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ABSTRACT

Smith, Preston M. M.S., Purdue University, May 2011. A Cost-Benefit Analysis of
a Campus Computing Grid . Major Professors: Jeffrey J. Evans, Kevin C. Dittman,
and Carol X. Song.

Any major research institution has a substantial number of computer systems on

its campus, often in the scale of tens of thousands. Given that a large amount of

scientific computing is appropriate for execution in an opportunistic environment, a

campus grid is an inexpensive way to build a powerful computational resource. What

is missing, though, is a model for making an informed decision on the cost-effectives

of a campus grid. In this thesis, the author describes a model for measuring the

costs and benefits of building a campus computing resource based on the institution’s

existing investment in computing hardware.

For this study, the author calculates the usable capacity of a campus environ-

ment, and based on TCO data for Purdue University’s campus grid, presents a model

for calculating the base cost for a core-hour of computation in the campus grid.

A campus grid does introduce some extra expense, which is then amortized

among the available core-hours to determine the real additional per core-hour cost to

operate a campus grid. With this additional cost added to a baseline, an institution

can learn the total cost of a core-hour in its campus grid.

With a cost model, the author then analyzes the benefits gained from using the

grid, based on the number of hours of delivered, number of computations completed,

and the number of users and faculty members served.

At Purdue, a core-hour costs just over $.03, all of which is an already sunk

cost. The campus grid only costs 3.66 tenths of a cent more per core-hour to run,

and an average of only $364.57 per user each year.
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CHAPTER 1. INTRODUCTION

Research in the 21st century is increasingly dependent on computational cyber-

infrastructure for execution of science. For a university to serve its research mission,

it must have some commitment to providing a cyberinfrastructure for its faculty. Two

primary options exist for doing so - investing in a traditional supercomputing center,

or creating a campus grid built upon the university’s existing resources.

Purdue University operates one of the largest cycle recovery systems in ex-

istence in academia, based on the Condor workload management system (Thain,

Tannenbaum, & Livny, 2005), which is described in greater detail in Section 1.4.1.1.

This system represents a valuable and useful cyberinfrastructure (CI) resource sup-

porting research and education for campus and national users. Officials at Purdue

routinely look to the campus computing grid as a solution to realizing power and cost

savings (Tally, 2008).

What is missing from reports that connect campus computing grids to power

and cost savings is a detailed analysis supporting what are the specific costs; includ-

ing power, staffing, hardware, etc. and the benefits gained by an institution that

implements a computing grid.

1.1 Statement of the Problem

A higher education institution needs a model for making an informed decision

on how to provide cyberinfrastructure to support research. In this thesis, I will define

a model for measuring the costs and benefits of building a campus computing resource

based on the institution’s existing investment in computing hardware.
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1.2 Significance of the Problem

Gopu, Repasky, and McCaulay (2007) found that over a two year span (2004-

2006) on the NSF TeraGrid (Catlett, 2005), 66% of all jobs executed on all systems

were single-core jobs, and 80% of all of these serial jobs ran executed for two hours

or less.

From November 1, 2008 through October 25, 2010, Purdue University users ran

35.4 million single-core serial jobs, using a total of nearly 40 million hours. These high-

throughput computing jobs had an average runtime of 1.35 hours, and were 21% of all

HPC hours consumed at Purdue. Examples of this single-core work include building

a database of hypothetical zeolite structures via simulation (Chemical Engineering)

(Earl & Deem, 2006), understanding the structure of viruses (Structural Biology),

(Jiang, Wen et al., 2008) and simulating the production of comets (Astrophysics).

(Kaib & Quinn, 2009)

The NSF Teregrid data and the representative data from an R1 institution

known for scientific discovery demonstrates that a significant class of work that is

suitable to run in an opportunistic campus grid.

1.2.1 Size of Resource Available to Campus Grids

Purdue University’s 2009 Data Digest publication (Purdue University, 2009)

reports that there are 27,000 workstation computers are on Purdue’s campus. Assum-

ing a low average of two processor cores per workstation, that suggests that there are

at least 54,000 processor cores on Purdue’s campus. In addition, machines providing

30,000 cores are operated by the central research computing facility.

Of the approximately 84,000 processor cores around campus, Purdue’s Campus

Grid currently makes 40,000 available to researchers. To compare a campus grid to

a traditional HPC cluster and provide a sense of scale, there are only 17 systems on

the June 2010 Top 500 (J. Dongarra, Meuer, & Strohmaier, 1998) list with 40,000

or more cores. The theoretical peak capacity of Purdue’s campus grid is over 200
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Teraflops, which would place the Purdue Campus Grid near the top 20 on the June

2010 Top 500 list.

Efforts to reclaim unused cycles only make sense if the amount of potentially

reclaimable resources are significant.

Assuming a conservative estimate that these workstations are idle from 11:00

P.M. to 8:00 AM, this would provide 9 processor hours per core every night - for a

total of 486,000 processor hours every night. Over the course of a year, this is 177.4

million processor hours that could be used for computation to support science.

Mutka (1988) measured the overall available time of a group of workstations

at the University of Wisconsin, and found that a workstation is idle and available

for computation 70% of the time. Observations at Purdue HPC clusters match:

community cluster owners use approximately 70% of the available wall clock time.

Using Mutka’s availability observations to make an estimate, a campus the

size of Purdue University has 331.1 million hours of computation time sitting unused.

In the economic climate of 2011, and the budget crises that go along with

it at institutions of all types, extracting the maximum value from an investment in

information technology is more important than ever.

1.2.2 Power Costs

Regardless of what a computer system is sitting idle or fully computing, its

power cost is significant.

An average dual-core system consumes 111 watts idle, and 160 watts fully

loaded. (Schmid, 2010) At this power consumption Purdue’s 27,000 idle workstations

consume a total 2.99 MW/hour, for a total of 26,253.7 MW per year.

At full load, again using Mutka’s 70% availability value, it is estimated:

27,000 processors x 24 hours x 365 days x .70 availability x 160 W = 26,490.24 MW/year

27,000 processors x 24 hours x 365 days x .30 availability x 110 W = 7,876.11 MW/year

For a net increase of 7,875.76 MW (29.7%) per year.
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At Purdue’s cost of $.05 per kW/hour, that is only an estimated incremen-

tal cost of $393,805.80 per year. Therefore, there is little additional power expense

incurred for the additional use of the computer systems, relative to the total power

expense for a campus’ IT environment.

