3.2 Basic results for the ADP version of the model

Proposition 3.2.1 Let P > 0, µ ≥ 0, and T, S : R+ → R+ bounded. Then func-

tions F ,W ,W in Definitions 3.1.2, 3.1.3 and 3.1.4, are bounded linear operators.

Additionally, we have

‖F‖op ≤
T̂

P
,

‖W‖op ≤ Ŝ,

and

‖W‖op = 1,

Proof The linearity follows by the definition of the functions and the fact that

integration is a linear operator.

For all φ ∈ L1, we have

|F(φ)| ≤
∫ ∞

0

T (τ)
|φo(τ)|
P

dτ ≤ T̂

P
‖φ‖,

|W(φ)| ≤
∫ ∞

0

|φn(τ)|+ S(τ)|φo(τ)| dτ ≤ Ŝ‖φ‖,

and

|W(φ)| ≤
∫ ∞

0

|φn(τ)|+ |φo(τ)| dτ = ‖φ‖.

Also, |W(φ)| = ‖φ‖, if φ ∈ L1
+.

Proposition 3.2.2 Let P > 0, µ ≥ 0, and T, S : R+ → R+ bounded. If φ ∈ L1,

then there exists 0 < t̄ ≤ ∞ and ` ∈ Lt̄ such that ` is the unique mild solution of the

ADP problem on [0, t̄ ] for the functions F,G given by Equations (3.3), (3.4) and the

initial distribution φ.

Proof Existence and uniqueness of the mild solution of the ADP problem is guar-

anteed if F and G are Lipschitz on norm-balls of L1 [Web85, Theorem 2.1]. In other

words, we need to show that there exist functions c1, c2 : R+ → R+ such that

|F (φ1)− F (φ2)| ≤ c1(r)‖φ1 − φ2‖,
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and

‖G(φ1)−G(φ2)‖ ≤ c2(r)‖φ1 − φ2‖,

for all φ1, φ2 ∈ L1 with ‖φ1‖, ‖φ2‖ ≤ r.

If ‖φ1‖, ‖φ2‖ ≤ r, using Proposition 3.2.1, we have

|F (φ1)− F (φ2)|

= |µW(φ1)− µW(φ2)|+ |F(φ1)W(φ1)−F(φ2)W(φ2)|

= µ|W(φ1 − φ2)|+ |F(φ1)W(φ1)−F(φ1)W(φ2) + F(φ1)W(φ2)−F(φ2)W(φ2)|

≤ µ‖φ1 − φ2‖+ |F(φ1)||W(φ1 − φ2)|+ |W(φ2)||F(φ1 − φ2)|

≤ µ‖φ1 − φ2‖+
T̂

P
‖φ1‖|W(φ1 − φ2)|+ Ŝ‖φ2‖|F(φ1 − φ2)|

≤ µ‖φ1 − φ2‖+
T̂

P
‖φ1‖Ŝ‖φ1 − φ2‖+ Ŝ‖φ2‖

T̂

P
‖φ1 − φ2‖

≤ µ‖φ1 − φ2‖+ 2r
T̂

P
Ŝ‖φ1 − φ2‖.

So, we can choose

c1(r) =
2ŜT̂ r

P
+ µ.

Similarly, if ‖φ1‖, ‖φ2‖ ≤ r,

‖G(φ1)−G(φ2)‖

=

∫ ∞
0

|−F(φ1)φn
1(τ) + F(φ2)φn(τ)− µφn

1(τ) + µφn
2(τ)| dτ

+

∫ ∞
0

|−F(φ1)S(τ)φo
1(τ) + F(φ2)S(τ)φo(τ)− µφo

1(τ) + µφo
2(τ)| dτ

≤
∫ ∞

0

|F(φ1)φn
1(τ)−F(φ2)φn

2(τ)| dτ + µ

∫ ∞
0

|φn(τ)− φn(τ)| dτ

+

∫ ∞
0

|F(φ1)S(τ)φo
1(τ)−F(φ2)S(τ)φo

2(τ)| dτ + µ

∫ ∞
0

|φo(τ)− φo(τ)| dτ

≤
∫ ∞

0

|F(φ1)φn
1(τ)−F(φ1)φn

2(τ) + |F(φ1)φn
2(τ)−F(φ2)φn

2(τ)| dτ

+

∫ ∞
0

|F(φ1)S(τ)φo
1(τ)−F(φ1)S(τ)φo

2(τ)|+ |F(φ1)S(τ)φo
2(τ)−F(φ2)S(τ)φo

2(τ)| dτ

+ µ‖φ1 − φ2‖
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≤ |F(φ1)|
∫ ∞

0

|φn(τ)− φn
2(τ)| dτ + |F(φ1 − φ2)|

∫ ∞
0

|φn
2(τ)| dτ

+ |F(φ1)|
∫ ∞

0

S(τ)|φo(τ)− φo
2(τ)| dτ + |F(φ1 − φ2)|

∫ ∞
0

S(τ)|φo
2(τ)| dτ

+ µ‖φ1 − φ2‖

≤ |F(φ1)|Ŝ‖φ1 − φ2‖+ |F(φ1 − φ2)|Ŝ‖φ2‖+ µ‖φ1 − φ2‖

≤ 2
T̂

P
Ŝr‖φ1 − φ2‖+ µ‖φ1 − φ2‖.

So, we can also take

c2(r) =
2ŜT̂ r

P
+ µ.

Proposition 3.2.3 Let P > 0, µ ≥ 0, and T, S : R+ → R+ bounded. If φ ∈ L1
+,

then the mild solution ` of the ADP problem on [0, t̄φ) for the functions F,G given by

Equations (3.3), (3.4) and the initial distribution φ, has the property that `(·, t) ∈ L1
+

for 0 ≤ t < t̄φ.

Proof We can guarantee that `(·, t) ∈ L1
+ if we have [Web85, Theorem 2.4]:

(i) F (L1
+) ⊆ R2

+, and

(ii) there exists an increasing and function c3 : R+ → R+ such that

G(φ) + c3(r)φ ∈ L1
+

whenever r > 0, φ ∈ L1
+, and ‖φ‖ ≤ r.

Clearly F (L1
+) ⊆ R2

+, so we only need to show that there exists a function c3.

If ‖φ‖ ≤ r, using Proposition 3.2.1 we have

−G(φ)(τ) =

 F(φ)φn(τ) + µφn(τ)

F(φ)S(τ)φo(τ) + µφo(τ)


≤
(
ŜF(φ) + µ

)
φ(τ)

≤
(
Ŝ
T̂

P
‖φ‖+ µ

)
φ(τ)

≤
(
Ŝ
T̂

P
r + µ

)
φ(τ).



43

Therefore we can take

c3(r) =
ŜT̂ r

P
+ µ.

Proposition 3.2.4 Let P > 0, µ ≥ 0, and T, S : R+ → R+ be bounded. Let φ ∈ L1,

and let ` be the mild solution of the ADP problem on [0, t̄φ) for the functions F,G

given by Equations (3.3), (3.4) and the initial condition φ. ThenW(`(·, t)) is constant

for all 0 ≤ t < t̄φ.

Additionally, if φ ∈ L1
+, then ‖`(·, t)‖ = ‖φ‖, for all 0 < t < t̄φ.

Proof For 0 < t < t̄φ and h > 0, we have

h−1

∫ ∞
0

`(τ, t+ h)− `(τ, t) dτ

= h−1

∫ h

0

`(τ, t+ h) dτ + h−1

∫ ∞
h

`(τ, t+ h) dτ − h−1

∫ ∞
0

`(τ, t) dτ

= h−1

∫ h

0

`(τ, t+ h) dτ +

∫ ∞
0

h−1[`(τ + h, t+ h)− `(τ, t)] dτ,

which converges to F (`(·, t)) +
∫∞

0
G(`(·, t))(τ) dτ as h → 0+, because of Equa-

tions (2.12) and (2.13).

Adding the entries of the vectors h−1
∫∞

0
`(τ, t + h) − `(τ, t) dτ and F (`(·, t)) +∫∞

0
G(`(·, t))(τ) dτ , we obtain,

W(`(·, t+ h))−W(`(·, t))
h

→ 0,

as h → 0+. In other words, t 7→ W(`(·, t)) is differentiable from the right in (0, t̄φ),

and its right derivative is 0.

Given 0 < t̄ < t̄φ, ` ∈ Lt̄, so the restriction of the solution ` to [0, t̄ ] is continuous

as function of t from [0, t̄ ] to L1; therefore, W(`(·, t)) is also continuous in [0, t̄ ].

Any continuous function in [0, t̄ ] that has non-negative right derivative everywhere

in (0, t̄ ) is non-decreasing in [0, t̄ ] [Roy88, Chapter 5, Proposition 2]. Because both

W(`(·, t)) and −W(`(·, t)) have non-negative right derivative, we can conclude that

W(`(·, t)) is constant in [0, t̄ ], for any 0 < t̄ < t̄φ.
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Finally, if φ ∈ L1
+, because of Equation (2.14),

W(`(·, 0)) =W(φ) =

∫ ∞
0

φn(τ) + φo(τ) = ‖φ‖,

so W(`(·, t)) = ‖φ‖, for all 0 ≤ t < t̄φ. Additionally, by Proposition 3.2.3, we know

that if φ ∈ L1
+, `(·, t) ∈ L1

+, and so W(`(·, t)) = ‖`(·, t)‖, for all 0 ≤ t < t̄φ.

Proposition 3.2.5 Let P > 0, µ ≥ 0, and T, S : R+ → R+ be bounded, φ ∈ L1
+. Let

` be the mild solution of the ADP problem on [0, t̄φ) for the functions F,G given by

Equations (3.3), (3.4) and the initial condition φ. Then t̄φ =∞.

Proof If t̄φ < ∞, then lim supt>0 ‖`(·, t)‖ = ∞ [Web85, Theorem 2.3]. By Propo-

sition 3.2.4, we know that ‖`(·, t)‖ remains bounded (actually it is constant) for all

t ∈ [0, t̄φ), if φ ∈ L1
+. So we can conclude that t̄φ =∞.

3.3 Existence and regularity of the model solution

Proposition 3.3.1 Let P > 0, µ ≥ 0. Let T : R+ → R+ be a bounded function,

and let S : R+ → R+ be a bounded globally Lipschitz function. Let φ ∈ L1
+ be a

continuous function such that φ(0) = F (φ). Then, there exists a unique continuous

function ` : R+ → L1
+ that is the solution of the ADP problem for the functions F

and G given by Equations (3.3), (3.4) and the initial condition φ.

Proof The existence and uniqueness of a mild solution ` of the ADP problem is

guaranteed by Proposition 3.2.2. tφ =∞ and so ` ∈ L∞, because of Proposition 3.2.5.

`(·, t) ∈ L1
+ for every t ∈ R+ because of Proposition 3.2.3.

Note that

G(φ)(τ) = −M(τ, φ)φ,

for all τ > 0, where M : R+ × L1 → B(R2,R2) is defined as

M(τ, φ) =

F(φ) + µ 0

0 S(τ)F(φ) + µ

 .
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For G of this form, the mild solution of the ADP problem in [0, t̄φ) is a continuous

solution of the ADP problem in [0, t̄φ) [Web85, Theorem 2.9] if

(i) φ ∈ L1 is continuous and φ(0) = F (φ),

(ii) F is Lipschitz on norm-balls of L1, and

(iii) there exist increasing functions c4, c5, c6 : R+ → R+ such that for all φ1, φ2 ∈ L1,

τ1, τ2 ≥ 0:

(a) ‖M(τ1, φ1)−M(τ2, φ1)‖op ≤ c4(‖φ1‖)|τ1 − τ2|

(b) ‖M(τ1, φ1)‖op ≤ c5(‖φ1‖)

(c) ‖M(τ1, φ1)−M(τ1, φ2)‖op ≤ c6(r)‖φ1 − φ2‖ if ‖φ1‖, ‖φ2‖ ≤ r.

(i) is part of the hypothesis and we already showed (ii) in the proof of Proposi-

tion 3.2.2, so we proceed to prove (iii). Let φ1, φ2 ∈ L1, τ1, τ2 ≥ 0.

