
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

9-4-2010

Can a Scalable System be Built to Capture Web
Page Thumbnails?
Feras Hirzalla
Purdue University, hirzalla@gmail.com

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Hirzalla, Feras, "Can a Scalable System be Built to Capture Web Page Thumbnails?" (2010). College of Technology Masters Theses. Paper
31.
http://docs.lib.purdue.edu/techmasters/31

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Feras Hirzalla

Can a Scalable System be Built to Capture Web Page Thumbnails?

Master of Science

John Springer

Brandeis Marshall

Eric Matson

John Springer

Gary Bertoline 08/24/2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Can a Scalable System be Built to Capture Web Page Thumbnails?

Master of Science

Feras Hirzalla

8/23/2010

CAN A SCALABLE SYSTEM BE BUILT TO CAPTURE WEB PAGE
THUMBNAILS?

A Thesis

Submitted to the Faculty

of

Purdue University

by

Feras Hirzalla

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2010

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page
LIST OF FIGURES ... iv
LIST OF TABLES ... v
ABSTRACT .. vi
CHAPTER 1. INTRODUCTION .. 1

1.1. BACKGROUND .. 1
1.2. RESEARCH QUESTION .. 2
1.3. SCOPE & CONTRIBUTION .. 2
1.4. SIGNIFICANCE... 3
1.5. ASSUMPTIONS .. 3
1.6. LIMITATIONS.. 4
1.7. DELIMITATIONS ... 4
1.8. DEFINITIONS ... 5
1.9. SUMMARY .. 5

CHAPTER 2. LITERATURE REVIEW .. 6
2.1. LITERATURE REVIEW APPROACH .. 6
2.2. WEB PAGE THUMBNAILS AS USER INTERFACE AIDS 6
2.3. GENERATING THUMBNAILS .. 8
2.4. PROVIDING RELIABLE THUMBNAILS .. 9
2.5. SCALABLE SYSTEM ARCHITECTURE ... 10
2.6. DATA ACCESS & WEB SERVICES ... 11
2.7. UPDATING THUMBNAILS ... 11
2.8. SUMMARY .. 12

CHAPTER 3. METHODOLOGY ... 13
3.1. RESEARCH FRAMEWORK ... 13
3.2. SAMPLE SET & DATA COLLECTION .. 14
3.3. TECHNOLOGY OVERVIEW ... 16
3.3.1. SAMPLE SET SIZE COLLECTION .. 17
3.3.2. SYSTEM PROFILING... 18
3.3.3. THUMBNAILER FLOW... 18

3.4. DATA ANALYSIS .. 19
3.5. SUMMARY .. 19

CHAPTER 4. RESULTS ... 21
4.1. SAMPLE SET SIZE COLLECTION ... 21
4.2. EXPERIMENT RESULTS ... 26
4.3. SYSTEM PROFILE ... 30

iii

Page
4.4. SUMMARY .. 31

CHAPTER 5. DATA ANALYSIS AND CONCLUSION .. 32
5.1. FINDINGS ... 32
5.2. EXPERIMENTAL EVALUATION ... 37
5.3. RECOMMENDATIONS ... 37
5.4. CONCLUSION & FUTURE RESEARCH .. 38
5.5. SUMMARY .. 38

BIBLIOGRAPHY ... 39
APPENDIX ... 43

iv

LIST OF FIGURES

Figure Page
Figure 4.1 www.sdsife.org – 0.34 KB ... 22
Figure 4.2 http://www.bornewasser-hacker.de/ – 33.8 KB 23
Figure 4.3 http://www.uberbeergeek.com/bih/ – 99.7 KB 23
Figure 4.4 http://airbrush-forum.net/ – 167 KB ... 24
Figure 4.5 http://www.pinetree-golf-club.jp/ – 20.3 MB 25
Figure 4.6 www.pilatesbangkok.com – 2.05 MB ... 25
Figure 4.7 Thumbnailer Screenshot ... 26
Figure 4.8 Duration vs. Thread Counts Chart ... 30

