Bridge Rail Rating Guide

By Marc Friedman

August 2000

Purdue University
1284 Civil Engineering Building
West Lafayette, Indiana 47907-1284

Telephone: (765) 494-2164
Toll Free in Indiana: 1-800-428-7639
Facsimile: (765) 496-1176

This document is disseminated under the sponsorship of the Indiana LTAP Center at Purdue University in the interest of information exchange. Purdue University and the Indiana LTAP Center assume no liability for its contents or use thereof. Purdue University and the Indiana LTAP Center do not endorse products or manufacturers. Trademarks or manufacturers names may appear herein only because they are considered essential to the objective of this document. The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official policy of Purdue University or the Indiana LTAP Center. This report does not constitute a standard, specification, or regulation.
DISTRIBUTION LIST

☐ County Commissioners
☐ County Auditors
☐ County Surveyors
☐ County Highway Engineers/Directors
☐ County Highway Supervisors
☐ County Highway Bookkeepers/Clerks
☐ County Planning Director

☐ City Mayors
☐ City Engineers
☐ City Street Commissioner
☐ City Traffic Engineer/Officer
☐ City Planning Director

☐ Town Council President
☐ Town Manager/Administrator
☐ Town Clerk/Treasurer
☐ Town Street Superintendent

☐ Indiana LTAP Staff
☐ Indiana LTAP Resource Library
☐ Indiana LTAP Advisory Board

☐ Purdue Faculty

☐ APWA/LTAP Clearinghouse
☐ JTRP Library

☐ INDOT Central Office/Division Chiefs
☐ INDOT District Directors

☐ APWA, Indiana Chapter
☐ Association of Indiana Counties
☐ Consulting Engineers of Indiana
☐ Indiana Association of Cities and Towns
☐ Indiana Association of County Comm.
☐ Indiana Association of County Highway
☐ Indiana Constructors, Inc.
☐ ITE, Indiana Section
☐ Metropolitan Planning Organizations

☐ Utility Contacts
☐ Consultant Contacts
☐ Contractor Contacts
☐ Vendor Contacts
Bridge Rail Rating Guide

Glossary

Instructions:

1. Begin with the bridge railing section of the bridge rail you are inspecting.

2. Fill in the information at the top of the Bridge Railing Criteria Checklist.

3. Find the bridge railing that best represents the inspected railing in the Bridge Railing Glossary.

4. Go through each of the lettered criteria and check the box on the Criteria Checklist if the inspected railing meets the standards.

5. Since it is not possible to list all the types of railings in the glossary, one must use proper judgment and use the glossary as a guide if the inspected bridge element is not exactly like one in the glossary.

6. Give the bridge railing a rating of 1 if all the boxes on the Criteria Checklist are checked.

7. Give the bridge railing a rating of 0 if not all the boxes on the Criteria Checklist are checked.

 Note: If there are no hazards or miscellaneous criteria listed in the glossary for a particular bridge rail element, those boxes should receive a check mark on the Criteria Checklist.

8. Repeat steps 1 through 7 for the three remaining bridge rail elements in the following order: approach rail, transition, and end terminal.

Diagram of the Four Main Bridge Rail Elements
Table of Contents

Page
v. List of Abbreviations and Definitions

Section 1 - Bridge Railings
1-0 Bridge Railing Criteria Checklist
1-1 W-Beam Guardrail (over culverts)
1-2 Service Level 1 Bridge Railing (SL-1)
1-4 New Jersey Parapet
1-6 Indiana Common 2'-9" Height Concrete Bridge Railing (Type CBR)
1-7 Texas Concrete Traffic Rail (Type TX)
1-9 North Carolina Standard One Bar Metal Rail
1-11 Indiana Type 5 or 6 Aluminum Bridge Railing
1-13 Indiana Type C or D Steel Bridge Railing
1-15 CF-1 Type Bridge Railing (curb, flush mount)
1-17 Texas Type T6 Bridge Railing
1-18 Ohio Box Beam Railing
1-20 Table 1.1: Threshold Warrants for TL-2 Bridge Railings
1-21 Table 1.2: Threshold Warrants for TL-4 Bridge Railings

Section 2 - Approach Rail
2-0 Approach Rail Criteria Checklist
2-1 M-Shaped Approach Guardrail (blocked out W-beam)
2-3 Steel-Backed Timber Rail

Section 3 - Transitions
3-0 Transition Criteria Checklist
3-1 Type WT Transition
3-3 Type WGB Transition
3-5 Type TGB Transition
3-7 Type TGT Transition
3-9 Concrete Bridge Railing Type TTTX Transition
3-11 Concrete Bridge Railing Type TBC Transition

Section 4 - End Terminals
4-0 End Terminal Criteria Checklist
4-1 Breakaway Cable Terminal (BCT)
4-3 Turned Down W-Beam Guardrail Terminal (Type 1)
4-5 SENTRE End Terminal
4-6 Flared Energy Absorbing Terminal (FLEAT)
4-8 Steel-Backed Timber Turned Down End Terminal
4-9 Trend End Treatment
List of Figures