1.3 Statement of the Purpose

This work explores the costs and benefits with building a campus grid as a

resource for an institution’s computing needs. Specifically:

• The costs of simply operating these resources for their primary purpose

• The additional cost of using existing resources in the campus grid

• The costs of building a campus-sized high-performance computing resource, as

a comparison to the costs of a campus grid

• The impact of a campus grid on the delivery of science, to demonstrate the

benefits gained from the campus grid.

1.4 Definitions

For this study, the terms “campus grid”, “desktop grid”, and “volunteer com-

puting” are all used interchangeably in the literature.

1.4.1 Campus Grids

Campus grids link computing resources within universities and research in-

stitutes, often including geographically distributed sites. A campus grid may be

comprised of dedicated computing resources, idle non-dedicated computing resources

such as workstations or student labs.
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Most importantly, campus grids build a shared computational resources out

of an institutions existing investment in computer resources. A campus grid can be

built a number of different ways: combining and sharing individual computer systems

and community clusters (Purdue), combining and sharing homogeneous, distributed-

owned collections of machines (GLOW), or combining and sharing individual clusters

with middleware (FermiGrid).

Regardless of the architecture of a campus grid, the key characteristic is that

the campus grid facilitates sharing of computing resources.

1.4.1.1. The Condor System

Condor (Thain et al., 2005) is a batch computing system developed at the University

of Wisconsin, Madison, that provides job and resource management functions cou-

pled with mechanisms to create and manage scheduling policies. One of the critical

philosophical approaches that distinguish Condor from other scheduling systems is

the concept of high-throughput computing, which emphasizes the delivery of “large

amounts of processing capacity over very long periods of time” (Livny, Basney, Ra-

man, & Tannenbaum, 1997). In contrast, the traditional approach in the high perfor-

mance computing community has been to focus on metrics such as TeraFlops (TF),

which cannot fully represent the end goal of operating a computing resource: enabling

the completion of science.

Condor is designed to operate opportunistically to harvest unused computa-

tional resources wherever and whenever they are available, be it from a user’s desktop

computer or from a high-performance server in a data center.

1.4.2 Classifications of Campus Grids

I will describe three major campus grids in use today, each with different

characteristics. Purdue, GLOW at the University of Wisconsin, and FermiGrid.
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1.4.2.1. Purdue

Purdue University operates a large-scale campus computing grid distributed

between its main West Lafayette campus, Calumet, Fort Wayne, and North Central

campuses, the University of Notre Dame, and other institutions. (Purdue University,

2010b). The base of Purdue’s campus grid is the community clusters (Shuey et al.,

2005) program. A community cluster is a system purchased by a faculty group and

centrally operated by an institution, maintained for the benefit of the many research

groups that own the nodes in the cluster as well as the broader campus community.

Community cluster customers gain peace of mind from the cluster’s operation by

professional IT staff; low overhead from centralized power, cooling, and data center

space; and cost effectiveness from the combined purchasing power of all cluster owners

and strategic sourcing of the cluster hardware. (Purdue University, 2010a)

As of 2010, Purdue operates two large community clusters in production:

Steele, a 902-node (7216 core) Dell Xeon E5410 “Harpertown” cluster interconnected

with Gigabit Ethernet; and Coates, a 993-node (7944 core) HP AMD Opteron 2380

“Shanghai” cluster interconnected with 10 Gigabit Ethernet.

Using Condor, the Purdue campus grid connects idle processors on the com-

munity cluster nodes, student lab machines, and individuals’ desktops to provide a

single general purpose computing resource to the campus.

1.4.2.2. GLOW at the University of Wisconsin, Madison

According to the University of Wisconsin, The Grid Laboratory of Wisconsin (GLOW)

is a ”campus-wide distributed computing environment designed to meet the scientific

computing needs of the University of Wisconsin-Madison. It is built from autonomous

sites from across the campus, each engineered to meet their own specific requirements,

but cooperating to join with the other sites to serve the ever-growing computing needs

of the entire campus.” (University of Wisconsin, Madison, 2010) Like Purdue, GLOW

is built with Condor.
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1.4.2.3. FermiGrid

Like Purdue and GLOW, the campus of Fermi National Accelerator laboratory op-

erates a grid sharing resources owned by different offices and experiments on its

campus. FermiGrid (Fermi National Accelerator Lab, 2010) allows Fermilab experi-

ments to get opportunistic access to resources owned by others, optimize the use of

Fermilab resources, and provide a coherent means to connect Fermilab to the Open

Science Grid. (Pordes et al., 2007) FermiGrid connects multple Condor clusters and

PBS clusters, (Altair Corporation, 2010) with custom middleware and the Globus

(Foster & Kesselman, 1997) toolkit.

1.5 Assumptions, Delimitations, and Limitations

There are some limitations on the scope of study for this thesis, described

below:

1.5.1 Delimitations

This study will use only the West Lafayette Campus of Purdue University as

an data source for the costs and benefits of implementing a campus computing grid.

Additionally, this study will only explore the costs and benefits of campus grid

computation resources. The following topics will be outside the scope of this study.

• Costs and benefits of storage solutions on the campus grid

• Costs and benefits of a traditional supercomputing system. (For example, a

cluster)
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CHAPTER 2. REVIEW OF THE LITERATURE

2.1 Costs

Opitz, König, and Szamlewska (2008) assert that assumptions that grid com-

puting does not incur any additional costs (Silverstein, 2005) are false. Opitz describes

a detailed model that considers staffing costs, costs of important hardware compo-

nents, network connectivity, mean time to failure of components, and power, based

on experience with a corporate grid at the Novartis corporation.

This study is useful in that it outlines several items (power, staff, hardware),

that need to be taken into account in any cost study. However, it does go into great

detail on costing some items that do not apply to Purdue, such as grid software,

external network connections, and the cost over a lifetime of a data center.

Microsoft Research’s Gray (2008) described the economics of grid computing

with a simple model, described in Table 2.1:

Table 2.1.

Grid Computing Costs, from Microsoft Research

Cost Task

$1 1 GB WAN transfer

$1 8 hours CPU time

$1 1 GB disk space

$1 10M database accesses

$1 10 TB LAN bandwidth

$1 10 TB disk bandwidth
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This model would suggest that an hour of CPU time is worth $.125.

The costs of cloud computing have been compared with Amazon’s Elastic

Compute Cloud (EC2) (Amazon, Inc, 2008) with volunteer computing grids. (Kondo,

Javadi, Malecot, Cappello, & Anderson, 2009). This serves as an inspiration for this

work to use EC2 as a frame of reference for computing costs.

Rather than comparing to a volunteer grid, Afgan and Bangalore (2007) com-

pares the cost of using Sun Grid (now Sun Open Source Cloud) (Sun Microsystems,

2009) against a rough estimate of building and owning a dedicated cluster. This is

the second of three sources that use a cloud computing offering as a cost comparison.