v

LIST OF TABLES

Table Page
Table 4.1 Size Category Ranges .. 22
Table 4.2 Duration Baseline – Single Thread ... 27
Table 4.3 Duration Data: 10-50 Threads .. 28
Table 4.4 Duration Data: 75-175 Threads .. 29
Table 5.1 Small Pages Thread Count Durations .. 33
Table 5.2 Small Pages Partial System Profile .. 33
Table 5.3 Medium Pages Thread Count Durations ... 34
Table 5.4 Medium Pages Partial System Profile... 35
Table 5.5 Large Pages Thread Count Durations .. 36
Table 5.6 Large Pages Partial System Profile .. 36

vi

ABSTRACT

Hirzalla, Feras M. M.S., Purdue University, December 2010, Can a Scalable
System be Built to Capture Web Page Thumbnails? Major Professor: John
Springer.

 Screenshots of web pages are a novel user interface improvement that

can be used in various systems. Several software packages can be used to

generate a visual representation of a web page, but none of these packages are

designed to capture web pages in a scalable way.

 The goal of this research is to build and test a web page thumbnailer that

can simultaneously capture screenshots of multiple web pages using multiple

threads, thus maximizing the throughput of web pages that can be processed per

unit of time. From the data collected during tests, thread count usage

recommendations can be made.

To test the thumbnailer, the author used a sample set of 30,000 web

pages. Web page sizes were collected from the sample set, and 10,000 web

pages were assigned to small, medium, and large categories. The thumbnailer

was timed for different thread counts for each of the size categories. The data

showed that as more capture threads were added, the time it took to generate

visual representations of web pages decreased.

1

CHAPTER 1. INTRODUCTION

This chapter introduces the research and provides the scope, significance,

and research question that will be addressed. Assumptions, limitations, and

delimitations of this research will also be explored.

1.1. Background

People of all ages and backgrounds use the World Wide Web on a daily

basis. Many of these users come from a wide range of non-technical disciplines

where there is minimal interaction with computers. With the rise of Graphical

User Interfaces (GUI) in operating systems, applications have become more

accessible and simple to use. As the Web grew, user interfaces in browsers and

search engines evolved to be more graphical and included visual aspects that

identify content. Every Website on the internet has its own distinct look and feel;

this led some researchers to experiment in utilizing the distinct Website feel by

supplementing user interfaces with screen captures of Websites. Similar to other

systems on the Web, the process of generating screen captures that can be

converted into web page thumbnails must be scalable and reliable.

While scaling most Web technologies has been extensively researched,

generating thumbnails of web pages has been overlooked. Many software

packages can produce thumbnail screen captures of web pages, but this

software was not designed to capture thousands of thumbnails at one point in

time. Can a scalable system be built to generate web page thumbnails

concurrently? Can this system be architected in a way where the thumbnail

throughput increases as more capture threads are increased? This research

2

examines these areas and provides a methodology that can be used to test the

newly developed system.

1.2. Research Question

The main question this research addresses is:

• Can a scalable system be built to capture web page thumbnails in a

concurrent manner?

1.3. Scope & Contribution

Producing thumbnail screen captures of web pages touches several areas

of software development. It is difficult to categorize these areas due to overlaps

but they mainly consist of image processing, Web protocols such as HTTP, and

screen scraping of web pages.

The method shown outlines the steps in scaling the process of web page

thumbnail generation. Scalability is the ability of a system to process growing

amounts of data gracefully and be able to grow as required (Bondi, 2000). To

achieve scalability, a system was designed that can process web pages

concurrently and scale out by increasing the number of simultaneous capture

threads ensuring an increased thumbnail generation throughput. Throughout the

testing phases, this system was benchmarked using Windows Performance

Monitor (Perfmon) to note hardware limitations.

Rather than focusing on image processing algorithms, screen scraping, or

the actual methods of thumbnailing, the Internet Explorer rendering engine was

used to view the web pages. The research focuses on designing and providing a

proof of concept implementation of a web page thumbnail generation system that

emphasizes parallel processing, and methods of testing the system.