Section 1 - Bridge Railings

1.1 Nested Guardrail Over Culverts
1.2 Example of SL-1 Type Bridge Railing
1.3 Typical Type SL-1 Bridge Rail System
1.4 Thrie Beam Standard Drawings
1.5 Example of New Jersey Type Barrier
1.6 New Jersey Type Barrier Cross-Section
1.7 Indiana 2'-9" Concrete Bridge Railing Cross-Section
1.8 Example of Texas Classic Concrete Traffic Rail
1.9 Texas Concrete Traffic Railing (elevation view)
1.10 Example of North Carolina 1-Bar Metal Railing
1.11 N.C. Standard 1 Bar Metal Rail Cross-Section
1.12 Example of Type 6 Aluminum Bridge Railing
1.13 Type 5 Aluminum Bridge Railing Cross-Section
1.14 Example of Type C Steel Tube Bridge Railing
1.15 Type C Steel Tube Bridge Railing Cross-Section
1.16 Type CF-1 Bridge Railing (elevation view)
1.17 Type CF-1 Bridge Railing Curb and Post Detail
1.18 Texas Type T6 Bridge Railing Cross-Section
1.19 Example of Ohio Box Beam Bridge Railing
1.20 Ohio Box Beam Bridge Railing Cross-Section

Section 2 - Approach Rail

2.1 Example of Blocked-Out W-Beam Approach Rail
2.2 M-Shape Rail (W-Beam) Detail
2.3 Example of Steel-Backed Timber Approach Rail
2.4 Steel-Backed Timber Approach Rail Standard Drawings

Section 3 - Transitions

3.1 Type WT Transition Standard Drawing
3.2 Example of Type WGB Transition (W-Beam)
3.3 W-Beam Terminal Connector
3.4 Type WGB Transition (elevation view)
3.5 Type WGB Transition (plan view)
3.6 Type WGB Transition (3-dimensional view)
3.7 Example of Type TGB Transition
3.8 Thrie Beam Terminal Connection
3.9 Type TGT Transition (plan view)
3.10 Type TGT Transition (elevation view)
3.11 Type TTTX Transition (elevation view)
3.12 Example of Type TBC Transition
3.13 Type TBC Transition (plan view)
Section 4 – End Terminals

4.1 Example of Breakaway Cable Terminal
4.2 Parabolic Offsets for Steel Post BCT
4.3 Parabolic Offsets for Wood Post BCT
4.4 Example of Turned Down W-Beam End Terminal (With Flare)
4.5 Example of Turned Down W-Beam End Terminal (Without Flare)
4.6 Turned-Down End Terminal Standard Drawings
4.7 Example of SENTRE End Terminal
4.8 Example of FLEAT End Terminal
4.9 FLEAT End Terminal Standard Drawings
4.10 Steel-Backed Timber Turned Down End Terminal Standard Drawings
4.11 Quad Trend 350 End Treatment (3-dimensional view)
Definitions and Abbreviations

➤ Bridge Rail Elements

➤ TL-2 Crash Test Level: (Also known as Performance Level 1: PL-1)
Consists of two full-scale crash tests:
- 17) 1800 pound passenger car impacting the structure at 50 MPH and 20 degrees
- 16) 3600 pound pickup truck impacting the structure at 45 MPH and 20 degrees

➤ TL-4 Crash Test Level: (Also known as Performance Level 2: PL-2)
Consists of three full-scale crash tests:
1) 1800 pound passenger car impacting the structure at 60 MPH and 20 degrees
2) 5400 pound pickup truck impacting the structure at 60 MPH and 20 degrees
3) 18,000 pound single-unit truck impacting the structure at 50 MPH and 15 degrees

➤ Post Sizes:
Post Sizes:

W-Shape

![W-Shape diagram]

- **W6x9:**
 - $d = 5.9''$
 - $t_w = 0.17''$
 - $t_r = 0.22''$
 - $b_r = 3.94''$

- **W8x24:**
 - $d = 7.93''$
 - $t_w = 0.25''$
 - $t_r = 0.40''$
 - $b_r = 6.50''$

- **W6x25:**
 - $d = 6.38''$
 - $t_w = 0.32''$
 - $t_r = 0.46''$
 - $b_r = 6.08''$

TS-Shape

- **TS6x3x0.25**
 - $l = 6''$
 - $w = 3''$
 - $t = 0.25''$

- **TS8x4x0.1875**
 - $l = 8''$
 - $w = 4''$
 - $t = 0.1875''$
Section 1
Bridge Railings
Bridge Railing Criteria Checklist

County______________

Bridge No.______________

Type of Bridge Railing (as named in glossary)__________________________

☐ A. Does the bridge railing meet the minimum post spacing?
☐ B. Is the bridge railing on a road with less than the allowable traffic volume and/or design speed?
☐ C. Is the distance from the top of rail to the bridge deck approximately the standard distance?
☐ D. Do the post sizes correspond to the standard?
☐ E. Is the rail size approximately the same as the standard?
☐ F. Is the bridge railing safe from all possible hazards?
☐ G. Does the bridge railing meet the miscellaneous standards?*
* If applicable

If all criteria were met, this bridge railing should be given a rating of 1. If not all criteria were met, it should be given a rating of 0.