Similar to Opitz et al., Afgan and Bangalore itemizes the total 5 year cost of owning

a cluster, but the model is much more simplistic than what Opitz described.

Walker (2009) describes a model using net-present value (NPV) calculations to

compute the real cost of a CPU hour and compare the cost of purchasing a computer

system vs leasing. Walker calculates the per-cpu hour cost of the Ranger supercom-

puter at the Texas Advanced Computing Center as an example. Ranger’s per-CPU

hour cost is $0.045 cents per CPU hour.

Beck, Schwind, and Hinz (2008), describes the economics of a computing grid

by comparing the provision and use of compute cycles to a market, complete with

pricing to give a cost to allocation of cycles to users. A market is only useful, though,

if there is more demand than supply. Purdue’s campus grid currently has excess

capacity, driving the economics of the grid down to zero.

Carlyle, Harrell, and Smith (2010) created an “EC2 equivalence” metric to

compare the per node-hour costs of Amazon EC2 Cluster Compute Instances to

Purdue University’s Community Cluster program. This metric was developed to

describe the per-share costs to a participant in the Community Cluster program, and

can be adapted to describe the cost to an institution instead of a shareholder.
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2.2 Benefits

To create a cost-benefit analysis, we must also be able to categorize the benefits

of having a computing grid.

2.2.1 Measuring the Capacity of the Grid

Mutka (1988) measured the capacity of a department’s workstations over a

period of 5 months, and determined that a system is available for computation 70%

of the time. This is one of the first works measuring the capacity of a volunteer

computing environment.

Thain, Tannenbaum, and Livny (2006) measured the sizes, locations, OS and

platform makeup, number of pools, software versions in use, and downloads for in-

stallations of the Condor software worldwide.

Anderson and Fedak (2006) described in the potential computational and stor-

age capacity of a volunteer grid, using data from BOINC in 2006.

Toth and Finkel (2007) found that public computers used in a business are

available to volunteer computing 73% of the time, while home and business desktops

are available 27% of the time, and student desktops are available only 18% of the

time.

Brevik, Nurmi, and Wolski measured traces from Condor at the University of

Wisconsin, Madison, and the University of California, Santa Barbara and the Univer-

sity of California, Santa Cruz, with the goal of “a quantile estimation methodology

that supports live predictions of availability so that schedulers (be they human or au-

tomatic scheduling programs) can make decisions dynamically.” (Brevik et al., 2004).

This study’s models, when applied to a Condor grid, produced unusable availability

estimates.

Nurmi, Brevik, and Wolski developed statistical models of desktop grids in

general (2005), Studying a Condor pool in particular, Wolski, Nurmi, and Brevik

(2007) found that no single statistical model is best for measuring availability in an
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opportunistic desktop grid.

Finally, Acharya, Edjlali, and Saltz found that on average, 60-80% of worksta-

tions in an environment are available for computation, and that a substantialnumber

(20-70%) of the systems are always available, and evaluated the utility of a volun-

teer computing environment for parallel computations. (Acharya et al., 1997) This

method is attractive in that for one of the three traces analyzed, it simply uses Condor

itself to report the usable capacity.

2.2.2 Measuring the Utility of the Grid

Kriebel and Raviv (1980) describes a framework for supplying computing ser-

vices based on the demand in the “market”. This framework can be used by manage-

ment for analysis and planning. Kriebel and Raviv defined this work in the context

of business IT in a time far before the grid, but notes even in 1980 that this model

could be used in university computing centers.

Sassone (1988) surveyed methodologies for analyzing costs and benefits of

information systems. Most of the methodologies discussed are more appropriate for

analyzing whether or not to replace manual work with technology, but the “Cost Effec-

tiveness Analysis” used to compare several potential choices is a general methodology

applicable to this study.

Acharya et al. does some estimation of what benefits a user can expect from

a workstation grid, but specifically focuses on parallel jobs. It uses the NAS Parallel

Benchmarks (NPB) (Bailey et al., 1994) to benchmark the benefits of the grid.

Snir and Bader (2004) defines the productivity of a supercomputer as the:

... ratio between the utility of the output it computes to the cost of the

system. This measure depends on the preferences of an agent, rather than

being objectively defined. This is unavoidable: the value of the output of

a supercomputer may vary from organization to organization; as long as

there is no practical way to trade super- computer outputs, there is no way
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to directly compare the worth of a supercomputer for one organization to

the worth of a supercomputer for another organization. (p. 418)

This could perhaps be summarized as “productivity is in the eye of the beholder”.

Such a vague definition of a supercomputer’s utility illustrates the difficulty of defining

it.

Sterling (2004) defines an HPC productivity model that takes into account

useful work performed, divided by time, and then including program size and pro-

grammer effort. Other works (Kennedy, Koelbel, & Schreiber, 2004) focus much

more on the productivity of the software and languages used in high-performance

computing.

Kuck, (2004) discusses factors of HPC productivity, from architecture choice

through software development. Kuck wisely describes a measure of solutions per year,

rather than runs, but notes that such a measure is subjective and difficult to measure.

Streeter (1972) notes that with a scientific computing service, measures should

be flexible and consider human costs and benefits, due to the wide variety of research

projects making it difficult to define the “business” of research.

Kondo, Taufer, Brooks, Casanova, and Chien (2004) described a “cluster

equivalence” metric, that compares the utility of a volunteer computing grid to a

cluster. Additionally, the authors measured the length of intervals that a desktop

grid system is available for computations, and the rate of task failure as a function

of task size.

In table 2.2, Purdue University reports that its campus grid has delivered the

following amount of time to science (Smith, Hacker, & Song, 2008), gathered from

Purdue’s usage metrics:

Such metrics are probably the most easily determined measures of productivity

of the campus grid, from the institution’s perspective.
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Table 2.2.

Condor usage summary by year

Year Pool size Jobs Hours Delivered

2004 1500 43,551 346,000

2005 4000 295,265 1.9 million

2006 6100 4.44 million 4.61 million

2007 7700 9.93 million 8.17 million

2008 22,000 14.9 million 16.6 million

2009 30,000 15.4 million 17.9 million

2010 42,000 15.2 million 18.6 million

2.2.3 Literature Review Summary

This literature review reveals many works studying the costs of high-performance

computing as well as measuring the usable capacity of a volunteer computing system.