3

1.4. Significance

Internet World Stats (2009) estimates that there are close to 1.7 billion

users on the Internet. Online services must be able to serve thousands of

requests and grow as demand for these services increases. To cope with the

increasing demand, Website developers have set out to find innovative ways to

lay out information with the goal of simplifying and improving the online

experience for visitors. web page thumbnails are a user interface improvement

that can increase Website revisitation, ease browsing, and teach users how to

navigate their history and the hierarchy of web pages efficiently (Cockburn,

Greenberg, Jones, McKenzie, & Moyle, 2003). Many other uses of web page

thumbnails will be explored in the literature review.

 The rise of web page thumbnails as a user interface improvement along

with the sheer size of the World Wide Web necessitates that the thumbnail

generation process be able to scale to cope with the increasing demand.

Additionally, the thumbnail capture system will eliminate a hurdle for developers

that would like to incorporate web page thumbnails in their applications to

simplify interfaces and increase accessibility.

1.5. Assumptions

The assumptions for this research include:

• When matching a web page to an original thumbnail:

o Images with slight color variation due to resizing and processing will

not count as an incorrect thumbnail.

o Changes in actual content of a web page will not count as an

incorrect thumbnail.

• The thumbnailer cannot reach login protected pages.

• All web pages in the sample set are publically accessible on the Internet.

• Because the sample set includes a diverse set of public Websites, the

assumption is that they will be available and responsive.

4

1.6. Limitations

There are several limitations for this research:

• The final implementation is implemented using Microsoft technologies and

therefore the system is not cross platform.

• The network connection used in the study is not a commercial connection,

thus the system might not ever have access to the full 10 megabits the

connection is rated at. This means that the saturation point of the network

has changed between trials.

1.7. Delimitations

The research was conducted with the following delimitations:

• The study focused solely on the scaling process and concurrency.

Concurrency refers to processing multiple web pages at the same time.

Internet Explorer was used to render the web pages before generating

screen captures and converting them to thumbnails.

• The experiments were conducted with 10 trials for each size group and

thread count. This can be considered a small number of trials for a

quantitative study. This study aims to provide a proof of concept

implementation of a system that can scale the thumbnail generation

process. By using a multi-threaded architecture, thumbnails of multiple

web pages can be saved simultaneously and served to requesting end

users. Future research can be conducted on larger sample sets with more

trials to investigate whether or not the results can be extrapolated to the

entire World Wide Web.

• Although the initial sample set collection excluded pages that returned an

HTTP 404 Not Found error message, Web servers may sometimes return

this error response during thumbnail capture. In this study, the thumbnailer

was not able to detect error responses and adjust the sample size

5

accordingly. Future research can address this edge case by dynamically

adjusting the sample size based on the number of error responses.

1.8. Definitions

Benchmark: A performance test of hardware and/or software (Computer

Definitions, n.d.). The system was benchmarked during each of the

experiments to develop a system profile between thread counts.

Concurrent: Happening at the same time as something else (The American

Heritage® Dictionary of the English Language, 2003). In this context,

concurrency is processing more than one web page at the same time.

Resource Description Framework (RDF): A standard model for data

interchange on the Web. RDF extends the linking structure of the Web

and uses URIs to represent relationships between things (W3C RDF

Group, 2004). The Open Directory provides RDF files that represent the

directory’s content. In this study, the sample set was collected by parsing

these files.

Scalable: The ability of a system to process growing amounts of data gracefully

and be able to grow as required (Bondi, 2000).

Thread: A portion of a program that can run independently of and concurrently

with other portions of the program (The American Heritage® Dictionary of

the English Language, 2003). The author has chosen to develop a multi-

threaded application as a method of scaling the web page thumbnailer by

capturing each web page in a separate thread and running multiple

threads simultaneously.

1.9. Summary

This section introduced the background of the research and set limits on the

scope of the research area. Key terms were defined and specific limitations,

delimitations, and assumptions were stated.

6

CHAPTER 2. LITERATURE REVIEW

In this section, various literature will be reviewed in relation to how these

thumbnails can be beneficial in supplementing user interfaces, how they’re

generated, and how similar systems such as Web crawlers scale to millions of

web pages.