Rating___
W-Beam Guardrail
(over culverts)

A. Post spacing:
 ➢ For single W-beam spans, spacing is 6'-3"
 ➢ For nested W-beam spans, spacing may be up to 18'-9" if adjacent to nested spans of 6'-3"

B. Maximum Traffic Speed: 60 MPH

C. Distance of top of rail to bridge deck: 27"

D. Post sizes: see “M-Shaped Approach Guardrail”

E. Rail size: see “M-Shaped Approach Guardrail”

F. Hazards:
 ➢ Should only be used over low-fill culverts where side post mounting is not possible
 ➢ W-beam should be overlapped in the direction of traffic flow (see Figure 1.1)
 ➢ Free from corrosion and collision damage
 ➢ Loose bolts

G. Miscellaneous: Does not need a transition
Service Level 1 (SL-1) Bridge Railing

(Thrie Beam Rail)

A. Post Spacing: 8'-4"

B. Maximum design speed and traffic volume: See Table 1.1

C. Top of Rail to Bridge Deck Distance: 31"

D. Post Size:
 Steel: W6x9 or TS 6x3x0.25

E. Rail Size: Width = 20"

F. Hazards:
 ➢ Should be firmly side mounted to deck
 ➢ Thrie beam should be overlapped in the direction of traffic flow
 ➢ Free from corrosion and collision damage
 ➢ Loose bolts

G. Miscellaneous:
Crash Test Data:
Redirected full-sized auto impact at 60mph and 15 degrees
Redirected 20,000 pound school bus at 45mph and 7 degrees

Figure 1.3: Typical Type SL-1 Bridge Rail System

Figure 1.4: Thrie Beam Standard Drawings
New Jersey Parapet

Figure 1.5: Example of New Jersey Type Barrier

A. No posts (N/A)

B. Maximum design speed and traffic volume: See Table 1.2

C. Typical distance from top of rail to bridge deck: 2'-10"

D. No posts (N/A)

E. Rail Size: see Figure 1.6

F. Hazards:
 - Damaged or cracked concrete
 - Uneven barrier segments causing a potential for snagging

G. Miscellaneous: Delineators should be mounted on the side of bridge railing

Crash Test Level: TL-4
Figure 1.6: New Jersey Type Barrier Cross-Section
Indiana Common 2'-9" Height Concrete Bridge Railing (Type CBR)

Figure 1.7: Indiana 2'-9" Concrete Bridge Railing Cross-Section

A. Post Spacing: no posts (N/A)

B. Maximum design speed and traffic volume: See Table 1.2

C. Distance from top of rail to bridge deck: 2'-9"

D. Post Sizes: no posts (N/A)

E. Rail Size: (see Figure 1.7)

F. Hazards:
 ➢ Damaged or cracked concrete
 ➢ Uneven barrier segments causing a potential for snagging

G. Miscellaneous: Delineators should be mounted on the side of bridge railing

Crash Test Level: TL-4
Texas Concrete Traffic Rail
(Type TX)

![Example of Texas Classic Concrete Traffic Rail](image)

Figure 1.8: Example of Texas Classic Concrete Traffic Rail

A. Post Spacing: Typically 8" wide openings between concrete columns
 Maximum of 30' between span pilasters (See Figure 1.9)

B. Maximum design speed and traffic volume: see Table 1.1

C. Distance from top of rail to bridge deck: 2'-8"

D. Post Size: Typically 10" wide (See Figure 1.9)

E. Rail Size: Minimum barrier depth = 10"

F. Hazards:
 - Bridge rails or parapets with abrupt vertical faces at right angles to the direction
 of traffic can result in vehicle snagging.
 - Severely damaged or cracking concrete

G. Miscellaneous: A sidewalk of 5 ft. minimum width is required with this railing.

Crash Test Level: TL-2
Figure 1.9: Texas Concrete Traffic Railing (Elevation View)
North Carolina Standard 1 Bar Metal Rail

(Aluminum or Galvanized Steel Railing on Vertical Faced Concrete Parapet)

Figure 1.10: Example of North Carolina 1 Bar Metal Railing

A. Post Spacing: 8’ for metal posts
B. Maximum design speed and traffic volume: see Table 1.1
C. Distance from top of rail to bridge deck: 32"
D. Post Sizes: Height of metal post = approximately 1’
 Height of concrete parapet = approximately 1’-6” (See Figure 1.11)
E. Rail Size: Concrete parapet thickness = 1’
F. Hazards: Metal rail should be continuous and gradually flare down at the ends
 (See Figure 1.10)
G. Miscellaneous:

Crash Test Level: TL-2
Figure 1.11: N.C. Standard 1 Bar Metal Rail Cross-Section
Indiana Type 5 or 6 Aluminum Bridge Railing

Figure 1.12: Example of Type 6 Aluminum Bridge Railing

A. Post Spacing: 6'-6" maximum

B. Maximum design speed and traffic volume: see Table 1.1

C. Distance from top of rail to bridge deck:
 - For 2 rails (type 5): approximately 2'-3"
 - For 3 rails (type 6): approximately 3'-6.5" (See Figure 1.13)

D. Post Size: Type D post or approximately W8x24 (see Figure 1.13 for relative size)

E. Rail Size: 4.75" x 3.75” semi-ellipse aluminum rail

F. Hazards:
 - Bridge rail splice bars should be placed at rail joints to maintain continuity
 - If curb is present, face of curb should be less than 9" from railing
 - Posts should be firmly anchored into the bridge deck

G. Miscellaneous:
Figure 1.13: Type 5 Aluminum Bridge Railing Cross-Section
Indiana Type C or D Steel Bridge Railing

A. Spacing: 6'-6" maximum

B. Maximum design speed and traffic volume: See Table 1.1

C. Distance from top of rail to bridge deck:
 For 2 rails (type 5): approximately 2'-3" to 2'-8"
 For 3 rails (type 6): approximately 3'-6.5" (See Figure 1.15)

D. Post Size: type D post or approximately W8x24 (see Figure 1.15 for relative size)

E. Rail Size: 4 x 3 x 1/4 rectangular steel tubing

F. Hazards:
 ➢ Bridge rail splice bars should be placed at rail joints to maintain continuity
 ➢ If curb is present, face of curb should be less than 9" from railing

G. Miscellaneous:
Figure 1.15: Type C Steel Tube Bridge Railing Cross-Section
CF-1 Type Bridge Railing

(Curb, Flush Mount)

A. Post spacing: 10'

B. Maximum design speed and traffic volume: See Table 1.1

C. Distance from top of railing to bridge deck: approximately 35"

D. Post Sizes: W8x24 steel

E. Rail Size: Two TS 5x5x0.25 tubes spaced 14" apart

F. Hazards: No sidewalks are to be placed adjacent to this bridge railing.

G. Miscellaneous: Steel posts are mounted on 10" raised concrete slab

Crash Test Level: TL-4

Figure 1.16: Type CF-1 Bridge Railing (Elevation View)
Figure 1.17: Type CF-1 Bridge Railing Curb and Post Detail
Texas Type T6 Bridge Railing

A. Post Spacing: 6'-3"

B. Maximum design speed and traffic volume: See Table 1.1

C. Distance from top of rail to bridge deck: approximately 27"

D. Post sizes: steel W6x9 or W6x8.5

E. Rail Size: Two W-Beam members welded together to form a tubular shape (see “M-Shaped Approach Guardrail”)

F. Hazards:
 - Free from corrosion and collision damage
 - Loose bolts

G. Miscellaneous: No transition is needed if M-shaped approach rail is used

Crash Test Data: redirected 4500 pound vehicle at 62 MPH and 27.5 degrees

![Diagram of Texas Type T6 Bridge Railing Cross-Section]

Figure 1.18: Texas Type T6 Bridge Railing Cross-Section
Ohio Box Beam Railing

A. Post Spacing: 6’-3”

B. Maximum design speed and traffic volume: See Table 1.1

C. Distance from top of rail to bridge deck: approximately 27”

D. Post Size: Steel W6x25

E. Rail Size: Standard W-Beam rail (see “M-Shaped Approach Guardrail”) backed by TS 8x4 steel tubing (6” long) on each post (See Figure 1.20)

F. Hazards:
 ➢ Damage to anchors and/or concrete where posts are attached to deck
 ➢ W-beam should be overlapped in the direction of traffic flow
 ➢ Free from corrosion and collision damage
 ➢ Loose bolts

G. Miscellaneous:
 ➢ Railing should be side mounted to bridge deck
 ➢ No transition is needed if M-shaped approach rail is used

Figure 1.19: Example of Ohio Box Beam Bridge Railing
Figure 1.20: Ohio Box Beam Bridge Railing Cross-Section
INSTRUCTIONS:
To find if the bridge railing falls within the design speed and traffic limits:

1. Find the appropriate table for your bridge (divided or undivided).
2. Find where your design speed, % trucks in AADT, and barrier offset intersect on the table.
3. If the average daily truck volume on your bridge is less than that on the table, your bridge railing meets the requirements.
4. If the average daily truck volume on your bridge is greater than that on the table, your bridge railing does not meet the traffic speed/volume standards.