Opitz et al. (2008) suggests many things to consider when evaluating the

cost of a computing grid, and Walker (2009) discusses the per core-hour costs of the

Ranger supercomputer that we will find to be similar to resources at Purdue. Carlyle

et al. presents a useful method for calculating a per node-hour or core-hour cost for

an HPC resource, and relating it to the known cost of Amazon EC2.

The various studies about the capacity of a computing grid all use a method-

ology which simply queries the system (Condor or BOINC) and regularly samples the

number of systems available for use.

In the area of describing the utility, or productivity of a computing grid, how-

ever, the literature is nowhere as complete. Some studies involve measuring the pro-

ductivity of a business information system rather than a high-performance computing

system, and others are nearly 25 years old.

Some studies (Kuck, 2004) note that solutions reached is an excellent metric

with which to measure the output of a computing system, but notes that is a difficult
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thing to measure.

As suggested by Snir and Bader, - “productivity is in the eye of the beholder”

- I will define a set of quantifiable outputs with which to measure the utility of the

Purdue campus grid, from the perspective of my particular institution. The specific

metrics with which I will measure the grid’s productivity are discussed in Section 3.1.
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CHAPTER 3. PROCEDURES AND DATA COLLECTION

3.1 Methodology

This study included considerations described by Opitz et al., combined with

values drawn Purdue’s own IT cost models. This allowed the author estimate the

costs to operate systems in the campus grid at Purdue, and identify the additional

costs for the systems to participate in the campus grid.

With the costs of the grid identified, the next step was be to measure the

capacity of the Purdue campus grid using methodologies like described by Toth and

Finkel (2007) and Mutka (1988). For a two-week period of time, the Purdue Condor

pool was sampled every 10 minutes, with each sample listing the state of a machine

(Idle, Computing, Owner-used), and whether a previously-seen machine is online. No

special instrumentation was be required to gather these traces, all of this information

is available by querying the Condor system directly. This sampling simply queried

Condor’s own central accounting database (the condor collector) currently used for

usage reporting, and did not impact the production Condor pool. These scripts are

included in the Appendix.

Each sample of data is approximately 79 bytes - generating only 5.6 KB of

trace data each day.

With trace data collected, I created a system in Amazon EC2, installed Condor

on it, and compared Condor’s own internal benchmark metrics on that node (Kflops

and Mips) to the average values in the Purdue Condor pool. The kflops internal metric

is a single-CPU Linpack (J. J. Dongarra, Luszczek, & Petitet, 2003) benchmark, and

Mips is created by running an implementation of Dhrystone (Weicker, 1984).
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Then, to demonstrate the relative performance of a Condor node, I ran a CPU-

bound, loosely-coupled benchmark on a sample of many nodes of Purdue’s Condor

Pool, one node of each of Purdue’s community clusters, and an Amazon EC2 node,

to obtain a factor with which to compare relative performance.

Using an adaptation of the equivalence metric developed in Carlyle et al., I

then compared the costs of an hour of computation in the Purdue campus grid to

both Purdue’s Community Cluster program and to the Amazon EC2 cloud computing

environment. The model described by Carlyle et al. measured the cost to each

customer rather than the institution, so in this study, I will refine it to present the

cost to the institution.

During development of the campus grid at Purdue, our driving forces were

threefold:

• Provide computational time to facilitate research

• Serve new communities of users underserved by HPC

• Provide a solution with low time-to-science

Therefore, to measure the impact of the grid, I measured the following out-

comes:

• Hours of computation delivered

• Number of computations completed

• Number of unique users served

• Number of disciplines served

• Mean time to result of computation
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CHAPTER 4. PRESENTATION OF DATA AND FINDINGS

4.1 Presentation of the Data

After collecting all the data as described in Section 3.1, this chapter now presents the

results of that methodology.

4.1.1 Grid Capacity

Over a 12-day period of time from Jan 22 through Feb 3, 2011, regu-

lar queries were sent to the Purdue Condor collector to establish the overall usable

capacity of the Purdue Campus grid. In this case, a slot is “available” if it is not in

use by its “owner”. Examples of owners are students using a computer lab, a desktop

user, or a cluster node in use by PBS. Both the overall available capacity, and the

available capacity of desktop resources in particular were queried.

The averages of both the number of slots, and the percent of the slots available

for user jobs calculated from the data collected is presented in Table 4.1, along with

the number of slots that that percentage represents.

Table 4.1.

Purdue Campus Grid Usable Capacity

Number of Slots Percent Available Slots available

Entire Grid 32,406 41.74% 13,526

Desktop Resources 4,509 90.13% 4,064
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Figure 4.1. Usable Capacity of Purdue Grid Over Time

Figure 4.1 illustrates the usable capacity over the 12 days sampled. This table

shows that, on average, 13,526 CPU cores are available to run user jobs. Over the

course of a year, this totals 118,487,760 CPU hours.

4.1.2 Grid Performance

There are several potential metrics that may be analyzed to understand the

performance of nodes in the campus grid.

4.1.2.1. Condor’s Internal Benchmarks

By querying the central condor collector daemon in the Purdue Condor pool

(32579 CPU slots) I recorded the results of Condor’s internal benchmarks for per-core

performance: Kflops (Single-CPU LINPACK), and Mips (Dhrystone).
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Table 4.2 reports the Kflops and Mips measurements for cores in Purdue’s

Community Clusters “Steele” (Dell 1950, Quad-Core Intel E5410); “Coates” (HP Pro-

Liant DL165G5, Quad-Core AMD 2380); and “Rossmann” (HP ProLiant DL165G7,

12-core AMD Opteron 6172); the entire Purdue campus grid, and nodes from Amazon

EC2.

Table 4.2.

Purdue Campus Grid Internal Core Benchmark Results

Cluster Clock Speed KFlops Mips

Steele 2.33 GHz Mean 1,547,375.79 7241.24

Stddev 90,306.41 432.82

Coates 2.5 GHz Mean 1,593,767.57 5708.17

Stddev 30,949.49 337.34

Rossmann 2.1 GHz Mean 1,338,529.38 4854.77

Stddev 16,703.51 1,024.15

Condor Pool Avg 2.31 GHz Mean 1,483,608.69 5833.40

Stddev 232,144.96 1,156.13

Amazon EC2 2.66 GHz Mean 1,256,329.7 8512.3

Stddev 110,666.82 2,378.65

Figures 4.2 and 4.3 compare the mean Mips and Kflops measurements of cores

from the Campus Grid, Purdue’s Community Clusters, and Amazon EC2.