2.1. Literature Review Approach

This literature review will begin by outlining how web page thumbnails

have been used to supplement user interfaces. While these thumbnails have

been explored and used for years, the area of scaling the thumbnail generation

process remains unexplored in academic work. This review will begin by outlining

the benefits and previous work done with web page thumbnails, and then

describe different aspects of the thumbnail generation process. Some of the

methods outlined might touch on related areas such as Web crawling, image

processing, and various other World Wide Web related disciplines where

scalability issues were tackled.

2.2. Web Page Thumbnails as User Interface Aids

Researchers have used web page thumbnails in various applications such

as mobile Web browsers, history and bookmarks, search engines, revisitation,

and easy web page identification.

Cockburn, Greenberg, Jones, McKenzie, and Moyle (2003) researched

methods on improving user web page revisitation. According to Cockburn et al.

(2003), the average user revisitation rate for a study conducted was between

7

61% and 92% where the mean number of distinct URLs visited was 1227. To

make revisitation simpler, the researchers proposed that web page thumbnails

be used in browser history and bookmark lists with a system called WebView.

Several participants were surveyed on a regular Netscape browser and one that

utilized WebView; the overwhelming response to the thumbnails was that they

were only marginally useful for web pages they already recognized but that they

would be much more useful in visiting unfamiliar web pages. Czerwinski,

Dantzich, Robertson, and Hoffman (1998) had similar findings when nine

subjects with ages ranging from 18 to 50 years old were shown a set of 100 web

page snapshots during a test session, and then brought in four months later for

another test session. With web page thumbnail captures visible, the times it took

for users to recognize the pages were comparable with the values collected four

months earlier. Initially, the subjects' ability to find the pages was significantly

hampered when the thumbnails were taken away but improved as the subjects

conducted more trials.

PadPrints addressed browser history revisitation by providing a tree

diagram of a user’s path through the Web with thumbnails attached to each node

(Hightower, Ring, Helfman, Bederson, & Hollan, 1995); users were able to

navigate back to web pages in their history 61% faster than users not using

PadPrints. Additionally, Teevan, Cutrell, Fisher, Drucker, Ramos, Andre, and Hu

(2009) conducted a two-phased study where web page revisitation was explored.

Participants, ages ranging from 18-65, came from different departments at a

large software company participated. The first phase was completed by 276

participants where they were tasked with finding new pages on the Web. Of the

276 participants, 197 participants went on to complete phase two where they

were tasked with revisiting the web pages found in the first phase. Each

participant saw different representations of web pages, these include visual

snippets (text and thumbnail representation), thumbnails, and plain text snippets.

The study found that participants were able to refind certain search results the

fastest when a thumbnail was used to supplement the plain text representation of

8

a web page, followed by thumbnails only, then plain text representations.

Kaasten and Greenberg (2001) used thumbnails to improve page recognition in

an experiment where back buttons, history, and bookmark thumbnails were

integrated in a Web browser.

Chen, Ma, and Zhang (2003) showed that by generating thumbnails of

web pages and incorporating some clever HTML parsing, they could scale

regular web pages to mobile device browsers and provide a better browsing

experience on small screen devices. Thumbnails are generated on the fly when a

user requests a web page, and a layer of HTML enables links and facilitates user

interaction. The use of web page thumbnails as a user interface aid is not limited

to small screen devices, Yoo, Lea, and Kim (2008) developed a browser aimed

to improve web page browsing on large televisions. The browser addressed the

difficulty end users have in pinpointing hypertext links from 10-feet away by

attaching zoomable thumbnails to hyperlinks. Task completion time and user

convenience were measured for 10 trials, subjects were able to complete the

news search task assigned with and without thumbnails in 5.9 seconds and 12.8

seconds respectively.

 Metadata aggregation services have also benefited from thumbnail

generation. In a project at the University of Illinois at Urbana-Champaign (UIUC),

thumbnails were automatically generated for Web resources referenced in the

university’s Committee on Institutional Cooperation (CIC) metadata portal to

improve accessibility (Foulonneau, Habing, & Cole, 2006).