Divided (Rural/Urban) Non-Freeway

<table>
<thead>
<tr>
<th>Percent Trucks in Total AADT</th>
<th>Barrier Offset from Edge of Travelway</th>
<th>Average Daily Truck Volume in Design Year</th>
<th>Design Speed (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>5% or less</td>
<td>1 - 6.9 ft.</td>
<td>5,900</td>
<td>2,700</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>9,700</td>
<td>4,150</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>20,550</td>
<td>8,200</td>
</tr>
<tr>
<td>>5% but <10%</td>
<td>1 - 6.9 ft.</td>
<td>4,850</td>
<td>2,700</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>7,400</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>13,300</td>
<td>6,600</td>
</tr>
<tr>
<td>10% or more</td>
<td>1 - 6.9 ft.</td>
<td>4,600</td>
<td>2,700</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>6,900</td>
<td>4,000</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>11,950</td>
<td>6,500</td>
</tr>
</tbody>
</table>

Undivided (Rural/Urban) Arterials, Collectors, and Locals

<table>
<thead>
<tr>
<th>Percent Trucks in Total AADT</th>
<th>Barrier Offset from Edge of Travelway</th>
<th>Average Daily Truck Volume in Design Year</th>
<th>Design Speed (MPH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>5% or less</td>
<td>1 - 6.9 ft.</td>
<td>4,850</td>
<td>2,150</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>8,400</td>
<td>3,500</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>18,000</td>
<td>7,100</td>
</tr>
<tr>
<td>>5% but <10%</td>
<td>1 - 6.9 ft.</td>
<td>3,800</td>
<td>2,100</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>6,150</td>
<td>3,150</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>11,150</td>
<td>5,400</td>
</tr>
<tr>
<td>10% or more</td>
<td>1 - 6.9 ft.</td>
<td>3,600</td>
<td>2,100</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
<td>5,650</td>
<td>3,150</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
<td>9,900</td>
<td>5,200</td>
</tr>
</tbody>
</table>

Bridge Railing Glossary 1-20 Source: Indiana Department of Transportation
INSTRUCTIONS:
To find if the bridge railing falls within the design speed and traffic limits:

1. Find the appropriate table for your bridge (divided or undivided).
2. Find where your design speed, % trucks in AADT, and barrier offset intersect on the table.
3. If the average daily truck volume on your bridge is less than that on the table, your bridge railing meets the requirements.
4. If the average daily truck volume on your bridge is greater than that on the table, your bridge railing does not meet the traffic speed/volume standards.

<table>
<thead>
<tr>
<th>Undivided Rural Arterials</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undivided Rural Collectors/Locals</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Undivided Urban Facilities</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rural/Urban Freeways</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rural Non-Freeways</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Urban Non-Freeways</th>
<th>Average Daily Truck Volume in Design Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Trucks in Total AADT</td>
<td>Design Speed (MPH)</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
<tr>
<td>15% or less</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
<tr>
<td>More than 15%</td>
<td>1 - 6.9 ft.</td>
</tr>
<tr>
<td></td>
<td>6.9 - 11.8 ft.</td>
</tr>
<tr>
<td></td>
<td>>11.8 ft.</td>
</tr>
</tbody>
</table>

Source: Indiana Department of Transportation
Section 2
Approach Rail
Approach Guardrail Criteria Checklist

County________________

Bridge No.____________

Type of Approach Guardrail (as named in glossary)____________________

☐ A. Does the approach guardrail meet the minimum post spacing?
☐ B. Does the approach guardrail approximately meet the minimum length for approaching traffic?
☐ C. Does the approach guardrail approximately meet the minimum length for trailing traffic?
☐ D. Does the approach guardrail have a flare rate less than the maximum?
☐ E. Is the distance from the top of rail to the ground approximately the standard distance?
☐ F. Do the post (and block) sizes correspond to the standard?
☐ G. Is the rail size approximately the same as the standard?
☐ H. Is the approach rail safe from all possible hazards?

If all criteria were met, this approach guardrail should be given a rating of 1. If not all criteria were met, it should be given a rating of 0.

Rating____
M-Shaped Approach Guardrail (Blocked Out W-Beam)

Figure 2.1: Example of Blocked Out W-Beam Approach Rail

A. Post Spacing: 6'-3"
 [A maximum post spacing of 12'-6" may be used if two sections of W-beam guardrail is used, one set inside the other (nested)]

B. Approach Length: for approaching traffic (applies to most bridges)

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Design Year ADT</th>
<th>Current Year ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Over 2000</td>
<td>1001 - 2000</td>
</tr>
<tr>
<td>70</td>
<td>262'</td>
<td>262'</td>
</tr>
<tr>
<td>60</td>
<td>212'</td>
<td>212'</td>
</tr>
<tr>
<td>50</td>
<td>124'</td>
<td>124'</td>
</tr>
<tr>
<td>40</td>
<td>62'</td>
<td>50'</td>
</tr>
</tbody>
</table>