Using the fact that S is globally Lipschitz, let K be a constant such that

|S(τ)− S(τ ′)| ≤ K|τ − τ ′|

for all τ, τ ′ ≥ 0. We have

‖M(τ1, φ1)−M(τ2, φ1)‖op = |S(τ1)− S(τ2)| |F(φ1)|

≤ KT̂

P
‖φ1‖|τ1 − τ2|,

and we can take c4(r) = KT̂r
P

.

On the other hand,

‖M(τ1, φ1)‖op = sup
|x1|+|x2|=1

{|F(φ1)x1 + µx1|+ |S(τ1)F(φ1)x2 + µx2|}

≤ sup
|x1|+|x2|=1

{|F(φ1)||x1|+ µ|x1|+ |S(τ1)||F(φ1)||x2|+ µ|x2|}

≤ sup
|x1|+|x2|=1

{
Ŝ|F(φ1)|+ µ

}
≤ ŜT̂

P
‖φ1‖+ µ,
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and we can take c5(r) = ŜT̂ r
P

+ µ.

Finally,

‖M(τ1, φ1)−M(τ1, φ2)‖op = sup
|x1|+|x2|=1

{|F(φ1 − φ2)x1|+ |S(τ1)F(φ1 − φ2)x2|}

≤ sup
|x1|+|x2|=1

{
Ŝ|F(φ1 − φ2)|(|x1|+ |x2|)

}
≤ ŜT̂

P
‖φ1 − φ2‖,

and we can take c6(r) = ŜT̂
P

.

Let us translate the last proposition back to our original problem to obtain the

first theorem of existence (and regularity) of solutions:

Theorem 3.3.1 Let µ ≥ 0. Let T : R+ → R+ be a function and S : R+ → R+

a globally Lipschitz function that satisfy Assumption 1.5.1. Let N0 > 0, and let

Θ : R+ → R+ be a continuous function such that Θ ∈ L1
+ and

Θ(0) =

[∫ ∞
0

T (υ)
Θ(υ)

N0 +
∫∞

0
Θ(τ) dτ

dυ

] [
N0 +

∫ ∞
0

S(τ)Θ(τ) dτ

]
. (3.5)

Then there exists a differentiable function N : R+ → R+ and a continuous function

o : R+ → L1
+(R), that solve System (1.1).

Proof Let φn be any continuous function from R+ to R+ such that

φn(0) = µP,

and ∫ ∞
0

φn(τ) dτ = N0.

For this φn, because we showed in Proposition 3.2.2 that F and G given by Equa-

tions (3.3), (3.4) are Lipschitz on norm-balls of L1, we can use Theorem 2.4.1 to

translate results of a solution of the ADP problem for the functions F and G and the

initial condition

φ =

φn

Θ

 ,
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to results for solutions of the System (3.1), and by Proposition 3.1.1 of the original

System (1.1).

The first result is existence of a solution. We know that φ ∈ L1
+ is continuous and

by the definition of φ and Equation (3.5), we have

φ(0) =

φn(0)

Θ(0)

 =

 µP

F(φ)
[
N0 +

∫∞
0
S(τ)Θ(τ) dτ

]
 = F (φ).

So, we have the hypothesis of Proposition 3.3.1 and we can conclude that there is

a solution for System (1.1). Moreover, this solution is defined for all t ∈ R+, and

satisfies

N(t) = π1

(∫ ∞
0

`(τ, t) dτ

)
,

o(τ, t) = π2 (`(τ, t)) ,

for ` the solution of the ADP problem.

By Proposition 3.2.3, `(·, t) ∈ L1
+, for all t ∈ R+, so N(t) ≥ 0 and o(·, t) ∈ L1

+ as

required.

The above proposition is not very restrictive in the conditions imposed on the

initial distribution. We only require it to be continuous, L1 and satisfy the non-

local boundary condition. However, we are imposing an additional restriction on the

susceptibility function, S, namely for it to be globally Lipschitz. We can dispense with

this restriction so long as we impose a stronger condition on the initial distribution.

Our regularity results will then be stronger for the solution of the ADP problem. For

this we first need to show that our functions F andG are continuously F-differentiable.

Proposition 3.3.2 Let P > 0, µ ≥ 0. Let T, S : R+ → R+ be bounded functions.

Then

1. The function F : L1 → R2 defined by Equation (3.3) is a continuously F-

differentiable function relative to L1. Its F-derivative is given by

F ′(φ0)(φ) =

 µW(φ)

F(φ0)W(φ) + F(φ)W(φ0)

 .
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2. The function G : L1 → L1 defined by Equation (3.4) is a continuously F-

differentiable function relative to L1. Its F-derivative is given by

G′(φ0)(φ)(τ) = −

 F(φ0)φn(τ) + F(φ)φn
0(τ) + µφn(τ)

F(φ0)S(τ)φo(τ) + F(φ)S(τ)φo
0(τ) + µφo(τ)

 .

Proof Let φ0 ∈ L1. Note that both F ′(φ0) and G′(φ0) defined above are linear

operators from L1 to R2 and from L1 to L1, respectively. They are bounded linear

operators because

|F ′(φ0)(φ)| =|µW(φ)|+ |F(φ0)W(φ) + F(φ)W(φ0)|

≤
(
µ+ |F(φ0)|Ŝ +

T̂

P
|W(φ0)|

)
‖φ‖,

and

‖G′(φ0)(φ)‖ =

∫ ∞
0

|F(φ0)φn(τ) + F(φ)φn
0(τ) + µφn(τ)| dτ

+

∫ ∞
0

|F(φ0)S(τ)φo(τ) + F(φ)S(τ)φo
0(τ) + µφo(τ)| dτ

≤
(
|F(φ0)|Ŝ +

T̂

P
Ŝ‖φ0‖+ µ

)
‖φ‖,

for any φ ∈ L1.

Now, let ε > 0 and φ ∈ L1. We have

|F (φ)− F (φ0)− F ′(φ0)(φ− φ0)|

= |F(φ)W(φ)−F(φ0)W(φ0)−F(φ0)W(φ− φ0)−F(φ− φ0)W(φ0)|

= |F(φ)W(φ− φ0)−F(φ0)W(φ− φ0)|

= |F(φ− φ0)W(φ− φ0)|

≤ T̂

P
Ŝ‖φ− φ0‖2

≤ ε‖φ− φ0‖,

if T̂ = 0, Ŝ = 0, or if ‖φ− φ0‖ < δ = min
{

1, Pε
T̂ Ŝ

}
, when T̂ , Ŝ 6= 0.
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Likewise, we have

‖G(φ0)−G(φ)−G′(φ0)(φ− φ0)‖

=

∫ ∞
0

|F(φ− φ0)φn(τ)−F(φ− φ0)φn
0(τ)| dτ

+

∫ ∞
0

|F(φ− φ0)S(τ)φo(τ)−F(φ− φ0)S(τ)φo
0(τ)| dτ

≤ Ŝ|F(φ− φ0)|
∫ ∞

0

|φn(τ)− φn(τ) + |φ0(τ)− φo
0(τ)| dτ

= Ŝ|F(φ− φ0)|‖φ− φ0‖

≤ Ŝ
T̂

P
‖φ− φ0‖2,

which again is smaller than ε if T̂ = 0, Ŝ = 0, or if ‖φ − φ0‖ < δ = min
{

1, Pε
T̂ Ŝ

}
,

when T̂ , Ŝ 6= 0.

Now, let φ1, φ2 ∈ L1. We have

‖F ′(φ1)− F ′(φ2)‖op = sup
‖φ‖=1

|F(φ1 − φ2)W(φ) + F(φ)W(φ1 − φ2)|

≤ sup
‖φ‖=1

{
T̂

P
‖φ1 − φ2‖Ŝ‖φ‖+

T̂

P
‖φ‖Ŝ‖φ1 − φ2‖

}

= 2
T̂

P
Ŝ‖φ1 − φ2‖,

so φ 7→ F ′(φ) is a continuous function from L1 to B(L1,R2).

On the other hand,

‖G′(φ1)−G′(φ2)‖op

= sup
‖φ‖=1

{∫ ∞
0

|F(φ1 − φ2)φn(τ) + F(φ)(φn
1(τ)− φn

2(τ))| dτ

+

∫ ∞
0

|F(φ1 − φ2)S(τ)φo(τ) + F(φ)S(τ(φo
1(τ)− φo

2(τ))| dτ
}

≤ sup
‖φ‖=1

{
|F(φ1 − φ2)|Ŝ‖φ‖+ F(φ)Ŝ‖φ1 − φ2‖

}
≤ 2

T̂

P
Ŝ‖φ1 − φ2‖,

so φ 7→ G′(φ) is also continuous as a function from L1 to B(L1, L1).
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Proposition 3.3.3 Let P > 0, µ ≥ 0, and let T, S : R+ → R+ be bounded functions.

Let φ ∈ L1
+ be an absolutely continuous function such that φ′ ∈ L1 and φ(0) = F (φ).

Then there exists a unique solution, `, of the ADP problem for the functions F,G

given by Equations (3.3), (3.4) and the initial condition φ, such that

1. `(·, t) is absolutely continuous for any t ∈ R+.

2. For every t ∈ R+, the function τ 7→ `(τ, t) is differentiable from R+ to R2 and

its derivative is in ∈ L1.

3. The function t 7→ `(·, t) is continuously differentiable from R+ to L1.

4. ` also satisfies the evolution equation:

∂

∂τ
`(τ, t) +

∂

∂t
`(τ, t) = G(`(·, t))(τ),

for every t ∈ R+ and a.e. for τ ∈ (0,∞).

Proof A mild solution of the ADP problem on [0, t̄φ) is a solution of the ADP

problem and satisfies conditions 1-4 for any t ∈ [0, t̄φ) as long as [Rue08, Theorem

2.3]:

(i) The functions F and G are Lipschitz on norm-balls of L1
+.

(ii) There exists a function c3 that satisfies (ii) in the proof of Proposition 3.2.3.

(iii) The functions F and G are continuously F-differentiable relative to L1
+.

(iv) The initial condition φ satisfies:

(a) φ ∈ L1
+,

(b) φ is absolutely continuous,

(c) φ′ ∈ L1, and

(d) φ(0) = F (φ).
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We have guaranteed existence and uniqueness of the mild solution of the ADP

problem in Proposition 3.2.2. As for the conditions, we showed (i) in the proof of

Proposition 3.2.2 and (ii) in the proof of Proposition 3.2.3. (iii) is Proposition 3.3.2,

whereas (iv) is part of the hypothesis. Finally, the fact that t̄φ =∞ was the result of

Proposition 3.2.5.

Again we can translate this into a result for the original problem.

Theorem 3.3.2 Let µ ≥ 0. Let T, S : R+ → R+ be functions that satisfy Assump-

tion 1.5.1. Let N0 > 0, and let Θ : R+ → R+ be an absolutely continuous function

such that Θ ∈ L1
+, Θ′ ∈ L1, and

Θ(0) =

[∫ ∞
0

T (υ)
Θ(υ)

N0 +
∫∞

0
Θ(τ) dτ

dυ

] [
N0 +

∫ ∞
0

S(τ)Θ(τ) dτ

]
.

Then there exists a continuously differentiable function N : R+ → R+ and a continu-

ous function o : R+ → L1
+(R), that solve System (1.1). Moreover, o(·, t) is absolutely

continuous for any t ∈ R+ and

D(o(τ, t)) =
∂

∂τ
o(τ, t) +

∂

∂t
o(τ, t),

for every t ∈ R+ and a.e. for τ ∈ (0,∞).

Proof Let φx ∈ L1
+ be any absolutely continuous function such that φ′x ∈ L1,

φx(0) = µP and
∫∞

0
φx(τ) dτ = N0. As in the proof of Theorem 3.3.1, the result

follows by an application of Theorem 2.4.1 and Proposition 3.3.3.
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4. Equilibrium solutions of the model

In this chapter, we present results on the existence and stability of equilibrium so-

lutions of the model. Both the disease-free and possible endemic equilibria are con-

sidered. A result on the global stability of the disease-free equilibrium is obtained,

and it is shown that, under certain conditions, the model can have multiple endemic

equilibria.