2.3. Generating Thumbnails

Generating web page thumbnails is not a simple process. Several

decisions must be made on thumbnail size, storage requirements, image

formats, and what parts of a page to capture. There are many visual attributes

that need to be considered when generating thumbnails. Colors, legible text,

distinctive images, and web page layouts are all visual identifiers observed by

9

users identifying a thumbnail (Kaasten, Greenberg, & Edwards, 2001). The

authors showed that 90% of 100x100 or larger thumbnails were primarily

identified by the text on the web page; color and layout based identifications were

more predominant in thumbnails of 96x96 or smaller because each web page

has its own individual look. One aspect of this unique look of web pages is the

width of the web page; while some web pages employ fluid layouts, others have

fixed widths that can range from 800 pixels to 2500 pixels. According to the
World Wide Web Consortium (n.d.), as of January 2010, 96% of Web users have

a display resolution of 1024x768 or greater. The web page capture area takes

into account current resolution statistics to maintain consistency between how

users see web pages in their browsers and what the system captures.

Another consideration is the image compression format used when

generating thumbnails. There are countless image formats from which to choose

from. These mainly fall into two categories, lossy and lossless image formats.

The difference between the two categories is that lossy image formats lose

quality after repeatedly compressing and decompressing a file, whereas in

lossless image formats, the exact original data can be reconstructed from the

compressed data (Nationmaster.com, n.d.). The World Wide Web Consortium

(n.d.) recommends Portable Network Graphics (PNG) for use in still graphics as

a replacement for GIF. PNG is a lossless image format that provides good quality

images with small file sizes (World Wide Web Consortium, 2003) proving suitable

for a scalable system that would store a large amount of web page thumbnails.

2.4. Providing Reliable Thumbnails

Reliability in the context of web page thumbnails refers to the process of

generating clear, viewable images of varying types of web pages. Generating

thumbnails on a list of predefined web pages might have been a trivial task

during the early days of the Web, but the advent of Asynchronous Javascript and

XML (AJAX) and Flash make it more difficult to achieve reliable thumbnails due

10

to delayed loading and larger file sizes. A capture delay was incorporated to

allow pages that rely on client-side scripts to render correctly (Foulonneau et al.,

2006). An HTTP HEAD request was issued before capturing a thumbnail to

retrieve the original URL in the event of any redirects (Foulonneau et al., 2006).

2.5. Scalable System Architecture

To the author's knowledge, there has been no research conducted on

scaling a system that generates web page thumbnails. Researching scalable

systems led the author to examine search engines, specifically Web crawlers due

to their ability to scale to millions of web pages at a time. Boldi, Codenotti,

Santini, and Vigna (2004) define scalability as “[t]he number of pages crawled

per second and agent should be (almost) independent of the number of agents,

in other words, we expect the throughput to grow linearly with the number of

agents” (p. 3). Most Web crawlers also have a URL queue where URLs are

prepared for crawl; caching, duplicate URL replacement, and other techniques

can be applied to the URL queue to increase performance (Broder, Najork, &

Wiener, 2003).
 To create a scalable system, concurrent programming techniques utilizing

multiple threads were employed. As mentioned earlier, the goal is to scale up the

number of web pages undergoing processing as the number of agents increases.

Most modern languages such as C# or Java, or even some of the newer

concurrent languages such as ErLang can attain this goal.
Compared to Web crawling, the thumbnail generation process has less

modules to manage. Web crawlers are actively crawling content they encounter

by following hyperlinks throughout the Internet and passing this content to other

modules with specific tasks. For example, a parsing module is used to clean up

the HTML and extract keywords from the document. However, the thumbnail

generation process is more of an on-demand process where a thumbnail is

requested, queued up, generated, and saved to the file system. These

11

thumbnails are cached for future access and served up when requested. Moving

on to the next part of the literature review, data accessibility and system

interaction are discussed.