C. Trailing Length: for trailing traffic (applies to most bridges)

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Design Year ADT</th>
<th>Current Year ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Over 2000</td>
<td>1001 - 2000</td>
</tr>
<tr>
<td>70</td>
<td>87'</td>
<td>87'</td>
</tr>
<tr>
<td>60</td>
<td>62'</td>
<td>50'</td>
</tr>
<tr>
<td>50</td>
<td>50'</td>
<td>50'</td>
</tr>
<tr>
<td>40</td>
<td>50'</td>
<td>50'</td>
</tr>
</tbody>
</table>
D. Maximum Flare Rate: (it is acceptable not to have a flared approach rail)

<table>
<thead>
<tr>
<th>Design Speed</th>
<th>70 MPH</th>
<th>60 MPH</th>
<th>50 MPH</th>
<th>40 MPH</th>
<th>30 MPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail Offset from Edge of Lane</td>
<td><10’</td>
<td>≥10’</td>
<td><8’</td>
<td>≥8’</td>
<td><6’</td>
</tr>
<tr>
<td>Flare Rate</td>
<td>30:1</td>
<td>15:1</td>
<td>26:1</td>
<td>13:1</td>
<td>21:1</td>
</tr>
</tbody>
</table>

E. Recommended ground to top of railing distance: 27"

F. Post Size:
 Timber: 6" x 8"
 Steel: W 6 x 8.5

 Block Size:
 Timber: Height = 14", Width = 6", Depth = 8"
 Steel: I-shaped, Height = 19", Depth = 6"

G. Rail Size: Width = 12.25" (See Figure 2.2)

H. Hazards:
 W-Beam should be overlapped in the direction of traffic flow
 Deterioration and collision damage
 Loose bolts
 Lack of continuity (snagging potential)

Crash Test Data: Upper performance limit is a 4650 pound impact at 59 MPH at 21 degrees.

Figure 2.2: M-Shape Rail (W-Beam) Detail
Steel-Backed Timber Rail

A. Post Spacing: Maximum = 9'-9"

B. Approach Length: see “M-Shaped Approach Guardrail”

C. Trailing Length: see “M-Shaped Approach Guardrail”

D. Maximum Flare Rate: see “M-Shaped Approach Guardrail”

E. Recommended ground to top of rail distance: 27"

F. Post Size:
 Timber: 10" x 12" (orientation to the road is not important)

G. Rail Size: 10" x 6" with reinforcing steel plate placed behind rail

H. Hazards:
 Should not be used on roads with design speeds exceeding 50 mph
 Lack of continuity (snagging potential)

Crash Test Data:
 Redirects a 1800 pound vehicle at 50 MPH and 20 degrees
 Redirects a 4500 pound vehicle at 50 MPH and 25 degrees
Figure 2.4: Steel-Backed Timber Approach Rail Standard Drawings
Section 3
Transitions
Rail Transition Criteria Checklist

County________________________

Bridge No.______________________

Type of Transition (as named in glossary)______________________

☑

☐ A. Does the transition meet the minimum post spacing?

☐ B. Do the post sizes correspond to the standard?

☐ C. Is the rail size approximately the same as the standard?

☐ D. Does the transition connect the correct type of railing and approach?

☐ E. Is the bridge railing safe from all possible hazards and is the transition connected to the bridge railing?

☐ F. Does the bridge railing meet the miscellaneous standards?*

* If applicable

If all criteria were met, this transition system should be given a rating of 1. If not all criteria were met, it should be given a rating of 0.

Rating____
Type WT Transition

Figure 3.1: Type WT Transition Standard Drawing

A. Post spacing: One post on both ends of the 6'-3" transition member

B. Post sizes: Steel TS 6x3x0.25 posts with W 6x9 or W 6x8.5 steel blocks

C. Rail size: Thrie beam width (20") tapered down to W-beam width (12.25")

D. Connects Thrie Beam bridge rail (SL-1 Bridge Railing) to W-Beam approach guardrail

E. Hazards: loose bolts and a non-rigid connection

F. Miscellaneous:
Type WGB Transition

Figure 3.2: Example of Type WGB Transition (W-beam)

A. Post spacing:
 - 1st section following rigid barrier: 4 spaces at 1'-6.75" (See Figure 3.5)
 - 2nd section following rigid barrier: 3 spaces at 3'-1.5" (See Figure 3.5)

B. Post size:
 - Timber: 6" x 8" post with block
 - Steel: W 6 x 8.5 post with block

C. Rail Size:
 - 1st 12'-6" after rigid barrier is two W-beam rails set inside the other
 - Remaining rail is standard W-beam section (see "W-Shaped Approach Guardrail")

D. Connects rigid concrete bridge railing to W-beam approach rail

E. Hazards: loose bolts and a non-rigid connection

F. Miscellaneous
 - Top of transition rail should be approximately 27" from the ground.
 - W-beam terminal connector (see Figure 3.3) should be placed where transition meets concrete barrier.
 - Should have a cylindrical steel spacer attached to W-beam at connection to bridge railing (See Figure 3.5)
Figure 3.3: W-Beam Terminal Connector

No connection between rail sections and block at these posts.