4.1 Definition of equilibrium solutions for the model

The model can have two types of equilibrium (time-independent) solutions. One

is the disease-free equilibrium at which there are no new infections or reinfections,

and the other one includes endemic equilibrium solutions at which new infections or

reinfections are present, as defined below.

Definition 4.1.1 An equilibrium of the model is a solution (N, o) ∈ L1
+ × L∞ of

System (1.1) (as in Definition 3.0.1) with the property that N(t) = N0, o(·, t) = Θ,

for all t ≥ 0 and such that

N0 +

∫ ∞
0

Θ(τ) dτ > 0.

An equilibrium of the model that satisfies Θ(0) = 0 is called a disease-free equilibrium,

and any equilibrium of System (1.1) other than the disease-free equilibrium is called

an endemic equilibrium.

Proposition 4.1.1 (N0,Θ) ∈ R+ × L1
+ is an equilibrium solution of model (as in

Definition 4.1.1) if and only if it is an equilibrium solution of the System (3.1) (as in

Definition 2.1.1) and P > 0.
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Proof Notice that an equilibrium solution for System (1.1) satisfies

P(t) = N0 +

∫ ∞
0

Θ(τ) dτ.

Therefore the equations in System (3.1) are equivalent to those in System (1.1).

4.2 Equilibrium solutions without vital dynamics

We start the analysis of the existence of equilibrium solutions for the model de-

scribed by the System (1.1) with the case of µ = 0, that is, when there is no recruit-

ment of never-infected individuals into the population.

Proposition 4.2.1 Assume µ = 0 and N0 > 0. Let T, S : R+ → R+ be bounded

functions, and Θ ∈ L1
+. Then any equilibrium solution of System (1.1) is a disease-

free equilibrium and satisfies Θ(τ) = 0, a.e. for τ ∈ {υ ∈ R+ : T (υ) > 0}. Moreover,

if Θ is a continuous function, then the equilibrium satisfies Θ(τ) = 0, for all τ ≥ 0.

Proof If (N0,Θ) ∈ R+ × L1
+ is an equilibrium of System (1.1), then by Proposi-

tion 4.1.1, it is an equilibrium of System (3.1).

For µ = 0, the first equation in System (3.1), implies

−
[∫ ∞

0

T (υ)Θ(υ) dτ

]
N0 = 0.

This is because N(t) = N0 for all t ≥ 0, and thus N′(t) = 0 for all t ≥ 0. If N0 > 0,

then ∫ ∞
0

T (υ)Θ(υ) dτ = 0,

and thus Θ(τ) = 0 a.e. for τ ∈ {υ ∈ R+ : T (υ) > 0}, as claimed. In addition, the

fourth equation in System (3.1) yields that o(0, t) = Θ(0) = 0, from which it follows

that the equilibrium is a disease-free equilibrium.

Note that if o(·, t) = Θ, then

Do(τ, t) = lim
h→0+

o(τ + h, t+ h)− o(τ, t)

h
= Θ′(τ+),
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the right derivative of Θ. Thus, the third equation in System (3.1) implies that the

right derivative of Θ exists and is zero a.e. If Θ is continuous this implies that it is

constant [Roy88, Chapter 5, Proposition 2], and from Θ(0) = 0 we know that Θ must

be identically zero.

Notice that unless we require the equilibrium to be continuous in τ , the equilibrium

is not be unique in the above case (not even unique a.e.). This means that as long

as the infectivity is zero (Θ(τ) = 0, a.e. for τ ∈ {υ ∈ R+ : T (υ) > 0}) a population

with some never-infected individuals can have any history of infection (Θ(τ) can be

chosen arbitrarily for τ /∈ {υ ∈ R+ : T (υ) > 0}) and remain free of disease.

An interesting case is when the recruitment of naive (never-infected) individuals

is absent because it reduces to an ADP problem in one dimension:

Proposition 4.2.2 Assume µ = 0 and N0 = 0. Let T, S : R+ → R+ be functions

that satisfy Assumption 1.5.1. Let Θ ∈ L1
+. Then System (1.1) reduces to the ADP

problem:

Do(τ, t) = −
[∫ ∞

0

T (υ)
o(υ, t)

P
dυ

]
S(τ)o(τ, t)

o(0, t) =

[∫ ∞
0

T (υ)
o(υ, t)

P
dυ

] ∫ ∞
0

S(τ)o(τ, t) dτ,

o(τ, 0) = Θ(τ),

where P =
∫∞

0
Θ(τ) dτ .

Proof By Proposition 4.1.1, System (1.1) is the same as System (3.1). If µ = 0, the

first equation in System (3.1) implies that N(t) is a non-increasing function. Since

the range of N is R+ and N(0) = N0 = 0, we conclude N(t) = 0 for all t ≥ 0, from

which the result follows.

Before we present the main theorem of this section, we provide a lemma that will

be helpful for both this and the next section.

Lemma 4.2.1 Let µ ≥ 0 and S : R+ → R+ be a bounded function. Consider the

function from R+ to R+ defined by

x 7→
∫ ∞

0

e−x
∫ τ
0 S(σ) dσ−µτ dτ.
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This function is continuous in (0,∞) if

(i) µ > 0, or

(ii) µ = 0 and
∫∞

0
e−x

∫ τ
0 S(σ) dσ dτ <∞, for each x > 0.

Proof Suppose µ > 0 and let x > 0. For 0 < |h| < x and any τ̂ we have∣∣∣∣∫ ∞
0

e−(x+h)
∫ τ
0 S(σ) dσ −

∫ ∞
0

e−x
∫ τ
0 S(σ) dσ dτ

∣∣∣∣
≤
∣∣∣∣∫ ∞
τ̂

(
e−(x+h)

∫ τ
0 S(σ) dσ − e−x

∫ τ
0 S(σ) dσ

)
e−µτ dτ

∣∣∣∣
+

∣∣∣∣∫ τ̂

0

e−x
∫ τ
0 S(σ) dσ−µτ

(
e−h

∫ τ
0 S(σ) dσ − 1

)
dτ

∣∣∣∣
≤ 2

∫ ∞
τ̂

e−µτ dτ +
∣∣∣e−h ∫ τ̂0 S(σ) dσ − 1

∣∣∣ ∫ τ̂

0

1 dτ

=
2

µ
e−µτ̂ + τ̂

∣∣∣e−h ∫ τ̂0 S(σ) dσ − 1
∣∣∣ .

Therefore, given ε > 0, we can take τ̂ big enough so that 2
µ
e−µτ̂ < ε/2 and then |h|

small enough so that τ̂
∣∣∣e−h ∫ τ̂0 S(σ) dσ − 1

∣∣∣ < ε/2; which proves the continuity at x.

Now suppose µ = 0, and let x > 0. For 0 < |h| < x/2, and τ̂ > 0 we have∣∣∣∣∫ ∞
0

e−(x+h)
∫ τ
0 S(σ) dσ −

∫ ∞
0

e−x
∫ τ
0 S(σ) dσ dτ

∣∣∣∣
≤
∣∣∣∣∫ ∞
τ̂

(
e−(x+h)

∫ τ
0 S(σ) dσ − e−x

∫ τ
0 S(σ) dσ

)
e−µτ dτ

∣∣∣∣
+

∣∣∣∣∫ τ̂

0

e−x
∫ τ
0 S(σ) dσ−µτ

(
e−h

∫ τ
0 S(σ) dσ − 1

)
dτ

∣∣∣∣
≤ 2

∫ ∞
τ̂

e−
x
2

∫ τ
0 S(σ) dσ dτ + τ̂

∣∣∣e−h ∫ τ̂0 S(σ) dσ − 1
∣∣∣ .

Given ε > 0, by the assumption of the integrability of
∫∞

0
e−

x
2

∫ τ
0 S(σ) dσ dτ , we can

choose τ̂ big enough so that the first term in the last inequality is smaller than ε/2,

and then choose |h| small enough so that the second term is smaller than ε/2 which

implies the continuity at x.

Theorem 4.2.1 Assume µ = 0 and N0 = 0. Let T, S : R+ → R+ be functions that

satisfy Assumption 1.5.1. Let Θ ∈ L1
+. Then
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1. There is no disease-free equilibrium for the model.

2. There is an endemic equilibrium if and only if there exists a B > 0 such that∫ ∞
0

Be−B
∫ τ
0 S(s) ds dτ =

∫ ∞
0

T (τ)e−B
∫ τ
0 S(s) ds dτ. (4.1)

3. If T and S satisfy Assumption 1.5.3, then there exists an endemic equilibrium

if and only if

R0 >
1

supS
. (4.2)

Proof Define

B(Θ) =

∫ ∞
0

T (υ)
Θ(υ)

P
dυ.

The functions F0 : L1
+(R) → R+ and G0 : L1

+(R) → L1
+(R) that define the ADP

problem of Proposition 4.2.2 are

F0(Θ) = B(Θ)

∫ ∞
0

S(τ)Θ(τ) dτ, (4.3)

and

G0(Θ)(τ) = −B(Θ)S(τ)Θ(τ). (4.4)

Since µ = 0, F0(Θ) = π2(F (φ)) and G(Θ)(τ) = π2(G(φ)(τ)), for φ = (0,Θ) and F and

G as in Equations (3.3) and (3.4). Therefore, we know that F0 and G0 are Lipschitz

on norm-balls of L1(R), since F and G are for norm-balls of L1(R2) (this was showed

in the proof of Proposition 3.2.2), and also there is function c3 that satisfies (ii) in

the proof of Proposition 3.2.3, since there is one for G (this was showed in the proof

of Proposition 3.2.3). By [Web85, Proposition 4.1] Θ is an equilibrium solution of the

ADP problem in Proposition 4.1.1 and thus one for the System (1.1) if and only if Θ

is absolutely continuous, Θ′ ∈ L1,

Θ′ = G0(Θ),

and

Θ(0) = F0(Θ).
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Using Equations (4.3) and (4.4) and solving the conditions above we obtain that

Θ is an equilibrium for the system if and only if it satisfies

Θ(τ) = B(Θ)

[∫ ∞
0

S(υ)Θ(υ) dυ

]
e−B(Θ)

∫ τ
0 S(s) ds. (4.5)

A disease-free equilibrium satisfies Θ(0) = 0 and so by Equation (4.5), Θ(τ) = 0

for all τ ≥ 0, but then

P = N0 +

∫ ∞
0

Θ(τ) dτ = 0.

Therefore there is no disease-free equilibrium in this case. Additionally, by the same

reasoning, we obtain that any equilibrium satisfies

B(Θ) > 0,

and ∫ ∞
0

S(υ)Θ(υ) dυ > 0.

Now we prove Result 2. Suppose that there is an endemic equilibrium, Θ. Let

B = B(Θ). We show that B satisfies Equation (4.1).

Multiplying Equation (4.5) by T (τ)/P and integrating we obtain

B =
B

P

[∫ ∞
0

S(υ)Θ(υ) dυ

] ∫ ∞
0

T (τ)e−B
∫ τ
0 S(s) ds dτ.

Integrating Equation (4.5) and using the definition of P we obtain

P =

[∫ ∞
0

S(υ)Θ(υ) dυ

] ∫ ∞
0

Be−B
∫ τ
0 S(s) ds dτ.

The two equations above yield Equation (4.1).

Now suppose that there exists B > 0 that satisfies Equation (4.1). We will show

that the function

Θ(τ) = B

[∫ ∞
0

S(υ)Θ(υ) dυ

]
e−B

∫ τ
0 S(s) ds

is an equilibrium.
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By Equation (4.5) and the chosen form for Θ it is enough to show that B(Θ) = B.

Integrating we obtain that

P =

[∫ ∞
0

S(υ)Θ(υ) dυ

] ∫ ∞
0

Be−B
∫ τ
0 S(s) ds dτ

=

[∫ ∞
0

S(υ)Θ(υ) dυ

] ∫ ∞
0

T (τ)e−B
∫ τ
0 S(s) ds dτ,

(4.6)

by Equation (4.1).