2.6. Data Access & Web Services

 A system was created that allows services and users to request

thumbnails for specific URLs through a Web service layer (Curbera, Duftler,

Khalaf, Nagy, Mukhi, & Weerawarana, 2002). This Web service layer will interact

with an agent that serves up thumbnails from the cache or appends the web

page to the URL queue for processing. Over a period of time, the system will

build up a large cache of thumbnails for the most commonly requested web

pages. Because these web pages are all publically accessible on the internet,

Copyrights are not expected to be an issue because all web pages captured are

publically accessible. Additionally, full web page thumbnails ensure that an

organization or individual's logo and branding are intact with the content.

2.7. Updating Thumbnails

As stated above, thumbnails are stored after being retrieved once; a

challenge is keeping these cached images up-to-date. Because the system

operates on an on-demand basis, any idle processing time is used to update

existing cached versions of thumbnails. The SETI@home project adopted a

similar approach where clients only participate in the public computing when in

an idle state (Anderson, Cobb, Korpela, Lebofsky, & Werthimer, 2002). The

priority of updating web pages is determined by the URL queue, mainly by

sorting web pages in ascending order on the file last updated value.

12

2.8. Summary

This concludes the literature review. While there isn’t a large amount of

research in the area of generating web page thumbnails, there is plenty of

research on how these thumbnails were used to improve user interfaces. Most of

the research in this area had qualitative aspects to investigate how thumbnails

influenced user behavior. Combining some of the stated approaches from the

Web crawler world and focusing on scalability in the initial design process was

valuable in developing and testing this system.

13

CHAPTER 3. METHODOLOGY

This chapter will introduce the system and research framework, and then

provide methods on how the system was tested. The data collection approach

will be outlined and then the chapter will end with methods of analyzing the

collected data.

3.1. Research Framework

This research uses an experimental quantitative method to evaluate the

scalability and reliability of software written by the author to capture web page

thumbnails. The thesis answers the initial research question of whether or not a

scalable system can be built to capture web page thumbnails, and more

importantly, document how this system was tested.

The author has chosen concurrency as a means of producing a scalable

system. Although concurrency means that things are happening at the same

time, the hardware reality tells a different story. When processing instructions,

CPUs allocate time slices to different threads based on priority (MSDN, 2010b).

For single core CPUs, this means that processing isn't technically happening at

the same time. Developing a multi-threaded application to process web pages

minimizes processor idle time ensuring a higher throughput of captured

thumbnails. From this, the hypotheses are:

H0: As the number of simultaneous capture threads increases for a fixed number

of web pages, the thumbnailer’s process duration does not decrease.

Ha: As the number of simultaneous capture threads increases for a fixed number

of web pages, the thumbnailer’s process duration decreases.

14

 Several variables were measured during the experiments to test the

hypotheses and ultimately answer the research question of whether or not a

scalable system can be built to capture web page thumbnails.

The experiments include the following independent variables:

1. The number of threads allowed to run on the test system during each trial.

2. Number of web pages to capture (Section 3.4)

3. A categorization of web pages based on their size in kilobytes.

The experiment will include the following dependent variable:

1. The time it takes to generate thumbnails of web pages in the sample set

for the chosen size category.

The time it takes the thumbnailer to process the sample set of web pages

heavily depends on the hardware capacity. These experiments were conducted

on a desktop computer with the following specifications:

1. Intel Core 2 Quad CPU at 2.33GHZ

2. 8.00GB of RAM

3. 500GB 7200RPM Hard drive

4. Intel integrated video

5. Windows 7 Home Premium - 64 bit

6. Up to 10 Megabit Cable

3.2. Sample Set & Data Collection

 The list of web pages used to test the system was obtained from the Open

Directory Project, which publishes their data using the Resource Description

Framework (RDF). The directory is the largest, most comprehensive human-

edited directory of the Web (Netscape, 2010). More importantly, web pages in

the directory have a diverse set of technologies that can affect the reliability of

the thumbnailer such as Flash, Asynchronous Javascript & XML, and differing

amounts of content.