4.1.2.2. Real-world Benchmarking

Without further study, It is unclear if the LINPACK and Dhrystone numbers

presented by Condor are useful as a benchmark with which to measure the relationship

between the performance of a core in the campus grid and an core in an Amazon EC2
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Figure 4.2. Mean Mips measurements

Figure 4.3. Mean Kflops measurements
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node. Furthermore, other studies have documented weaknesses of Dhrystone (York,

2002) and it is not clear if LINPACK results have any relationship to the performance

of a loosely-coupled campus grid computation.

Therefore, as did Carlyle et al. and Acharya et al., I have used a subset of the

NAS Parallel Benchmarks (NPB) (Bailey et al., 1994) as a benchmark with which

to normalize the performance of each class of resources. NPB is useful as it is a

real-world type of application which “mimics the computation and data movement

characteristics of large scale computational fluid dynamics applications”. NPB is

available in parallel versions suitable for large supercomputers, or a serial (single-

CPU) version which lends itself well to execution in a campus grid. The serial NPB

is what is run here.

Of the eleven potential benchmarks in NPB, I selected the “BT” (Block Tridi-

agonal) and “SP” (Scalar Pentadiagonal) benchmarks, both of which solve a system

of nonlinear partial differential equations. These benchmarks are the same ones run

by Carlyle et al. - selected because they solve nonlinear partial differential equation -

a very common operation in many types of HPC codes. The BT benchmark has the

added benefit of including an I/O intensive subtype. NPB benchmarks are available

in a number of problem sizes (“classes”) - class C is what I ran for this experiment -

solving a 3D problem matrix of the size 162x162x162.

Using the Condor system, I ran 100 copies of each benchmark on campus grid

nodes, and established an average performance for each benchmark. By comparing

this result to the performance of the same benchmark on an Amazon EC2 “Large”

instance, a factor can be obtained with which to compare the performance of campus

grid cores to one on EC2. Table 4.3 and Figure 4.4 summarize the mean execution

times of the NPB benchmarks.

These benchmarks show that, on average, the NPB benchmarks run at 17.1%

faster on Amazon EC2 than they do on the campus grid. Therefore, an average

campus grid core is 82.9% of the speed of a core on Amazon EC2.
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Table 4.3.

NAS NPB Benchmark - Mean Execution Time (seconds)

BT SP

Campus Grid 2307.41 2310.36

Amazon EC2 “Large” 2025.74 1803.38

Difference 12.2% 21.9%

Average Speedup 17.1%

Scaling Factor .829
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Figure 4.4. NPB Performance on Purdue Campus Grid and Amazon EC2

Figure 4.5 depicts the relationship between Condor’s Kflops and MIPS metrics,

and the results of the NPB benchmark runs described in Table 4.3 and Figure 4.4.

Condor’s own Kflops metric shows that on average, Amazon EC2 nodes are

15.3% faster than nodes on the campus grid, compared to the 17.1% difference mea-

sured by the NPB runs. According to Table 4.2, the mean CPU speed of cores in the
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Figure 4.5. Relationship Between Condor Internal Benchmarks vs NPB Results

campus grid is 2.31 GHz, and 2.66 GHz for Amazon EC2 instances - a difference of

13.2%. This suggests a correlation between CPU clock speed, Kflops numbers, and

NPB run time. Future work should further study this relationship.

This suggests that Condor’s Kflops metric is potentially useful as an indicator

of relative node performance for common CPU-intensive campus grid codes. The

MIPS benchmark shows no obvious relation to the performance of NPB.

With this result from gathered from a real-world application, there is now a

conversion factor (.829) with which to normalize the per-core cost of the campus grid

and make an apples-to-apples comparison to Amazon EC2, or to community cluster

results obtained by Carlyle et al.
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4.1.3 Cost Comparisons

4.1.3.1. Description of the Model

Carlyle et al. described their EC2 equivalent cost methodology as follows:

�
# months
# core-hrs

� �
# core
1 node

� �
1 hour (Cluster)

hour (EC2)

� �
Month cost
1 month

�

= Cost per node-hour (4.1)

Since all metrics and cost results are for a single core (not per-machine), and

the fact that Condor represents an n-core node as quantity n single-core slots, I will

treat each Condor “core” as a “node”, (1:1) removing the factor of cores per node.

Using 1 month in the first and last factors cancels out the “month” term. With these

adjustments, a simplified model to determine the normalized cost per “node” (core)

hour is presented in Equation 4.2:

Cn =
Ch

Fn
, (4.2)

where Ch is the pre-normalized per core-hour cost of a core on the campus grid, and

Fn is a constant representing the normalizing factor of one hour on the grid to 1 hour

on EC2. The result, Cn, is the normalized per-core-hour cost.

4.1.3.2. Results of Model with TCO data from Purdue Campus Grid

Using the same cluster total cost of ownership (TCO) data used by Carlyle et

al., I calculated the hourly per-core cost of the Purdue Community clusters. (D. Cum-

berland, personal communication, January 29, 2011) This data, along with TCO data

for the other major component of the campus grid: Purdue’s student instructional
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labs (L. Theademan, personal communication, December, 2010 ), enabled calculation

of the mean hourly per-core cost of machines in the Purdue campus grid. Data for the

Rossmann cluster was not available for analysis, but due to its similarity to Coates

it is expected that its TCO will be very similar to Coates. Pre-normalized costs are

summarized in table 4.4, along with the cost of running a core-hour in Amazon EC2.

Table 4.4.

Summary of Per Core-Hour Cost of Computation Resources

Resource Pre-Normalized Cost

Coates .0237

Steele .0218

Instructional Labs .0445

Average Purdue Condor Cost .0300

Amazon EC2 (Large) .17

This table is the cost to Purdue University - the institution itself - to build a

computation system on each of these resources. It should be noted that the dramati-

cally higher cost of an Amazon EC2 core is due to the fact that this is a retail price,

not the amount that it actually costs Amazon to run the infrastructure. The Amazon

cost includes many unknown factors and an almost certainly substantial mark-up to

make the service profitable.

Using the average per node-hour cost of the campus grid of $.03, obtained in

Table 4.4, and a normalizing factor of 0.829 obtained from Table 4.3, these values are

inserted into into the new equivalence formula previously described as Equation 4.2.

Cn =
Ch

Fn

=
.0300

.829

= $0.03619,
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where Ch is $.0300 (from Table 4.4), and Fn is 0.829 (from Table 4.3).

Therefore, Cn - the normalized per-core-hour cost of an hour on the Purdue

campus grid - is $0.03619.

All of this expense is already absorbed by the University in the course of

operating its Community Clusters and student computing labs.

4.1.3.3. Additional Expense to Operate Campus Grid

Missing from the per node-hour expense is additional staff and hardware not

already used to operate the infrastructures comprising the campus grid. Table 4.5

summarizes all the additional expenses necessary to operate the Purdue campus grid.