Now multiplying Θ(τ) by T (τ)/P and integrating we obtain

B(Θ) =
B

P

[∫ ∞
0

S(υ)Θ(υ) dυ

] ∫ ∞
0

T (τ)e−B
∫ τ
0 S(s) ds dτ,

and by Equation (4.6) we obtain the result.

It remains to prove Result 3. Suppose that T and S satisfy Assumption 1.5.3.

First note that if µ = 0, R0 as in Definition 1.5.4 is given by

R0 =

∫ ∞
0

T (τ) dτ,

and under Assumption 1.5.3 (or Assumption 1.5.2) this integral converges.

Note that Equation (4.1) becomes under Assumption 1.5.3 (and also only under

Assumption 1.5.2): ∫ ∞
0

Be−B
∫ τ
0 S(s) ds dτ = R0.

Define

H(B) = B

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ dτ.

We have to prove that there exists a B > 0 such that H(B) = R0 if and only if

R0 >
1

supS
.

Because

S(τ) ≤ supS × 1[τ0,∞)(τ),
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for all τ ≥ 0, we know that

H(B) ≥ B

∫ ∞
0

e−B
∫ τ
0 supS×1[τ0,∞)(σ) dσ dτ

= B

∫ τ0

0

1 dτ +B

∫ ∞
τ0

e
−B supS

∫ τ
τ0

1 dσ
dτ

= τ0B +B

∫ ∞
τ0

e−B supS(τ−τ0) dτ

= τ0B +
1

supS
.

On the other hand, since limτ→∞ S(τ) = supS, we know that given 0 < ε < supS,

there exist τε > 0 such that S(τ) > supS − ε for all τ ≥ τε, which implies

S(τ) ≥ (supS − ε)× 1[τε,∞)(τ),

for all τ ≥ 0, and so

H(B) ≤ B

∫ ∞
0

e−B
∫ τ
0 (supS−ε)1[τε,∞)(σ) dσ dτ

= B

∫ τε

0

1 dτ +B

∫ ∞
τε

e−B(supS−ε)
∫ τ
τε

1 dσ dτ

= τεB +B

∫ ∞
τε

e−B(supS−ε)(τ−τε) dτ

= τεB +
1

supS − ε.

Hence, for all 0 < ε < supS we have

τ0B +
1

supS
≤ H(B) ≤ τεB +

1

supS − ε. (4.7)

Since limτ→∞ S(τ) = supS > 0, then
∫∞

0
S(τ) dτ =∞, and therefore

∫∞
0
e−x

∫ τ
0 S(σ) dσ dτ <

∞ for any x > 0. By Lemma 4.2.1, we know that H(B) is continuous for all B > 0,

and by Equation (4.7), we have for all 0 < ε < supS

1

supS
≤ lim

B→0
H(B) ≤ 1

supS − ε.

That is,

lim
B→0

H(B) =
1

supS
.
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Equation (4.7) implies that H(B) is bounded from below by a strictly increasing

function that tends to infinity as B → ∞. So, we obtain: there exists B > 0 such

that H(B) = R0 if and only if R0 > limB→0H(B) = 1
supS

.

Figure 4.1 summarizes Result 3 in the Theorem. The blue curve in this figure

represents 1/ supS. Notice that if supS < 1, R0 > 1 is a necessarily (but not

sufficient) condition for the existence of an endemic equilibrium. If supS > 1, this is

not longer the case; that is, there can be endemic equilibria even when R0 < 1.

0 1 3
supS

0

1

2

R
0

At least one endemic equilibrium

No endemic equilibrium

Figure 4.1. A bifurcation diagram in the (supS,R0) plane for the case
of µ = 0 and under Assumption 1.5.3. It illustrates that the number of
endemic equilibria depends on the values of R0 and supS.

Notice that under Assumption 1.5.3, Theorem 4.2.1 guarantees the existence of

at least one endemic equilibrium if

R0 >
1

supS
,
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but it does not provide information about its uniqueness. Indeed, if the function

H(B) in the proof of Theorem 4.2.1 crosses the line R0 multiple times, then there

will be multiple endemic equilibria.

Proposition 4.2.1 and Theorem 4.2.1 indicate that, when µ = 0, there can only

exist an endemic equilibrium when the susceptibility function is not zero. In other

words, to have an endemic equilibrium without vital dynamics, reinfection is necessary

in the model.

4.3 Equilibrium solutions with vital dynamics

In the case when µ > 0, we are able to identify all equilibria of the model with

those equilibria of the corresponding ADP based on Theorem 2.5.1. The following

proposition provides the justification.

Proposition 4.3.1 Assume µ > 0. Let T, S : R+ → R+ be functions that satisfy

Assumption 1.5.1. Let N0 ≥ 0, Θ ∈ L1
+ be an equilibrium of the model. Then

1. N0 > 0,

2. Θ is absolutely continuous, and

3. Θ′ ∈ L1.

Proof Suppose that N0 ≥ 0, Θ ∈ L1
+ is an equilibrium of the model. By Proposi-

tion 4.1.1, N0, Θ is an equilibrium solution of the System (3.1).

If N0 = 0, because N′(t) = 0 for the equilibrium, then by the first equation of

System (3.1), we must have ∫ ∞
0

Θ(τ) dτ = 0.

But then

N0 +

∫ ∞
0

Θ(τ) dτ = 0,

contradicting the definition of an equilibrium for the model. Thus, N0 > 0.
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To simplify the notation, define

B(Θ) =

∫ ∞
0

T (υ)
Θ(υ)

P
dυ.

Now, by the third equation of System (3.1), we know that the right derivative of Θ

exists a.e. and satisfies

Θ′(τ+) = −B(Θ)S(τ)Θ(υ)− µΘ(τ). (4.8)

By Assumption 1.5.1 and the fact that Θ ∈ L1, Θ′(τ+) is integrable, and so if τ̄ > 0

any function of the form

τ 7→ C +

∫ τ̄

0

Θ′(τ+) dτ,

has a derivative equal to Θ′(τ+) a.e. t ∈ (0, τ̄) [Roy88, Chapter 5, Theorem 10]. So, Θ

is an indefinite integral, which is equivalent to Θ being absolutely continuous [Roy88,

Chapter 5, Theorem 14]. Moreover, its derivative is integrable as wanted.

Proposition 4.3.2 Assume µ > 0. Let T, S : R+ → R+ be functions that satisfy

Assumption 1.5.1. Then,

1. Given N0 > 0, N0, 0 is the unique disease-free equilibrium.

2. There exists an endemic equilibrium solution if and only if there exists B > 0

such that

(B + µ)

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ =

∫ ∞
0

T (τ)e−B
∫ τ
0 S(σ) dσ−µτ dτ. (4.9)

Proof By Proposition 4.1.1, we only need to search for equilibria of the System (3.1).

Recall that, for our model,

Mx(X,φy) = −
∫ ∞

0

T (τ)
φy(τ)

P
dτ − µ,

and

Fx(X,φy) = µX + µ

∫ ∞
0

φy(τ) dτ,
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and that we showed that F and G given by Equations (3.3) and (3.4) were Lipschitz

in norm-balls of L1 in the proof of Proposition 3.2.2. Therefore, if µ > 0, N0 ≥ 0

and Θ ∈ L1
+, Mx(N0,Θ) < 0, and by Proposition 4.3.1, we have all the hypotheses in

Theorem 2.5.1 to conclude that (N0,Θ) is an equilibrium of the model if and only if

φ(τ) =

φn(τ)

φo(τ)

 =

µW(φ)e(−F(φ)−µ)τ

Θ(τ)

 , (4.10)

is an equilibrium solution of the ADP problem for the functions F and G given

by Equations (3.3) and (3.4). Recall that the functions F ,W ,W are as in Defini-

tions 3.1.2, 3.1.3 and 3.1.4.

According to [Web85, Proposition 4.1], φ is an equilibrium of an ADP problem if

and only if φ is absolutely continuous, φ′ ∈ L1,

φ′ = G(φ),

and

φ(0) = F (φ).

Using the functions F and G defined by Equations (3.3) and (3.4), φ is an equilibrium

if and only if it is absolutely continuous, φ′ ∈ L1,

dφn(τ)

dτ
= −F(φ)φn(τ)− µφn(τ), (4.11)

φn(0) = µW(φ), (4.12)

dφo(τ)

dτ
= −F(φ)S(τ)φo(τ)− µφo(τ), (4.13)

and

φo(0) = F(φ)W(φ). (4.14)

By Proposition 4.3.1, N0 > 0 for an equilibrium, that is
∫∞

0
φn(τ) dτ > 0. Therefore

W(φ) > 0.

If we have a disease-free equilibrium, then φn(0) = 0. Because W(φ) > 0, Equa-

tion (4.14) implies that F(φ) = 0. Integrating Equation (4.13) we obtain

φo(τ) = φo(0)e−µτ = 0.
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So, we proved Result 1.

We proceed to prove Result 2. Assume that N0,Θ is an endemic equilibrium, in

other words that φ from Equation (4.10) is an equilibrium of the ADP and φo(0) > 0.

Define

B = F(φ).

We will prove that B is positive and satisfies Equation (4.9).

If B = 0, then φo(0) = 0, because of Equation (4.14), that is, if B = 0 the

equilibrium is not an endemic equilibrium. Therefore, B 6= 0, and necessarily B > 0

because of Proposition 3.2.3.

From Equation (4.10), we know that

φn(τ) = µW(φ)e−(B+µ)τ .

Because B > 0, B + µ > 0, by integrating we obtain∫ ∞
0

φn(τ) =
µ

B + µ
W(φ) =

µ

B + µ
P.

By the definition of W(φ) we obtain∫ ∞
0

φo(τ) dτ =
B

B + µ
P. (4.15)

On the other hand, Equations (4.13) and (4.14) imply that

φo(τ) = BW(φ)e−B
∫ τ
0 S(σ) dσ−µτ . (4.16)

Multiplying this equation by T (τ)
P

and integrating, we obtain

B =
BW(φ)

P

∫ ∞
o

T (τ)e−B
∫ τ
0 S(σ) dσ−µτ dτ.∫∞

o
T (τ)e−B

∫ τ
0 S(σ) dσ−µτ dτ > 0 because

∫∞
0
T (τ) > 0, so we can write Equation (4.16)

as

φo(τ) =
BP∫∞

o
T (τ)e−B

∫ τ
0 S(σ) dσ−µτ dτ

e−B
∫ τ
0 S(σ) dσ−µτ .

Integrating this equation and using Equation (4.15), we have

B

B + µ
P =

BP
∫∞

0
e−B

∫ τ
0 S(σ) dσ−µτ∫∞

o
T (τ)e−B

∫ τ
0 S(σ) dσ−µτ dτ

,
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and so we obtain Equation (4.9) after rearranging.

Now we will prove that, if there exists a B > 0 that satisfies Equation (4.9), then

there exists an endemic equilibrium. Assume that there exists such a B > 0. Define

the function φ as

φ(τ) =

 µPe(−B−µ)τ

BP∫∞
0 T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

e−B
∫ τ
o S(σ) dσ−µτ

 .

We will prove that it is an endemic equilibrium.

Clearly, φ is absolutely continuous, because it is the composition of indefinite

integrals. It is easy to see that φ′ ∈ L1. So, we need to show that G(φ)(τ) = φ′(τ)

and F (φ) = φ(0).

First note that ∫ ∞
0

φn(τ) dτ =
µP

B + µ
,

and by Equation (4.9) ∫ ∞
0

φo(τ) dτ =
BP

B + µ
.

We also have ∫ ∞
0

T (τ)
φo(τ)

P
dτ = B.