15

To test the software's scalability, a subset of the directory was analyzed

and 10,000 web pages of small, medium, and large sizes were extracted

producing a full sample set of 30,000 web pages. The specific limits of each size

were determined by analyzing the dataset. To minimize variation in the results,

10 trials were conducted where the thumbnailer was timed until completion for

each size category and thread count in the sample set.

The experiments began by processing the sample set using 1 thread. The

thread counts were then increased until hardware limits were observed based on

the system profile. The experiments began with incrementing thread counts by

10 for each execution, then increasing these thread increments by 25-50 threads

in the higher ranges. The duration was plotted against the number of threads and

trend lines were fitted by examining the square of the correlation coefficient (r2)

value closest to one to achieve the highest linear reliability (Clemson, n.d.). The

average of the 10 trials was used for each size group and thread count.

To monitor the hardware capacity, the system was profiled as the

thumbnailer processed the list of web pages. Windows Performance Monitor

(Perfmon) was used to profile the system. The following system variables were

tracked:

• Memory usage

• CPU Usage

• Disk access

• Network Utilization

Based on the system variables above, various Perfmon counters were

chosen to collect data on the system. The appendix contains a full list of counters

tracked with their respective definitions, the following counters were of most

interest to this research:

1. Avg. Disk sec/read: Indicates the average time it takes to read data from

the disk in seconds. The disk read response time is a critical

measurement in determining whether or not disk slowdowns resulted in a

16

slower thumbnailer. According to Microsoft, the average value should be

below 10 ms with spikes not being higher than 50 ms.

2. Avg. Disk sec/write: Indicates the average time it takes to write data from

the disk in seconds. Similar to Avg. Disk sec/read, this counter helps

determine if a slow disk response decreases the thumbnailer’s efficiency.

The average value should be below 10 ms and spikes should be no higher

than 50 ms (Microsoft TechNet, 2005a).

3. Memory pages/sec: Indicates the rate at which pages are read from or

written to disk. Microsoft TechNet (2005b) states that this value should be

below 1,000 at all times.

4. Memory Pages Input/sec: The rate at which pages are read from the disk

to resolve hard page faults.

5. Network Utilization in Megabits: Measured by collecting the total amount

of bytes transferred over the network adapter and converting it to

megabits. This indicates whether or not the network connection is the

source of a bottleneck for the thumbnailer.

As for thumbnailer reliability, this was a manual process. The reliability of

an individual thumbnail is binary; that is, the system either captures the correct

web page thumbnail or it doesn't. To determine this, the author periodically

checked the thumbnails captured and identified any issues throughout the trials.

The original web page and the thumbnail had to be identical for it to be counted

as a correct thumbnail.

3.3. Technology Overview

This section will give an overview of the methods used in different parts of

the research to collect sample size data, system performance data, and will

provide an overview of the thumbnailer’s architecture.

17

3.3.1. Sample Set Size Collection

The Open Directory Project was used to gather a sample set of web

pages. Approximately 4.3 million web pages were imported into Microsoft SQL

Server by parsing the downloadable RDF files (Netscape, 2010). A random

subset of 30,000 web pages were extracted by assigning a unique identifier to

each record using Microsoft SQL Server’s newid() function, then sorting the

records on the unique identifier in ascending order by size (MSDN, 2010a). The

size collection had to include a web page’s HTML and any associated objects

required to render the page. This includes Javascript, CSS, and any images

displayed on the page.

Several approaches were considered for the size collection. The first

attempted strategy was to issue an HTTP HEAD command to the Web servers

and examine the HTTP Content-Length header of the page. HTTP HEAD is an

HTTP verb identical to HTTP GET, except that the server does not return a

message body as part of the response. The HTTP Content-Length header

provides the size of the requested entity’s body (W3C, 1999). To examine the

size of other elements on the page, the system would have to download the

document’s HTML, parse it, and issue HTTP HEAD commands to any linked

Javascript, CSS, and image files on the page. However, this approach is

problematic and often produced invalid results because HTTP headers can be

manually assigned by Web servers and dynamic languages such as PHP.