One - 5/8" x 18" std. button head bolt w/rectangular plate washer, round washer and recess nut at each post.

W-beam backup plate

Figure 3.4: Type WGB Transition (elevation view)
Two 12'-6" sections of W-beam rail
one set inside the other

Steel spacer tube 6" I.D. x 5'
schedule 40 galvanized pipe
connected only to W-beam rail

Figure 3.5: Type WGB Transition (plan view)

Figure 3.6: Type WGB Transition (3-dimensional view)
Type TGB Transition

A. Post spacing:
 ➢ 1st section following rigid barrier: 5 spaces at 1'-6.75"
 ➢ 2nd section following rigid barrier: 3 spaces at 3'-1.5"

B. Post size:
 ➢ Steel: W 6x9 post with block
 ➢ Timber: 6" x 8" post with block

C. Rail Size: (for thrie beam size see "Service Level 1 (SL-1) Bridge Railing")
 ➢ 1st 12'-6" after rigid barrier is two thrie beam rails set inside the other
 ➢ Next 6'-3" section is W-thrie beam transition (See figure 3.1)
 ➢ Remaining rail is standard W-beam rail (see "W-Shaped Approach Guardrail")

D. Connects rigid concrete bridge railing with W-beam approach rail

E. Hazards:
 ➢ There should be a minimum 25' of 6'-3" post spacing for W-Beam approach rail
 ➢ Loose bolts and a non-rigid connection

F. Miscellaneous:
 ➢ Thrie beam terminal connector (see Figure 3.8) should be placed where transition meets concrete barrier
 ➢ Top of thrie beam portion of transition should be approximately 31" from the ground
 ➢ Top of W-beam portion of transition should be approximately 27" from the ground
Figure 3.8: Thrie Beam Terminal Connection
Type TGT Transition

A. Post spacing:
 - 1st section following rigid barrier: 1 space at 3'-10.25" (See Figure 3.9)
 - 2nd section following rigid barrier: 3 spaces at 3'-1.5" (See Figure 3.9)

B. Post size:
 - Timber post: 8" x 8"
 - Timber thrie beam block: 8" x 8", height = 1'-10.5"
 - Timber W-beam block: 8" x 8", height = 1'-2.75"

Transition Glossary 3-7 Indiana LTAP
C. Rail Size: (for thrie beam size see "Service Level 1 (SL-1) Bridge Railing")
 ➢ 1st 7' after rigid barrier is two thrie beam rails set inside the other (See Figure 3.9)
 ➢ Next 6'-3" section is W-thrie beam transition (See Figure 3.1)
 ➢ Remaining rail is standard W-beam rail (See "W-Shaped Approach Guardrail")

E. Connects CF-1 (and similar) bridge railing with W-beam approach rail

F. Hazards: loose bolts and a non-rigid connection

G. Miscellaneous:
 ➢ Thrie beam terminal connector (see Figure 3.8) should be placed where transition meets bridge railing
 ➢ Top of W-beam portion of transition should be approximately 27" from the ground

Crash Test Level: TL-4
Concrete Bridge Railing Type TTTX Transition

A. Post Spacing: 5 spaces at 1'-6" (see Figure 3.11)

B. Post Sizes: 10" columns between openings in transition

C. Rail Size:
 - Height should be same size as “Texas Concrete Bridge Railing” (3'-6") at the end near the railing and should taper down to 2'-9" at the other end near the approach rail.
 - The length of the transition should be approximately 20'-2"

D. Connects the “Texas Concrete Bridge Railing” to a “Type TGB Transition”

E. Hazards:
 - Type TGB Transition must accompany this transition
 - Severely damaged or cracking concrete

F. Miscellaneous:

Crash Test Level: TL-2
Concrete Bridge Railing Type TBC Transition

Figure 3.12: Example of Type TBC Transition

A. Post Spacing: no posts (N/A)

B. Post Sizes: no posts (N/A)

C. Rail Size:
 ➢ Height: 2'-9" throughout length of transition
 ➢ Thickness: Same thickness as "Indiana 2'-9" Concrete Bridge Railing" at end near bridge railing. Taper down to thickness of 9" at approach rail end. (See Figure 3.13)

D. Connects "Indiana 2'-9" Concrete Bridge Railing" with "Type TGB Transition"

E. Hazards:
 ➢ Type TGB Transition must accompany this transition
 ➢ Severely damaged or cracking concrete

F. Miscellaneous:

Crash Test Level: TL-4
Figure 3.13: Type TBC Transition (plan view)
Section 4
End Terminals
End Terminal Criteria Checklist

County __________________________

Bridge No. ______________________

Type of End Treatment (as named in glossary) __________________________

☐ A. Does the end treatment fall under the maximum traffic volume and/or design speed criteria?