Now, from ∫ ∞
0

(BS(τ) + µ)e−B
∫ τ
0 S(σ) dσ−µτ dτ = −e−B

∫ τ
0 S(σ) dσ−µτ

∣∣∣∞
0

= 1,

we know that

B

∫ ∞
0

S(τ)e−B
∫ τ
0 S(σ) dσ−µτ dτ = 1− µ

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ.
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Using this equality and Equation (4.9), we can compute∫ ∞
0

φn(τ) + S(τ)φo(τ) dτ

=
µP

µ+B
+

P∫∞
0
T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

B

∫ ∞
0

S(τ)e−B
∫ τ
o S(σ) dσ−µτ dτ

=
µP

µ+B
+

P∫∞
0
T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

− µP
∫∞

0
e−B

∫ τ
0 S(σ) dσ−µτ dτ∫∞

0
T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

=
µP

µ+B
+

P∫∞
0
T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

− µP

µ+B

=
P∫∞

0
T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

.

Hence,

F

φn

φo

 =

 µP

BP∫∞
0 T (υ)e−B

∫ υ
0 S(σ) dσ−µυdυ

 = φ(0),

G

φn

φo

 (τ) =

 (−B − µ)φn(τ)

(−S(τ)B − µ)φo(τ)

 = φ′(τ),

which completes the proof of Result 2.

Theorem 4.3.1 Assume µ > 0. Let T, S : R+ → R+ be functions that satisfy

Assumption 1.5.1. We have:

1. If S(τ) = 0 a.e., then there exists a unique endemic equilibrium if and only if

R0 > 1.

2. If T and S satisfy Assumption 1.5.2, then there exists an endemic equilibrium

if

R0 > 1.

3. If T and S satisfy Assumption 1.5.2 and supS ≤ eµτ0, then there exists an

endemic equilibrium if and only if

R0 > 1.
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Proof Result 1 follows directly from Proposition 4.3.2 because in the case where S

is zero a.e., using Equation (4.9), there is an endemic equilibrium if and only if there

exists a B > 0 such that

1 +
B

µ
=

∫ ∞
0

T (τ)e−µτ dτ,

which happens if and only if

R0 =

∫ ∞
0

T (τ)e−µτ dτ > 1.

Note that, given µ and R0, there can only be one solution of the equation 1 +B/µ =

R0. So, if S = 0 a.e., the endemic equilibrium is unique if it exists.

Now suppose that T and S satisfy Assumption 1.5.2. Note that, if there exists

such a τ0 > 0, Equation (4.9) becomes

(B + µ)

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ =

∫ ∞
0

T (τ)e−µτ dτ.

So, if we define

H(B) = (B + µ)

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ,

by Proposition 4.3.2, there exists an endemic equilibrium if and only if there is B > 0

such that H(B) = R0.

Note that

S(τ) ≤ supS × 1[τ0,∞)(τ),

for all τ ≥ 0. Therefore,∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ ≥

∫ ∞
0

e−B
∫ τ
0 supS×1[τ0,∞)(σ) dσ−µτ dτ

=

∫ τo

0

e−µτ dτ +

∫ ∞
τ0

e
−B supS

∫ τ
τ0

1 dσ−µτ
dτ

=
1− e−µτ0

µ
+

∫ ∞
τ0

e−B supS(τ−τ0)σ−µτ dτ

=
1− e−µτ0

µ
+ e−B supSτo

∫ ∞
τ0

e(−B supS−µ)a dτ

=
1− e−µτ0

µ
+

e−µτ0

B supS + µ
.
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On the other hand, S(τ) ≥ 0, and thus,∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ ≤

∫ ∞
0

e−µτ dτ =
1

µ
.

Multiplying these two inequalities by B + µ we obtain[
1− e−µτ0

]
+

[
1− e−µτ0

µ

]
B +

[
e−µτ0

] B + µ

B supS + µ
≤ H(B) ≤ 1 +

B

µ
. (4.17)

Lemma 4.2.1 implies that H(B) is continuous for B > 0. Because H(0) = 1, the last

inequality shows that it is also continuous at B = 0. The last inequality also implies

that H(B) → ∞ as B → ∞. Therefore, if R0 > 1 there exists B > 0 such that

H(B) = R0, and so there exists an endemic equilibrium then. This proves Result 2.

Now consider

J0(B) =
[
1− e−µτ0

]
+

[
1− e−µτ0

µ

]
B +

[
e−µτ0

] B + µ

B supS + µ
. (4.18)

We have

J ′0(B) =
1− e−µτ0

µ
+
µe−µτ0(1− supS)

(B supS + µ)2
,

and so J ′0(B) > 0 always for supS ≤ 1. For the case when supS > 1, J ′0(B) > 0 if

and only if

B >
µ

supS

[√
(supS − 1)e−µτ0

1− e−µτ0 − 1

]
.

Note that the term in the right hand side of this inequality is non-positive as long as

supS ≤ eµτ0 .

If that is the case, for B > 0, H(B) is bounded below by a strictly increasing function

that tends to infinity as B → ∞, and because H(0) = 1, if R0 ≤ 1, then H(B) can

never be equal to R0 for B > 0. And thus we have Result 3.

Note that the condition supS ≤ eµτ0 is satisfied for diseases that do not make a

reinfection more likely than a first-time infection, in which case supS ≤ 1 ≤ eµτ0 .

As stated by Equation (4.2), this is also the case for a model without vital dynam-

ics, but we had to require a stronger assumption than Assumption 1.5.2, namely

Assumption 1.5.3.
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In the absence of vital dynamics, if supS > 1, then endemic equilibria may exist

for values of R0 < 1. If we allow susceptibility to attain its maximum a certain time

after infection and remain at that level, then we can prove that there are also endemic

equilibria for a model with vital dynamics and R0 < 1. Moreover, we can identify

conditions that guarantee the existence of multiple endemic equilibria, as explained

in the next theorem.

Theorem 4.3.2 Assume µ > 0. Let T, S : R+ → R+ be functions that satisfy

Assumption 1.5.4. If supS > eµτ1, then the model has at least two endemic equilibria

for some values of R0 < 1.

Proof Define

H(B) = (B + µ)

∫ ∞
0

e−B
∫ τ
0 S(σ) dσ−µτ dτ.

By Theorem 4.3.1 under Assumption 1.5.2 (which is implied by Assumption 1.5.4),

there exists an endemic equilibrium if and only if there is B > 0 such that H(B) = R0.

Under Assumption 1.5.4), S(τ) ≥ supS×1[τ1,∞)(τ). Following a similar argument

as that used in Theorem 4.3.1 for obtaining Inequality (4.17), we have

J0(B) ≤ H(B) ≤ J1(B), (4.19)

where

J1(B) =
[
1− e−µτ1

]
+

[
1− e−µτ1

µ

]
B +

[
e−µτ1

] B + µ

B supS + µ
, (4.20)

and J0 is defined by Equation (4.18).

If we assume that supS > eµτ1 , then

J ′1(B) =
1− e−µτ1

µ
+
µe−µτ1(1− supS)

(B supS + µ)2
> 0,

if and only if

B > B∗,

where

B∗ =
µ

supS

[√
(supS − 1)e−µτ1

1− e−µτ1 − 1

]
. (4.21)
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In other words, J1(B) decreases until B∗ and then increases. J1(0) = 1 and J1(B)

decreases until B∗, so J1(B∗) < 1. By Equation (4.19) H(0) = 1 and H(B∗) ≤
J1(B∗) < 1, so if

J1(B∗) < R0 < 1,

by the Intermediate Value Theorem, there exists a 0 < B < B∗ such that H(B) =

R0. Now because J0 is eventually increasing and tends to infinity as B → ∞, by

Equation (4.19) there is B > B∗ such that H(B) = R0.

Therefore, there are two different values of B such that H(B) = R0. By Proposi-

tion 4.3.2, each of these values represents an endemic equilibrium.

The results of this section are summarized in Figures 4.2 and 4.3. In Figure 4.2,

the red curve is the value of J1(B∗) as given by Equations (4.20) and (4.21). The

number of endemic equilibria in the gray region depends not only on supS but also

the form of the function S. On the other hand, Figure 4.3 illustrates that the size of

the region in which two endemic equilibria exist depends on the values of supS and

τ1.

4.4 Convergence of the solutions to the disease-free equilibrium

Theorem 4.4.1 Assume µ > 0. Let T, S : R+ → R+ be functions that satisfy

Assumption 1.5.2. If R0 < 1/max {1, supS}, then all solutions of System (1.1)

converge to the disease-free equilibrium.

Proof Suppose that (N, o) ∈ L1
+ × L∞ is a solution of the model for the initial

condition (N0,Θ) ∈ R+ × L1
+. For c ∈ R define tc = max {0,−c} and

wc(t) = o(t+ c, t),

for every tc ≤ t <∞. The right derivative of wc is given by

dwc(t+)

dt
= lim

h→0+
o(t+ c+ h, t+ h) = Do(t+ c, t).
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Multiple possibilitiesNo endemic equilibrium

Figure 4.2. A bifurcation diagram in the (supS,R0) plane for the case
µ > 0. It shows that the number of endemic equilibria depends on the
values of R0 and supS. The conditions needed for the results are S = 0
or Assumption 1.5.2 for the white and blue regions, and Assumption 1.5.4
for the red region. Values for the parameters are µ = 1/80 years−1, τ0 =
30 days, and τ1 = 20 years.

Because o is a solution of the model and, by Proposition 3.1.1, any solution of the

model is also a solution of System (3.1), then

w′c(t+) = −
[∫ ∞

0

T (υ)
o(υ, t)

P
dυ

]
S(t+ c)o(t+ c, t)− µo(t+ c, t), (4.22)

where P =
∫∞

0
Θ(τ) dτ +N0. To simplify notation define

B(t) =

∫ ∞
0

T (υ)
o(υ, t)

P
dυ.

Then the Equation (4.22) can be written as

w′c(t+) = −B(t)S(t+ c)wc(t)− µwc(t). (4.23)
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Figure 4.3. Existence of two endemic equilibria based on the values of
supS and τ1. If R0 is between the two surfaces, under Assumption 1.5.4,
there would be at least two endemic equilibria for the model.

As we have shown in Proposition 3.2.2 that G in Equation (3.4) is Lipschitz

in norm balls of L1(R2), π2(G) is also Lipschitz in norm balls of L1(R). Because

o ∈ L∞, the right hand side of the above equation is integrable in any interval of the

form [tc, t̄ ] [Web85, Lemma 2.2]. Therefore, any function of the form

t 7→ C +

∫ t

tc

w′c(s+) ds,

has a derivative equal w′c(t+) a.e. t ∈ (tc, t̄) [Roy88, Chapter 5, Theorem 10]. Thus,

we can solve Equation (4.23) as an ordinary differential equation (at least a.e.). We

obtain that wc must satisfy

wc(t) = wc(tc)e
−

∫ t
tc
B(s)S(s+c) ds−µ(t−tc),
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a.e. for t > 0. If we let τ = t+ c, we obtain an integral equation for o:

o(τ, t) =

o(0, t− τ)e−
∫ t
t−τ B(υ)S(υ+τ−t) dυ−µτ a.e. for τ < t,

o(τ − t, 0)e−
∫ t
0 B(υ)S(υ+τ−t) dυ−µt a.e. for τ > t.

Using the fact that o is a solution of System (1.1), we have

o(τ, t) =

B(t− τ)D(t− τ)e−
∫ t
t−τ B(υ)S(υ+τ−t) dυ−µτ a.e. for τ < t,

Θ(τ − t)e−
∫ t
0 B(υ)S(υ+τ−t) dυ−µt a.e. for τ > t,

(4.24)

where we denote

D(t) =

∫ ∞
0

S(τ)o(τ, t) dτ + N(t).

Multiplying Equation (4.24) by T (τ)/P and integrating, we obtain

B(t) =

∫ t

0

B(t− τ)D(t− τ)

P
T (τ)e−

∫ t
t−τ B(υ)S(υ+τ−t) dυ−µτ dτ

+

∫ ∞
t

Θ(τ − t)
P

T (τ)e−
∫ t
0 B(υ)S(υ+τ−t) dυ−µt dτ,

a.e. for t > 0. Now, for any t̄ > 0, we have∫ t̄

0

B(t) =

∫ t̄

0

∫ t

0

B(t− τ)D(t− τ)

P
T (τ)e−

∫ t
t−τ B(υ)S(υ+τ−t) dυ−µτ dτ dt

+

∫ t̄

0

∫ ∞
t

Θ(τ − t)
P

T (τ)e−
∫ t
0 B(υ)S(υ+τ−t) dυ−µt dτ dt.