Table 4.5.

Details of Additional Expense to Operate Campus Grid

Item Total Yearly Cost

Systems Engineering (1 FTE) $73,810.00

Advanced User Support (.75 FTE) $55,357.50

Distributed Administrators (.1 FTE) $11,071.50

Additional Power Expense $290,295.01

Item Total Cost, Amortized over 5 years

Dedicated Submit Nodes (3) $6360.00

Checkpoint Servers (4) $8480.00

Actual Yearly Expenses $433,502.01

These expenses include staffing for systems engineering necessary to maintain

the additional servers that drive the campus grid, as well as the expense of those

servers; advanced user support staff responsible for supporting researchers using the

resource; staff expenses incurred by additional IT staff around campus participating
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in the grid; and the additional cost of running the available workstations at full load

instead of at idle. See Section 4.1.3.3.1 for full discussion of the additional cost of

power.

The additional expense of operating the campus grid can be represented by

Equation 4.3.

Ca =
Ey ∗ Sa

Hy
, (4.3)

where Ey is the total expenses of operating the grid per year, as calculated in

Table 4.5, and Sa is the available slots calculated in Section 4.1.1. Hy is a constant

representing the number of hours in a year. The result, Ca, is the additional per

core-hour expense of operating the campus grid.

Solving Equation 4.3 calculates Ca:

Ca =
Ey ∗ Sa

Hy

=
$433, 502.01 ∗ 13, 526

8760

= $0.003658623 (3.66 tenths of a cent).

Ca, the additional per core-hour expense of operating the campus grid, is

$0.003658623 (3.66 tenths of a cent).

4.1.3.3.1. Power Measurement

One substantial component of the additional expenses is the increased power

cost of running machines at full power instead of idle. As discussed in the literature

review, Schmid (2010) reported that an average desktop system consumes 111 watts

idle, and 160 watts under full load, a ratio of 0.6938. A Purdue measurement of

power consumption of a variety of 13 systems that can be found in the Campus

Grid finds that the average ratio of idle to fully loaded wattage is 0.6603, which is
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within one standard deviation (.0771) of Schmid’s estimate. (P. Finnegan, personal

communication, March 24, 2011)

The estimated additional power expense incurred based on Schmid’s ratio of

0.6938 and a per kW-hour cost of $.05, is $290,295.01, depicted in Figure 4.6.

4.1.3.4. Total Cost

Equation 4.4 describes the computation of the total cost of a core hour.

Ct = Cn + Ca (4.4)

Using the values for Ca and Cn from Section 4.1.3.2, I calculate Ct:

= $0.03619 + $0.003658623

= $0.0398468012

The total cost per core hour delivered of a campus grid node is $0.0398468012.

This value will be referred to as Ct.

4.1.4 Scientific Output

The following metrics in Table 4.6 were provided by the Purdue Rosen Cen-

ter for Advanced Computing (G. Flint, personal communication, March 2, 2011),

measuring the output enabled by the campus grid.

The mean time to result (that is, the time elapsed between submission and

completion of the job) of all jobs ran in the campus grid from 2005-2010 is 13,986.6

seconds - that is, 3.88 hours. Table 4.7 summarizes the mean per-job run time, and

the mean time to result for jobs in the Purdue Campus Grid. (G. Flint, personal

communication, March 24, 2011)
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Table 4.6.

Summary of Usage Metrics for Purdue Campus Grid
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2005 25 8 5 4 295,265 1.9 million

2006 70 27 11 11 4.44 million 4.61 million

2007 115 50 16 19 9.93 million 8.17 million

2008 115 60 13 18 14.9 million 16.6 million

2009 163 85 18 16 15.4 million 17.9 million

2010 145 79 20 16 15.2 million 18.6 million
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Table 4.7.

Summary of Time-to-Result of Purdue Campus Grid

Year Avg Run Hours Avg Time to Result

2005 7.49 57.20

2006 1.07 4.31

2007 0.83 2.42

2008 1.15 3.67

2009 1.19 3.35

2010 1.25 4.33

Average 2.16 3.88

Flint (personal communication, March 24, 2011) describes the results for 2005

as anomalous:

.... because one user ran 36% of the jobs and each of his jobs averaged 14.5

run hours and 123.6 result hours. Another ran about 15% [of the jobs]

and averaged 6.4 run hours and 14.8 result hours. With those two user

entries removed, 2005 has 2.97 avg run hours and 19.9 avg result hours.

With the exception of 2005, the average runtime of a job in the Purdue grid

remains remarkably consistent, varying a maximum of only approximately 15 minutes.

Time to result, though, varies to a wider degree, due to a wide variety of outside

factors including use of the machines in the grid by their primary owners. For example,

a job that is preempted and restarted will exhibit a longer time to result - due to

time being lost by a job terminating and restarting from the beginning.

The best metric possible would be the number of scientific publications in

peer-reviewed journals that can be attributed to the use of the Purdue campus grid.

Unfortunately, this information is not available today, and gathering it through a

manual literature search is beyond the scope of this study.
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4.2 Analysis of the Data

While Table 4.5 shows the details of the yearly full additional costs of running

the campus grid, Table 4.8 and Figure 4.7 depict the totals of the additional per

core-hour expense of the hours facilitated by the campus grid.

Table 4.8.

Total Additional per Core-Hour Costs for Use of Purdue Campus Grid, by Year

Year Cost

2005 $7,118.67

2006 $16,878.91

2007 $29,884.52

2008 $60,739.12

2009 $65,846,19

2010 $68,082.94

Average $41,425.06

4.2.1 Total Cost for Each Metric

However, these numbers do not gain their full value until considering what is

gained by incurring each of these expenses.

Equation 4.5 provides a model for using the total per node-hour cost that was

obtained in Section 4.1.3.2 ($0.03984680123) to calculate the per node-hour cost per

unit of a usage metric:

Ctot =
Hy ∗ Ct

Mu
, (4.5)

where Hy is number of hours that the campus grid provided in the year, and Ct is the

total cost of an hour of use in the campus grid, as discussed in Section 4.1.3.3. Mu is
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Figure 4.7. Total Additional per Core-Hour Costs for Use of Purdue Campus Grid,

by Year

the metric of usage, as discussed in Section 4.1.4, such as users, PIs, or departments.

The result, Ctot, is the total per-core-hour cost per unit of Mu.