☐ B. Is the end treatment connected to the correct type of approach rail?

☐ C. Is the end treatment placed in the correct orientation/position?

☐ D. Is the bridge railing safe from all possible hazards?

☐ E. Does the bridge railing meet the miscellaneous standards?*

* If applicable

If all criteria were met, this end terminal should be given a rating of 1. If not all criteria were met, it should be given a rating of 0.

Rating ____
Breakaway Cable Terminal (BCT)

A. Maximum design speed: 65 MPH

B. Connects to W-Beam approach guardrail

C. See figures 4.2 and 4.3 for correct parabolic offsets for both wood post and steel post end treatments.

D. Hazards: No transition should be placed less than 12.5' from the end terminal

E. Miscellaneous:
 ➢ The first two posts on the end of the terminal should be either 6” x 8” wood posts weakened by holes drilled through them or W6x8.5 steel posts with slip base breakaway design. They should also be set in concrete footings so they break upon impact.
 ➢ Top of end terminal should be 27” from the ground

Crash Test Data: Successfully buckles under 2250 and 4500 pound vehicles
Figure 4.2: Parabolic Offsets for Steel Post BCT

Figure 4.3: Parabolic Offsets for Wood Post BCT
Turned-Down W-Beam Guardrail End Terminal
(Type 1)

Figure 4.4: Example of Turned-Down W-Beam End Terminal (with flare)

Figure 4.5: Example of Turned-Down W-Beam End Terminal (no flare)

A. Maximum traffic volume: 6000 ADT
 Maximum design speed: 50 MPH

B. Commonly connects to W-Beam approach guardrail

C. Typical length is 25'
 Should be flared away from traffic at a rate of 15:1
D. Hazards:
- Buried end terminal should not be placed within 2’ of shoulder.
- An object marker should be placed approximately 6’ ahead of the end terminal.
- W-beam members should be lapped in the direction of traffic flow.

E. Miscellaneous:
- Smaller 5/8” post bolts are recommended so the end terminal fails upon impact and the vehicle does not vault or roll upon impact.
- End terminal should consist of one 25’ or two 12’-6” W-beam sections.
- Top of rail height should match that of the adjacent approach guardrail.

Figure 4.6: Turned-Down End Terminal Standard Drawings
SENTRE End Terminal

A. Design Speed: 65 MPH

B. Connects to W-Beam approach guardrail

C. Can be installed parallel to the roadway or flared up to a 4' offset.

D. Hazards:
 - A WT transition should be used to connect SENTRE to W-Beam approach guardrail (see “Type WT Transition”).
 - Slip-based support posts should be used.

F. Miscellaneous:
 - Posts should be mounted in concrete footings or on a concrete pad.
 - Sand-filled plastic containers should be placed behind the thrie beam fender panels.
 - End treatment should be approximately 23' in length and 32” in height.
Flared Energy Absorbing Terminal
(FLEAT)

Figure 4.8: Example of a FLEAT End Terminal

A. Maximum design speed: 65 MPH
B. Connects to W-shaped approach guardrail
C. The end terminal should have a flare of approximately 6 degrees and a length of 37'-6"
D. Hazards: A yellow or orange reflector should be placed on the end of the end terminal
E. Miscellaneous:
 ➢ Post Spacing: (see Figure 4.9)
 ➢ Post Type: (see Figure 4.9)
Figure 4.9: FLEAT End Terminal Standard Drawings
Steel-Backed Timber Turned-Down End Terminal

Figure 4.10: Steel-Backed Timber Turned Down End Terminal Standard Drawings

A. Maximum design speed: 50 MPH
B. Connects to steel-backed timber approach rail
C. End Treatment Positioning: See Figure 4.10
D. Hazards: Lack of continuity
E. Miscellaneous: Steel plate should be placed behind the timber rail.
Trend End Treatment

Figure 4.11: Quad Trend 350 End Treatment (3-dimensional view)

A. Maximum design speed: 65 MPH

B. Trend End Treatment may be connected directly to rigid concrete bridge railings without the use of transitions.

C. End treatment positioning: (See Figure 4.11)

D. Hazards:
 ▶ A traversable clear zone of 75’ x 20’ should be kept adjacent to the end terminal in case it gates upon an angled impact.
 ▶ End terminal should be attached firmly to bridge railing
 ▶ Steel posts are to be slip-based

E. Miscellaneous:
 ▶ Standard Length: 20’
 ▶ Standard Height: 32”
 ▶ Standard Width: 15”
 ▶ Sand containers should be placed inside the terminal (See Figure 4.11)
References

Coddington, Cindy, traffic supervisor, Tippecanoe County Highway Department, interview, July 2000.

Federal Highway Administration, *A Discussion with the AASHTO Highway Subcommittee on Bridges and Structures Technical Committee for Guardrail and Bridge Rail*, May 14, 1996.

McCool, Mike, engineer, Beam, Longest, and Neff, Inc., phone interview, June 2000.