In particular, if t̄ > τ0, where τ0 is the one in Assumption 1.5.2, we have∫ t̄

0

B(t) =

∫ t̄

0

∫ t

0

B(t− τ)D(t− τ)

P
T (τ)e−µτ dτ dt

+

∫ τ0

0

∫ τ0

t

Θ(τ − t)
P

T (τ)e−µt dτ dt.

(4.25)
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Notice that D(t) =
∫∞

0
S(τ)o(τ, t) dτ + N(t) ≤ ŜP because of Proposition 3.1.1

(recall that Ŝ was defined as max{1, supS}). Thus, Equation (4.25) implies that∫ t̄

0

B(t)−
∫ τ0

0

∫ τ0

t

Θ(τ − t)
P

T (τ)e−µt dτ dt

≤ Ŝ

∫ t̄

0

∫ t

0

B(t− τ)T (τ)e−µτ dτ dt

= Ŝ

∫ t̄

0

∫ t̄

τ

B(t− τ)T (τ)e−µτ dt dτ

= Ŝ

∫ t̄

0

∫ t̄−τ

0

B(t)T (τ)e−µτ dt dτ

≤ Ŝ

∫ t̄

0

B(t) dt

∫ t̄

0

T (τ)e−µτ dτ

= ŜR0

∫ t̄

0

B(t) dt.

The last inequality comes from the fact that B(t) ≥ 0 for every t > 0, as o is a

solution of the model. If ŜR0 < 1 as in the hypothesis, then we can reorganize the

above inequality to obtain∫ t̄

0

B(t) dt ≤
∫ τ0

0

∫ τ0
t

Θ(τ − t)T (τ)e−µt dτ dt

(1− ŜR0)P
,

for any t̄ > τ0, and thus for any t̄ > 0. Because
∫ t̄

0
B(t) dt is increasing in t̄ and it is

bounded above, we conclude that
∫∞

0
B(t) dt <∞.

Integrating Equation (4.24), we obtain that a.e. for 0 < t1 < t:∫ ∞
0

o(τ, t) dτ

≤ ŜP

∫ t

0

B(t− τ)e−
∫ t
t−τ B(υ)S(υ+τ−t) dυ−µτ dτ + e−µt

∫ ∞
t

Θ(τ − t) dτ

= ŜP

∫ t

0

B(τ)e−
∫ t
τ B(υ)S(υ−τ) dυ−µ(t−τ) dτ + e−µt

∫ ∞
0

Θ(τ) dτ

≤ e−µt
[
ŜP

∫ t1

0

B(τ)eµτ dτ +

∫ ∞
0

Θ(τ) dτ

]
+ ŜP

∫ ∞
t1

B(τ) dτ.

By the continuity of o from R+ to L1 (because it is a solution of the model) this

equality is also satisfied for every 0 < t1 < t. Now, given ε > 0 and by the integrability

of B, we can choose t1 > 0 so that

ŜP

∫ ∞
t1

B(τ) dτ <
ε

2
.
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For this given t1, because we assume that µ > 0, we can choose t̄ > t1 so that for any

t > t̄

e−µt
[
ŜP

∫ t1

0

B(τ)eµτ dτ +

∫ ∞
0

Θ(τ) dτ

]
<
ε

2
.

In other words,
∫∞

0
o(τ, t) dτ → 0, as t → ∞. By Proposition 3.1.1, we must have

N(t) → P , and thus, we conclude that all solutions of System (1.1) with initial

condition (N0,Θ) converge to the disease-free equilibrium, which is given by (N0 +∫∞
0

Θ(τ) dτ, 0).

0 1 4
supS

0

1

2

R
0

Solutions converge to
the disease-free equilibrium

Convergence is not guaranteed

Figure 4.4. A depiction of the region where convergence to the disease-free
equilibrium is guaranteed for the case µ > 0 and under Assumption 1.5.2.

We depict in Figure 4.4 the region in the (supS,R0) plane where convergence to

the disease-free equilibrium is guaranteed. The blue curve represents

R0 =
1

max {1, supS} .
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Notice that, if a disease has the characteristic that the probability of a reinfection is

always lower than that of the first infection (i.e., supS < 1), then the convergence

to the disease-free equilibrium is guaranteed if R0 < 1, as usual for epidemiological

models.

The number N(t)+
∫∞

0
S(τ)o(τ, t) dτ is the sum of all individuals in the population

weighted by their susceptibility, therefore

RΘ = R0 ×
N0 +

∫∞
0
S(τ)Θ(τ) dτ

P
,

is an estimate of the average number of secondary infections produced by one infec-

tious individual in a never-infected population given by the initial condition (N0,Θ).

If we concentrate all the population in the never-infected class when supS < 1 or

near a value of τ such that S(τ) is close to supS when supS > 1, then RΘ would be

close to Ŝ × R0. Thus, if require that Ŝ × R0 < 1, we are guarantee that, even in

the worst case scenario, the value of secondary infections produced by an infectious

individual never exceeds 1. Intuitively, there cannot be an outbreak if every infection

yields on average less than 1 additional infection.

The preceding theorem only guarantees convergence to the disease-free equilib-

rium, but numerical simulations indicate that the disease-free equilibrium is also

stable when R0 < 1/Ŝ. We cannot employ the “linearization principle” to prove

this result, since 0 belongs to the point spectrum of the linearized problem. When

S = 0 a.e., the result of global asymptotic stability to the disease-free equilibrium

if R0 < 1 has already been proved by using Liapunov Theory and the LaSalle’s

Invariance Principle [see ST11, Chapter 9, and references therein].

Additionally, when S = 0 a.e., the global asymptotic stability of the endemic

equilibrium is guaranteed when R0 > 1 [ST11]. Recall that Theorem 4.3.1 implies

that the endemic equilibrium is unique if S = 0 a.e.

For the general case, not only do we know that there might exist several endemic

equilibria (as stated by Theorem 4.3.2), but numerical simulations indicate that their

asymptotic stability is not global. We explore this case in Section 5.2.2.
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5. Applications

In this chapter, we provide examples of applications to three particular diseases and

by doing so, explore the asymptotic properties of the model under different scenarios.

The numerical simulations were conducted using the SciPy library (http://www.

scipy.org/). All the code is available upon request.

5.1 Influenza

5.1.1 S and T for influenza

The probability of transmission of the influenza virus is hypothesized to be directly

related to the viral shedding of infectious individuals. Carrat et al. reviewed several

volunteer challenge studies for influenza and estimated an average viral shedding

curve with respect to the TSLI [CVF+08].

The value of R0 for influenza is generally estimated around 1.3 [see for example

CMV08]. By assuming that the viral shedding curve computed by Carrat et al. is

proportional to the probability of infection (and thus to the transmission rate if the

contact rate is supposed constant), we can estimate a transmission function T (τ) that

satisfies R0 = 1.3.

After recovery from a flu episode, individuals generally obtain complete protection

against reinfection with the same strain. Nevertheless, the virus mutates via the

process called “antigenic drift”, and new strains appear in the population against

which previously infected individuals only have partial protection [EDL02]. The larger

the TSLI of the individual, the less protection against reinfection, because the virus

has had time to evolve into antigenetically different strains. The process continues

until a completely different strain (generally, even a different subtype) appears in the

http://www.scipy.org/
http://www.scipy.org/
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population via recombination in a co-infected individual, possibly causing a pandemic

[EDL02]. Such events are called “antigenic shift”.

To model seasonal influenza or the dynamics after a pandemic, we assume that, if

individuals are not reinfected, their immunity wanes and approaches that of a never-

infected individual. We use the following sigmoid function as susceptibility function:

S(τ) =

0 if τ ≤ τ0

(τ−τ0)2

(a−τ0)2+(τ−τ0)2 if τ > τ0,

where τ0 is the TSLI for which individuals are completely protected against reinfec-

tion, and a is the TSLI for which an individual is half as susceptible as a never-infected

individual. Note that a is also the value at which the function S has a change in con-

cavity. We assume τ0 to be one month. Because the half-life of the T-cell response

against influenza ranges from 2 to 3 years [MDG+83], we assume that a = 2.5 years.

Both functions obtained are given in Figure 5.1.

5.1.2 Slow oscillatory convergence to equilibrium for influenza

If we start with a population of never-infected individuals and introduce the dis-

ease by a small fraction (10−6 of the total population) of infectious individuals (TSLI

between 0 and 7 days), we observe that convergence to the endemic equilibrium is

very slow (see Figure 5.2). In this figure, the death rate is assumed to be 1/80 years−1.

The convergence is also oscillatory around the equilibrium. This suggests that

part of the observed periodic occurrence of influenza is due to the reinfection process

and convergence to an endemic equilibrium. The record indicates that “antigenic

shift” events occur on average every 30 years, so we will never observe the system

undisturbed for 200 years as in this simulation.

The periodicity in influenza infections cannot be just associated with the reinfec-

tion process, because it is (at least for temperate climate regions) highly associated

to seasonality [LV09, LFN+07]. Nevertheless, a very slow oscillatory convergence to

equilibrium can certainly be a factor that contributes to the periodicity observed.
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Figure 5.1. Transmission rate function, T , and susceptibility function, S,
for influenza.
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infectious (bottom) after the introduction of a completely new influenza
strain.
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5.1.3 Differences in initial conditions against an influenza pandemic

Even in the case of an “antigenic shift”, some part of the population can be par-

tially immune against influenza. For example, when the influenza A (H1N1) pandemic

of 2009 started, 33% of humans over 60 years of age had cross-reacting antibodies

against it [GTAK10]; the reason being that they were exposed to a previously circu-

lating H1N1 during the 1970s.

Even when individuals over 60 years of age only represent about 7% of the total

population in the United States of America, running the model with and without

taking into account the history of infections can lead to very different results. To

reflect the previous history of infections, we assume that 7% of the population have

TSLI between 1.5 and 2 years, which represents with our S function a susceptibility

between 0.26 and 0.39 as compared to that of a never infected individual. This is

an artificial way to represent the fact that individuals over 60 years of age have a

protection against infection with the pandemic that is comparable to having TSLI

between 1.5 to 2 years. We can observe a difference of almost 6% of the population

in the final size of the epidemic (see Figure 5.3).

5.2 Tuberculosis

5.2.1 S and T for tuberculosis

Unlike influenza, volunteer challenge studies are not available for tuberculosis

because infection with tuberculosis can be very dangerous. Nevertheless, we can

estimate a transmission function making several assumptions. We use the parameters

employed by Feng, Castillo-Chavez and Capurro in [FCCC00] and assume that on

average an infected individual needs a TSLI of 200 days to become infectious, and

then an additional 180 days to recover (by drug treatment) from the disease. For the

time between 200 and 380 days, we assume that the function is a constant multiple of

a Beta distribution with parameters 2 and 6, because the shape of a Beta distribution
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Figure 5.3. Results of a pandemic of influenza in a completely never-
infected population (blue) and in one with the initial distribution pictured
below (green).
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with these parameters resembles very well the outline of bacterial load for tuberculosis

[see for example BCF+03]. The constant can be estimated so that the function T is

consistent with a particular value of R0. Unlike the simulation results for influenza,

we assume in this case a death rate µ = 1/70 years−1, because tuberculosis is more

endogenous in less developed countries where live expectancy is lower than in more

developed ones. Nevertheless, the simulation results are very insensitive to the value

of µ.

Verver et al. in [VWB+05] estimated, in a high incidence area of South Africa, the

rate of recurrent tuberculosis attributable to reinfection after successful treatment.

The authors followed all patients with reported tuberculosis for disease needing re-

treatment and concluded that the probability of reinfection was about four times

higher than that of a first infection, even after adjusting for age differences. As the

authors suggest, the reason might be that individuals are more susceptible to rein-

fection than to first time infection (due to damage in the lungs). Thus, to use the

simplest case possible, we can assume that the susceptibility function is 0 before 380

days and after that has a value of 4. Even when, as in this case, the function S is dis-

continuous, the solutions are continuous as long as we start with sufficiently smooth

initial conditions (see Theorem 3.3.2).