For example, Equation 4.6 shows the results of computing Ctot for the number

of unique users in 2005:

Ctot =
Hy ∗ Ct

Mu

=
(1, 945, 723 hours ∗ $0.0398468012)

25 Unique Users

= $3, 101.23 per user (4.6)

Table 4.9 and Figure 4.8 summarize Ctot per user, principal investigator (PI),

PI department, and field of science, as calculated by Equation 4.5
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Table 4.9.

Summary of Per-Metric Costs for Hours Delivered by Purdue Campus Grid

Year P
er

U
ser

P
er

P
I

P
er

P
I

D
ep

artm
ent

P
er

F
ield

of
S
cien

ce

2005 $3,101.23 $9,691.35 $15,506.17 $19,382.71

2006 $2,626.17 $6,808.58 $16,711.97 $16,711.97

2007 $2,830.25 $6,509.57 $20,342.40 $17,130.44

2008 $5,752.37 $11,025.37 $50,886.31 $36,751.22

2009 $4,399.66 $8,436.99 $39,841.34 $44,821.51

2010 $5,113.83 $9,386.14 $37,075.26 $46,344.07

Average $3,970.58 $8,643.00 $30,060.57 $30,190.32
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Figure 4.8. Cost Per Metric of Purdue Campus Grid
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4.2.1.1. Notes on the Relationship Between Metric Costs

The reader may question why per-metric costs rise each year, along with usage

instead of falling. This is due to the per core-hour cost model being a variable cost

method of measuring the cost of the grid. Therefore, all metrics presented will rise

with usage.

Additionally, the reader may question why Figure 4.8 shows the relationship

between Ctot per User and per PI cost metrics remaining fairly constant from year

to year, but per CtotPI Department and per Field of Science Ctot spike dramatically

in 2008-2010. Figure 4.9 illustrates the relationships between the metrics in Table

4.6. Figure 4.10 illustrates the relative growth of the hours and jobs provided on the

Purdue campus grid.

It should be noted that the slope of unique users and PIs in Figure 4.9 closely

matches that of jobs and hours delivered in Figure 4.10, while there is relatively flat

growth in departments and fields of science. It may be concluded that due to the

finite number of departments at an institution, and limited fields of science, that

measuring costs per department or fields of science may not be a useful metric for

the cost and benefits of a campus grid.

4.2.2 Additional Cost for Each Metric

Bearing in mind that a large portion of Ctot are already absorbed by the insti-

tution, the most important question to be answered is that of “what is the additional

cost incurred for each metric”, or Caddtl?

Similar to Equation 4.5, Equation 4.7 provides a model for using the addi-

tional per node-hour cost (Ca) that was obtained in Section 4.1.3.2 to calculate the

additional per node-hour cost (Caddtl) per unit of a usage metric:

Caddtl =
Hy ∗ Ca

Mu
, (4.7)
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where Hy is number of hours that the campus grid provided in the year, and Ca

is the additional cost of an hour of use in the campus grid, as discussed in Section

4.1.3.3. Mu is the metric of usage, as discussed in Section 4.1.4, such as users, PIs, or

departments. The result, Caddtl, is the total additional per-core-hour cost per unit of

Mu.

For example, Equation 4.8 shows the results of computing Caddtl for the number

of unique users in in 2005:

Caddtl =
Hy ∗ Ca

Mu

=
(1, 945, 723 hours ∗ $0.003658623)

25 Unique Users

= $284.75 per user (4.8)

Table 4.10 and Figure 4.11 summarize Caddtl incurred by the institution per

user, principal investigator (PI), PI department, and field of science, as calculated by

Equation 4.7.

As with Ctot, Caddtl exhibits the same increase in costs for PI Departments

and Field of Science in relation to users and PIs. Again, this is due to flat growth in

PI departments and Fields of Science in relation to users and PIs. Refer to Section

4.2.1.1 for explanation of this characteristic of the data.

Finally, as noted in Section 4.1.4, data on the number of publications at-

tributable to the campus grid is unfortunately not available. Future work may inves-

tigate the number of publications made possible by the computing grid.
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Table 4.10.

Summary of Additional Per-Metric Costs for Hours Delivered by Purdue Campus

Grid

Year P
er

U
ser

P
er

P
I

P
er

P
I

D
ep

artm
ent

P
er

F
ield

of
S
cien

ce

2005 $284.75 $889.83 $1,423.73 $1,779.67

2006 $241.13 $625.14 $1,534.45 $1,534.45

2007 $259.87 $597.69 $1,867.78 $1,572.87

2008 $528.17 $1,012.32 $4,672.24 $3,374.40

2009 $403.96 $774.66 $3,658.12 $4,115.39

2010 $469.54 $861.81 $3,404.15 $4,255.18

Average $364.57 $793.58 $2,760.08 $2,771.99



38

!"#""$

!%""#""$

!&'"""#""$

!&'%""#""$

!('"""#""$

!('%""#""$

!)'"""#""$

!)'%""#""$

!*'"""#""$

!*'%""#""$

!%'"""#""$

(""%$ (""+$ ("",$ (""-$ ("".$ ("&"$

/01$2301$

/01$/4$

/01$/4$5067$

/01$890:;$<=$>?90@?0$

Figure 4.11. Additional Cost Per Metric of Purdue Campus Grid



39

CHAPTER 5. CONCLUSIONS, DISCUSSION AND RECOMMENDATIONS

5.1 Conclusions

In conclusion, we have established that a higher education institution needs

a model for making an informed decision on how to provide cyberinfrastructure to

support research. I proposed to define a model for measuring the costs and benefits of

building a campus computing resource based on the institution’s existing investment

in computing hardware.

Furthermore, I evaluated this model with costs from the campus of Purdue

and compared the results to a known price, Amazon EC2.

There are many studies that explore the costs of grid or high performance

computing, such as (Opitz et al., 2008), (Gray, 2008), (Kondo et al., 2009), (Walker,

2009), (Beck et al., 2008), and (Carlyle et al., 2010).

A number of other works define methods for measuring the capacity of a grid,

including (Mutka, 1988), (Thain et al., 2006), (Anderson & Fedak, 2006), (Toth &

Finkel, 2007), (Brevik et al., 2004), (Wolski et al., 2007).

But when searching the literature for works about the utility, or productivity

of a computing grid, there is much less work to draw from, as noted in Section 2.2.3.

Therefore, with this thesis I have set out to contribute a work that will fill this

gap in the literature. The models refined or developed herein to meet this goal are

summarized below:
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5.1.0.1. The Cost Models

I adapted the model defined by Carlyle et al., to normalize the raw cost of a

core-hour in relation to Amazon EC2. This model is described in Section 4.1.3.1, and

summarized below:

Cn =
Ch

Fn
,

where Ch is the pre-normalized per core-hour cost of a core on the campus grid, and

Fn is a constant representing the normalizing factor of one hour on the grid to 1 hour

on EC2. The result, Cn, is the normalized per-core-hour cost.