The functions S and T are plotted in Figure 5.4. We adopt the value R0 = 0.87

as in [FCCC00].

5.2.2 Backward bifurcation for tuberculosis

Feng, Castillo-Chavez and Capurro showed that, by the process known as ex-

ogenous reinfection, tuberculosis can persist in a population, even when R0 < 1

[FCCC00]. The endemic equilibrium bifurcates subcritically (backward) at R0 = 1.

That is, for R0 values close to, but smaller than 1, there are three different equilib-

ria: the disease-free, which is locally stable, and two endemic equilibria, the larger

one being locally stable and the smaller one unstable. We show here that this result,
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Figure 5.4. Transmission rate function, T , and susceptibility function, S,
for tuberculosis.
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known as a backward bifurcation, can still hold without exogenous reinfection, as long

as the once-infected individuals are more susceptible to infection than never-infected

individuals.

The simulation results are shown in Figure 5.5. We simulate the results of intro-

ducing a small fraction (10−6 of the total population) of recently infected individuals

(TSLI between 0 and 7 days) in a population that had different levels of initially

never-infected individuals. We assume that the people who had previously recovered

from tuberculosis had a TSLI between 2 and 3 years (although the range is not im-

portant in this case since we are assuming that S is constant after 380 days). We

observe that convergence to the endemic equilibrium depends on the initial condition.

If the initial population is close to being completely never-infected (blue curves), then

the number of infectious individuals approaches zero. On the other hand, if the pop-

ulation initially starts with a significant percentage of individuals previously infected

with tuberculosis (red curves), then the system converges to an endemic equilibrium.

The threshold fraction of the never-infected class at which the asymptotic dynamic

changes is close to 89%. The closer to this value we start, the longer it takes for the

model to converge to the equilibrium (to the disease-free and endemic one).

The value of supS was assumed to be 4 as discussed in Section 5.2.1. However,

the value of supS need not be so large for a backward bifurcation to occur. If we

assume, as we did in the simulations, that the maximum susceptibility is obtained for

a TSLI of 380 days, then according to Theorem 4.3.2, a value of supS slightly larger

than e380µ ≈ 1.015 is enough to guarantee the existence of two endemic equilibria at

certain values of R0 < 1.
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6. A different approach to the waining immunity problem: A

model with multiple strains and antigenic drift

In [AMTF13], we describe a different approach to the problem of reinfection due

to loss of immunity for the specific case of influenza. We use a Susceptible-Infected-

Recovered model with an arbitrary number of strains, that includes partial protection

to reinfection (dependent on the individual history of previous infections) and appear-

ance of new strains due to mutations.

6.1 Model description

6.1.1 Notation for the epidemiological classes

We divide the population into classes according to the infection history of in-

dividuals. Suppose that there are n strains that have circulated in the population

since time 0. We use a vector of zeros and ones, v ∈ Rn with πi(v) ∈ {0, 1}, for all

i ∈ {0, . . . , n}, to describe the infection history of an individual. We denote πi(v) = 1

if the individual has been infected by the virus strain i, otherwise πi(v) = 0. We call

such a vector a history vector. We use Rv to denote the recovered class with history

v. Note that R(0,...,0) represents the never-infected class.

For the infected classes, we keep track of the strain with which individuals are

infected as well as their infection history. We denote with I iv the infected class, which

includes all individuals who are currently infected with strain i and have history v.

For example, if n = 3, an individual in I1
(1,0,1) is currently infected with strain 1 and

was previously infected with strain 3 but not strain 2.
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Note that, if an individual is infected with strain i, necessarily its history vector

has a one on position i, thus, for example I1
(0,1,1) is not a possible class. So if n strains

have circulated, there are n2n−1 infected classes and 2n recovered classes.

6.1.2 Transitions between classes

Figures 6.1-6.4 illustrate the model dynamics with different numbers of co-circulating

strains in the population. As shown in Figure 6.1, the case of one circulating strain re-

duces to a standard Susceptible-Infected-Recovered model. The complexity of model

structure increases significantly when the number of strains increases, but the ba-

sic pattern is same for an arbitrary numbers of strains: an individual in I iv (who is

currently infected with strain i and has history v) recovers and enters in the recov-

ered class Rv with the same history v. On the other hand, individuals entering the

class I iv come from the recovered class Rv′ , where v′ denotes the history vector with

πj(v) = πj(v) for all j 6= i and πi(v) = 0. In other words, v′ is the same as the vector

v, except that it has a 0 in its i-th position. We assume that individuals that recover

from an infection by strain i will have permanent immunity against the same strain.

R(0)
// I1

(1)
// R(1)

Figure 6.1. Transitions between classes in the drift model when there is
only one strain present.

We also consider vital dynamics. For simplicity, we assume a constant total pop-

ulation size. We denote by µ the natural death rate (equal to the birth rate), for all

epidemiological classes in the model.
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Figure 6.2. Transitions between classes in the drift model with two co-
circulating strains.
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Figure 6.3. Transitions between classes in the drift model with three co-
circulating strains.

6.1.3 Time-dependent rate of disease transmission

The reason for seasonal variations in the temperate regions is not well understood.

Some suggestions include a higher contact rate during the winter months due to

increased indoor activities, an increased susceptibility of the immune system during

the winter due to the lack of natural sunlight and its corresponding effect in low

levels of vitamin D [CVU+06], and the possible influence of higher temperature in the
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Figure 6.4. Transitions between classes in the drift model with four co-
circulating strains.

tropics and during the summer time in the temperate regions, as high temperatures

are linked with blocking aerosol transmission of influenza viruses [HB10]. Another

well supported cause of the seasonality can be absolute humidity [SPV+10]. An

excellent review in the subject of seasonality in influenza was published by Lipsitch

and Viboud [LV09]. In any case the main component for the seasonal variation

would be in the average contact rate or in the probability that a contact between an

infectious and a susceptible individual results in an infection. The product of these

two quantities is the transmission rate, therefore, we assume that the transmission

rate is a time-dependent periodic function defined by

βi(t) = β̂i

[
1 + ε cos

(
2πt

365

)]
, (6.1)

where β̂i is a constant background transmission rate of strain i, which also represents

the constant transmission rate in the absence of seasonality (i.e., when ε = 0). If
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t = 0 corresponds to January 1st of a calendar year, then the β(t) function with

ε > 0 corresponds to the northern hemisphere, implying that the transmission rate

is higher in the winter, on dates that are close to January 1st. On the other hand, if

ε < 0, then the transmission will be biggest on dates close to the middle of the year,

which corresponds to the winter on the southern hemisphere. The case of ε = 0, or a

value close to 0, corresponds to a model for the tropics.

This function is, of course, an approximation of what happens in reality. If more

is known about the factors that influence seasonality, as discussed above, the function

β can be made to depend on these parameters.

6.1.4 Cross-immunity

For an individual in the class Rv with πi(v) = 0 (i.e., not been previously infected

by strain i), the cross-immunity against a strain i will depend on the individual’s his-

tory. We define the distance between strain i and the history vector v by considering

the antigenic distance between strains i and j for all j with πj(v) = 1.

Various definitions have been proposed for the distance between two influenza

strains [see for example LF01,FGB03]. We do not intend to consider the genetic dis-

tance between the strains, but rather the antigenic distance. A very good distinction

between these concepts for the particular case of influenza is presented by Smith, et

al. in [SLJ+04]. We follow here the approach of Ferguson, Galvani and Bush [FGB03]

by considering that if strain i originates by a mutation of strain j, then these two

strains will have a small distance between them. The less “related” the strains are,

the farther their distance is.

We define the distance between strains i and j as the length of the shortest path

joining these two strains in the phylogenetic tree of the subtype of influenza. We

identify the first strain that is a common ancestor of both i and j, and then add up

all the distances from i to this common ancestor and from j to this common ancestor.
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We denote the distance between strains i and j by λ(i, j). We make the assumption

that λ(i, i) = 0 for all i.

The definition of distance is better illustrated by Figure 6.5, which shows a hy-

pothetical phylogenetic tree for seven strains of influenza. Strains 2 and 3 mutated

from a common progenitor, strain 1. Strain 2 generated strains 4 and 5, and strain

5 later generated Strains 6 and 7. To calculate the distance between strains 4 and 6,

we notice that the first common ancestor of both 4 and 6 is strain 2. The distance

then is λ(4, 6) = λ(2, 4) + λ(2, 5) + λ(5, 6).

1

3•

•
λ(1,3)

•

λ(1,2)

•

λ(2,4)

•

•

λ(2,5)

•

λ(5,6)

•

•

λ(5,7)

•

•

•

2

5

6

4 7

Figure 6.5. Hypothetical phylogenetic tree for seven influenza strains.

These distances will then be used to define cross-immunity as follows. The effect

of cross-immunity is reflected by a reduction in the transmission rates. Following the

approach of Boni, Gog, Andreasen and Christiansen [BGAC04], we define the cross-

immunity to be a decaying function, e−λ(i,j), of the distance λ(i, j). For an individual
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who had previously been infected with strain j, the infectivity by strain i is reduced

by a factor ρij defined by

ρij = 1− e−λ(i,j), (6.2)

so that the transmission rate is 0 in the case of total immunity and βi(t) in the case

of complete susceptibility.

To define the level of protection that an individual with history v has against

strain i, we use the best protection in the history of previous infections, that is:

ρiv =


min
k∈H(v)

ρik if v 6= 0

1 if v = 0,

(6.3)

where H(v) is the set of all strains with which individuals with history v had previ-

ously been infected, i.e.,

H(v) = {k : πk(v) = 1}. (6.4)

Then, the transmission rate by strain i for individuals in the Rv class will be reduced

to ρivβi(t).

6.1.5 Model equations with n co-circulating strains

If there are n strains, our system of differential equations for the recovered classes

reads:

dRv

dt
=


−∑n

i=1

∑
w:i∈H(w)

[
βi(t)

I iw
P
Rv

]
+ µ(P −Rv) if v = 0,

∑
i∈H(v) γiI

i
v −

∑
i/∈H(v)

∑
w:i∈H(w)

[
ρivβi(t)

I iw
P
Rv

]
− µRv if v 6= 0,

(6.5)

where P is the total population:

P =
n∑
i=1

∑
w:i∈H(w)

I iw +
∑
v

Rv. (6.6)

On the other hand, for the infected classes, we have:

dI iv
dt

=
∑

w:i∈H(w)

[
ρiv′βi(t)

I iw
P
Rv′

]
− (γi + µ)I iv, (6.7)
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for all v 6= 0 and i ∈ H(v).

Note that the total population remains constant for all time t, because P ′(t) = 0.

Also note that because there are 2n recovered classes and 2n−1n infected classes, the

total number of equations in this system is 2n−1(n+ 2) for n circulating strains.

6.1.6 Introduction of a new strain

A novel feature of our modeling approach is to allow the additions of new strains

generated from mutations. Our idea is based in the fact that, for a given strain

i, the probability that a new strain develops in an infected individual is relatively

similar for each infected individual. So, at a given moment of time, the probability of

having a mutation of a new strain, just depends on the cumulative number of infected

individuals.

We assume that there is threshold of cumulative number of infections, which we

denote by K, after which a new strain appears. Specifically, let Ci(a, b) denote the

number of new infections of strain i between the time a and the time b, then

Ci(a, b) =

∫ b

a

 ∑
v:i∈H(v)

∑
w:i∈H(w)

[
ρiv′βi(t)

I iw
P
Rv′

] dt.

Let t1 > 0 denote the time at which the last daughter strain of strain i was generated

(or the time at which the strain i was generated if it does not yet have a daughter

strain). Then a new strain will be created at time t2 if Ci(t1, t2) = K; that is,

K =

∫ t2

t1

 ∑
v:i∈H(v)

∑
w:i∈H(w)

[
ρiv′βi(t)

I iw
P
Rv′

] dt. (6.8)

This increases the number of strains to n+ 1.

For the added (n+ 1) strain, which was mutated from strain i, we need to define

the distance between these two strains λ(i, n+ 1). In our case, we set this distance

to be a fixed constant λ, i.e., λ(i, n+ 1) = λ, but other stochastic functions could be

used. The (n + 1) strain will add one more node to the phylogenetic tree, and we

calculate the distances between the nodes again. Notice that changes in the distances
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occur only for λ(j, k) with either j = n + 1 or k = n + 1. Because λ(j, k) = λ(k, j),

we only calculate the new values of λ(j, n+ 1) for all j 6= i. We have

λ(j, n+ 1) = λ(i, n+ 1) + λ(j, i) for all j ≤ n. (6.9)

Using (6.9), we update the cross-immunity ρjv defined in Equation (6.3) for all j ≤ n+1

and all history vectors v of dimension n+ 1.

We also need to determine the other parameter values for the new strain, the

transmission coefficient βn+1 and the recovery rate γn+1. In the case of a deterministic

model, one simple way is to define

βn+1 = βi,

γn+1 = γi.

Note that, under this definition, if we start with a single strain with values β and

γ, then these values will remain the same for all new strains. If stochastic influences

are to be considered in the model, βn+1 and γn+1 can be random, e.g., drawn from

normal distributions with means βi and γi, respectively.

6.1.7 Update of equations in the (n+ 1)-strains system

Once the model parameters have been updated as described in the previous sec-

tions, the equations for the new (n + 1)-strains system will have the same form as

those in the system given by Equations (6.5) and (6.7), except that the history vec-

tors are now of dimension n + 1. The total number of equations will increase from

2n−1(n+ 2) to 2n(n+ 3).

The initial conditions also need to be updated for t ≥ t2, where t2 is the time at

which the new strain was created (according to Equation (6.8)). Let z denote the

history vector of dimension n for which (z, 1) corresponds to the individual who is the

first person carrying the new strain. We follow a deterministic approach for defining

z, we choose it to be the history vector for which the value of I iz is largest. In a
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stochastic setting, we could sample a distribution with the probability mass function

P (w) = I iw/(
∑

v:i∈H(v) I
i
v). The new initial conditions can be described as

R(v,0)(t2) = Rv(t2),

Ij(v,0)(t2) = Ijv(t2) for j ≤ n,

R(v,1)(t2) = 0,

Ij(v,1)(t2) = 0 for j ≤ n,

In+1
(z,1)(t2) = 1,

In+1
(v,1)(t2) = 0 for v 6= z.

The new equations for the n+1-strain system will be used for t > t2 until the (n+2)-

th strain appears at some time t > t2, at which time the system of n+ 1 strains will

be extended to a new system of (n + 2)-strains following the same rules described

above.

6.2 Results for the model with drift

Because of the need to track the history of co-circulating strains in the popula-

tion, the model will have a large number of equations. This fact, together with a

time-dependent transmission rate, make analytic studies of the model very difficult.

Thus, the results presented here are based mainly on numerical simulations. Detailed

descriptions of the methods used in the simulations and the main results are provided

below.

6.2.1 Initialization of the parameters

For the initialization of model parameters, we simulate influenza transmission

over many years in a population of ten million individuals in both the tropics (ε = 0

in Equation (6.1)) and northern temperate regions (positive values of ε). We start

the simulation at time t = 0 with only one strain and a small number of infected

individuals. The seasonal forcing of influenza is currently unknown and has not been
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extensively studied. However, a few studies indicate that values of 0.20 to 0.35 for

ε appear to be reasonable estimates [FGB03, TF09]. Here we assume values of ε to

vary between 0 and 0.20 and try to get an insight into the transition from a tropical

region to a temperate one.

As mentioned in Section 5.1, the average number of secondary infections produced

in a completely never-infected population (R0) has been measured in temperate cli-

mates and is around 1.3. We therefore assume that a value of 1.4 occurs in the winter

when the transmission rate is maximal. We can then estimate the baseline transmis-

sion rate in Equation (6.1) to be β̂ = R0γ/(1 + ε) ∼ 0.4, where γ is the recovery rate

and we assume 1/γ = 3 days.

We calibrate the parameters for the threshold value K defined in Equation (6.8)

and the antigenic distance λ after the following considerations: we select the parame-

ter values for which sustained dynamic resonance is achieved in all populations, with-

out an unnaturally high annual attack rate, or an over-abundance of co-circulating

strains. We take the unnaturally high attack rate to be 50% for the temperate

regions, given that the maximal observed clinical attack rate is estimated to be

25% [MOSM+07], but up to 60% of such infections are asymptomatic [KHD+88].

We find that, for K between 25% and 38% of the population, and λ between 1.5 and

1.8, simulations yield sustained resonance in both the tropics and temperate regions.

6.2.2 Simulation results

Here we present simulations from our model that are capable of capturing the

observed patterns of influenza prevalence in the two regions, tropical and temperate.

The parameter values used in the simulations are identical for all the regions except

for the transmission rates, for which a constant rate is used for the tropic region

while a periodic function is chosen for the different temperate regions. The rest of

the parameters are chosen based on the discussion in Section 6.2.1: γ = 1/3 days−1,
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K = 0.27 × 107 (that is 27% of the total population), and λ = 1.5. The simulations

are for a period of 25 years.

Figure 6.6 demonstrates the difference between tropical and temperate regions in

influenza prevalence curves. We observe that the size of epidemic peaks in the tropics

is lower than in the temperate region, and that they occur more frequently than

annually, matching the pattern that is observed [see RJB+08,AVS+07,LYO+09]. The

figure also presents diversity bottlenecks each summer, a pattern that is also observed

in data [see RPN+08].

The herald wave phenomenon observed in the data is reproduced when our model

is applied to a temperate region (e.g., for the value of ε = 0.20). The strain that

dominates each season appears late in the previous season (see Figure 6.7). The

overall average annual attack rate in the temperate region with this set of parameters

is around 45%, leading to an estimated clinical attack rate of around 18% [KHD+88].

To examine how the seasonal forcing may affect the size of annual major peaks of

influenza prevalence and their timing, we plotted in Figures 6.8 and 6.9, for different

values of ε, the average peak and average date of the peaks, respectively, over a period

of twenty years (starting four and half years after initialization of the model). The

standard deviation is also indicated for each fixed ε value. . Figure 6.8 shows that the

size of the major peak decreases first with ε and then increases for larger ε. Figure 6.9

shows that as ε gets larger, the timing of the major peak per year shows less difference,

naturally in the middle of the winter where the seasonal forcing is biggest. Due to the

symmetric property of the model, the same results are true, mutatis mutandis, for the

southern hemisphere (negative values of ε). These results agree with the observations

of Alonso, et al. in [AVS+07], if we associate ε with latitude.
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Figure 6.6. Prevalence (measured as percentage of the population infected
per day) for different values of non-negative ε, i.e., for the tropics and the
northern hemisphere. The dashed vertical lines represent the middle of
the winter of each year.
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7. Summary

In Chapter 1 of the current dissertation, we introduce an epidemiological model (Sys-

tem (1.1)) that can be used to investigate the dynamics of many types of infectious

agents. The model divides the population into two classes, never-infected and once-

infected individuals, and assumes that both the transmission rate and the suscepti-

bility to reinfection are dependent on the TSLI. In this sense, the model is relatively

simple: two classes, two types of functional dependence and one constant (the natu-

ral death rate); yet it allows for rich dynamics, such as multiple endemic equilibria,

endemic equilibria in the absence of vital dynamics, asymptotically stable endemic

equilibria even when R0 < 1, and non-global asymptotic behavior.

The model of Chapter 1 serves as a motivation in Chapter 2 for setting up a very

general framework of models that are dependent on time, and have several classes that

depend on another time variable. The general system is given by Equations (2.1)-

(2.5). In Section 2.1.1, we illustrate the generality of the model formulation by pro-

viding several examples from the literature that fit those equations. The main result

in this chapter is Theorem 2.4.1 that helps us to relate any of these models with an

ADP problem, and thus permits us to use the theory of ADP problems to analyze

properties of the model.

Following the approach developed in Chapter 2, we apply it to the model (1.1)

presented in Chapter 1. Chapter 3 deals with the existence and regularity of the

solutions of System (1.1), whereas Chapter 4 studies the conditions for existence and

stability of the equilibria of System (1.1). We show that for a very general type of

transmission rate and susceptibility functions (those that satisfy Assumption 1.5.1),

System (1.1) has a solution as long as the initial condition at time t = 0 is smooth

enough (Theorem 3.3.2). The results concerning the equilibria of System (1.1) vary

considerably depending on whether or not there is recruitment of never-infected in-
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dividuals into the population (that is, µ > 0 or µ = 0); see for example Figure 4.1

and Figure 4.2. Under a very general setting (Assumption 1.5.2), if supS ≤ 1 and

µ > 0, we show that the model behaves in a very similar way to standard epidemio-

logical models: when R0 < 1 there are no endemic equilibria and solutions converge

to the disease-free equilibrium and when R0 > 1 an endemic equilibria exists. More-

over, numerical simulations indicate that when supS ≤ 1 and µ > 0, the disease-free

equilibria is stable if R0 < 1 and the endemic equilibrium is globally asymptotically

stable and is unique if it exists. On the other hand, the existence of a unique endemic

equilibrium cannot be guaranteed, even for the case of supS < 1 and µ > 0, therefore

unlike standard epidemiological models, existence of an equilibrium is not a sufficient

condition for its global stability.

Nevertheless, if the functions S and T satisfy Assumption 1.5.2, Theorem 4.4.1

guarantees the convergence to the disease-free equilibrium of any solution of the

System (1.1), under the condition R0 < 1/max {1, supS}.
In Chapter 5 we illustrate two applications of the Model (1.1). One of them deals

with a case where we have that supS > 1. The susceptibility function is below

1 for any disease where a reinfection is less likely than a first time infection, since

we are assuming that 1 is the baseline susceptibility of a never-infected individual.

Even though that is generally the case, it has been suggested that an infection with

tuberculosis can damage the lungs so much that an individual could become more

probable to get reinfected than infected for the first time [VWB+05], which leads to

our assumption that S(τ) > 1 for some τ . As explored in Section 5.2, the consequence

is thatR0 alone does not determine the disease outcome when an infectious individual

is introduced into a population, as it is in the case for most epidemiological models. As

exemplified by Figure 5.5, the convergence to the disease-free or endemic equilibrium

depends on the initial state of the population, particularly the density of individuals

who had previously recovered from the disease at time t = 0.

This result can have important implications in control of diseases. For example,

immigration of people recovered from tuberculosis to a non-endemic area could change
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the initial condition of the population to allow the disease to invade, even when efforts

are maintained so that the value of R0 remains below 1.

In Chapter 5, we also apply the model to gain insights into the dynamics of

influenza. In this case, we assume that supS ≤ 1, µ > 0 and R0 > 1 so that the

system has the standard behavior: all solutions converge to the endemic equilibrium.

Nevertheless, numerical simulations of the model allows us to examine the transient

analysis, that is, the dependence of model solutions on different initial conditions in

the short-term. Two of the main conclusions drawn out of it are: (i) the convergence

to the endemic equilibrium is oscillatory and so slow that would unlikely be observed

in reality (due to the disturbances created by antigenic shift events); and (ii) different

initial conditions of the population (in terms of susceptibility to a pathogen strain)

can lead to dramatically different results in the size of an epidemic. We suggest that

result (i) can play a significant role in the periodic behavior observed for influenza,

whereas result (ii) can be a critical factor for the severity of an influenza pandemic.

Although the model of Chapter 1 is capable of generating interesting outcomes

for influenza, this virus has many features that are impossible to capture with such

a simple model. In Chapter 6 we explore a different approach. We introduce a Sus-

ceptible, Infected, Recovered model with appearance of new strains that mimics the

antigenic drift process for influenza. The model serves us to compare the differences

in influenza patterns observed in temperate and tropical regions.

Our simulation results suggest that the seasonal variation might be responsible

for observed patterns in influenza including: i) higher frequency of disease recurrence

in tropical regions than in the temperate regions; ii) reduced magnitude of disease

outbreaks in tropical regions than in temperate regions and iii) annual peaks during

winter and emerging strains during summer in temperate regions.
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