After identifying additional costs specific to the operation of the campus grid

as described in Section 4.1.3.3, I determined that the following model will calculate

the extra cost per core-hour of operating the campus grid.

Ca =
Ey ∗ Sa

Hy

Finally, with Cn and Ca calculated as described in Section 4.1.3.4, I identified

a model to calculate Ct, the total per-core hour cost of a campus grid.

Ct = Ch + Ca

5.1.0.2. The Dollars per Measure of Productivity Model

Given a set of metrics such as those described in 4.6, I defined a model to

compute the dollar cost per measure of productivity. Equation 4.5 describes a model

to calculate the per node-hour cost per unit of a usage metric (Ctot), and Equation

4.7 describes a model to calculate the additional per node-hour cost per unit of a

usage metric (Caddtl). Both models are summarized below:
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Ctot =
Hy ∗ Ct

Mu

Caddtl =
Hy ∗ Ca

Mu
,

where Hy is number of hours that the campus grid provided in the year, Ct

is the total cost of an hour of use in the campus grid, and Ca is the additional cost

of an hour of use in the campus grid, both as discussed in Section 4.1.3.3. Mu is the

metric of usage, as discussed in Section 4.1.4, such as users, PIs, or departments.

The results, Ctot or Caddtl, are the total or additional per-core-hour cost per

unit, respectively, of Mu.

5.1.0.3. The Output of the Models

In this thesis, using cost data and usage metrics from Purdue University’s

campus grid as input, I utilized these models to determine Cn and Ca for that insti-

tution. Cn and Ca, when added together, yield Ct - the total per core-hour cost of

the Purdue campus grid. These results are summarized in Table 5.1.

Table 5.1.

Summary of Cost Model Results for Purdue Campus Grid

Model Cost

Cn $0.03619

Ca $0.003658623

Ct $0.0398468012

With Cn, Ca and Ct calculated, I was able to use usage metrics in Table 4.6

of the Purdue grid to compute Ctot and Caddtl for a number of usage metrics.
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Ctot values for a variety of usage metrics are summarized in Table 4.9, and

Caddtl values for the same metrics are summarized in Table 4.10.

5.2 Future Work

Future work will explore the relationships of runtime and time to results vs.

the productivity metrics that were detailed in Table 4.6. Incorporating time to results

as a part of a future cost model would be a useful topic to explore. Is it possible to

determine a relationship between time to results and the cost of a computing resource?

Section 4.1.2.2 notes the relationship between CPU clock speed, Condor’s

Kflops metric, and NPB run times. Future work should further evaluate this re-

lationship and study campus grid usage logs to determine the fraction of campus grid

jobs that are CPU-intensive, I/O-intensive, etc.

Additionally, a study performing further investigation of the number and type

of publications made possible by the campus grid would help create a new and mean-

ingful measurement of one of the most important benefits made possible by the cam-

pus grid.

Finally, a study that executes a number of loosely-coupled codes ideal for

execution in a campus grid to identify some ideal codes for use as benchmarks of a

campus grid is another potential research area.

5.3 Summary

I have measured the capacity of a campus grid to see what fraction of it can

reasonably be expected to be usable for computation. At Purdue, an average 13,526

processor cores are available at any given time.

I have benchmarked the campus grid to determine its performance relative to

a community cluster and Amazon EC2. This provides a scaling factor with which to

normalize the cost of a CPU hour, allowing the costs calculated to be compared with

those presented by Carlyle et al.
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With this factor, I have determined that the normalized cost to Purdue Uni-

versity for a core-hour in the campus grid is $0.03619. Adding in additional expense

dedicated to the campus grid (extra staff, dedicated hardware, additional power load),

I then found that the additional expense to run a campus grid on an institution’s ex-

isting investment in computing equipment is $0.003658623 (3.66 tenths of a cent) per

core-hour.

Therefore, the total cost of a core-hour is $0.039847.

As an example, in 2010, the additional expenses incurred to operate a campus

grid and complete 15.2 million jobs using 18.6 million hours, all on hardware that

would otherwise be idle, was $68,082.94. Each user utilizing this resource only cost

Purdue an additional$469.54, and each faculty member (which may have more than

one user associated with them) utilizing the grid costs the institution an additional

$861.81.

This investment allows the creation of a very cost-effective high-performance

computing resource. On average, it costs only $364.57 per user each year on top

of the University’s sunk investment in information technology to provide a campus

grid service that is usable by and appropriate for a large portion of the researcher

population. For example, if an institution were to build an equally-sized resource on

Amazon EC2 (13,526 cores), it would cost $16,939.86 per user.
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APPENDIX: SCRIPTS

A.1 Condor Data Collection Script

#!/bin/sh

cd ~/thesis

stamp=‘date "+%F-%R"‘

stamp2=‘date "+%s"‘

cnd=‘/opt/condor/bin/condor_status -total | tail -1‘

echo $stamp2 $cnd >> data.txt

cnd2=‘/opt/condor/bin/condor_status -total -pool egret \

| tail -1 ‘

echo $stamp2 $cnd2 >> desktop-data.txt

/opt/condor/bin/condor_status -format ’%s\n’ Machine | sort -u \

> machines.txt.$stamp

gzip machines.txt.$stamp

A.2 Condor Data Analysis Script

#!/usr/bin/perl

use List::Util qw(sum);



49

$FILE=shift;

@percents;

@slots;

open FILE, $FILE || die "Can’t open the data file";

while(<FILE>) {

next if /Backfill/;

chomp;

if(/^\d/) {

($stamp, $slots, $owner, $claimed, $unclaimed) = ($1, $2, $3, $4, $5) if

/(\d+)\s+Total\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/;

} else {

($slots, $owner, $claimed, $unclaimed) = ($1, $2, $3, $4) if

/\s+Total\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/;

}

#next if $slots < 10000;

$free = $slots-$owner;

$percent = sprintf("%.3f", $free/$slots);

#print "Total Free Slots: $free of $slots (" . $percent*100 . " percent)\n";

push(@percents, $percent);

push(@slots, $slots);

}
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$avgfree = sum(@percents)/@percents;

$avgslots = sum(@slots)/@slots;

print "Average percent of slots free: " .

$avgfree*100 . "% (of ". scalar @percents . " samples)\n";

print "\nAverage number of slots in grid: " .

$avgslots . " (of ". scalar @slots . " samples)\n";

close FILE;
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