Instead of using the HTTP Content-Length header field, a custom script

was written to visit each web page and download the HTML content and any

associated objects to the local file system. Wget, a tool that ships with the GNU

operating system, was used to download the content. Wget is a package

designed to retrieve files using HTTP, HTTPS, and FTP (Free Software

Foundation, 2003). Wget provides various benefits for the web page downloading

process. Firstly, it has the ability to save a single page, or a full Website.

Secondly, versions of Wget exist for Windows and Unix environments. Last but

18

not least, Wget supports background operation and is available freely under the

GNU public license.

After downloading the pages and excluding pages that returned an HTTP

404 error response, the script computed the size of each downloaded site on the

file system and updated the respective record in SQL Server with the calculated

file size. Grouping the sites into categories was achieved by sorting the list of

sites in ascending order and using 10,000 sites for each category.

3.3.2. System Profiling

Windows Performance Monitor (Perfmon), a tool that can be used to log

performance data, was used to profile the system during experiments (Microsoft,

2010). In addition to having a command line interface, Perfmon includes a GUI

that allows users to control the collection process. Perfmon was chosen because

it’s freely available, allows command line automation, is officially maintained by

Microsoft, and produces data in a standard CSV format for analysis.

3.3.3. Thumbnailer Flow

The thumbnailer was implemented as a server application in Microsoft

C#.NET. The system maintains a queue of web pages that are each individually

processed. The process executes as follows:

1. The system spawns the specified number of worker threads and waits for

new jobs.

2. A web page queue is populated, then the queue is locked and the first

web page address is passed to one of the free worker threads for

processing.

3. The thread spawns an external process that handles rendering the web

page in a hidden Web browser and capturing the web page coordinates to

a bitmap while including a one second delay to allow Flash, Java, and

Javascript content to load.

19

4. The thread crops and resizes the bitmap to the desired thumbnail width of

220px while maintaining the vertical aspect ratio.

5. The thread saves the resulting thumbnail to the file system for later

caching and future access.

6. The thread will mark itself as free, and the process begins again with step

2.

Based on the author's experience, a linear single threaded thumbnailer

takes a minimum of a few seconds to process a single web page. The bulk of the

time is wasted on loading the web page and providing an adequate delay to

ensure that the full page loads. Because web page loading time cannot be

controlled, the goal was to utilize multiple application threads to process more

than one web page at a time. Processing a page includes loading it in a hidden

browser, capturing and processing the thumbnail, and writing the file to disk. This

satisfies the scalability requirement by ensuring that more web pages can be

processed as additional hardware capacity is added.

3.4. Data Analysis

Scalability is presented in terms of the time it took to generate captures of

the 10,000 web pages in the sample set for each size category. The system

usage profiled was used to explain any anomalies in the data. The main goal of

the application was the ability to increase web page throughput as the number of

threads is increased, this means that the most important metric is the duration it

takes for the thumbnails to be generated for the sample sets for a specific

number of threads. In addition to the individual trial results, the processing

duration is presented for each size category and thread count.

3.5. Summary

This section outlined what data is important in testing the system, how to

collect this data, the various variables, and the operating environment where the

20

system was tested. Scalability and reliability are naturally ambiguous terms; the

hypotheses were defined to disambiguate the term scalability. The software's

architecture was outlined and the testing methodology was presented. The next

chapter will examine the experiment results.

21

CHAPTER 4. RESULTS

This chapter will discuss the timed results of the web page thumbnailer

built by the author. The data presented compares the time it took to generate

thumbnails of 10000 web pages with a varying number of capture threads and

file sizes. The system was also benchmarked for CPU, memory, disk, and

network usage throughout the trials.

The experiments were conducted using the system described in section

3.1. After the experiment completed, the profiling data was logged along with the

thread count and size group. To analyze the benchmark data, the profiler’s CSV

logs were imported into Microsoft Excel for easier analysis.

The data is not perfect due to the uncontrollable nature of the Web. web

pages have different response times that vary between requests. A residential

cable internet connection was used, thus the speeds can heavily vary throughout

the day. Additionally, the experiments were not run in a full production

environment, so the system may have had processes running in the background

that were unrelated to this research. To minimize these factors, the trials were

conducted 10-12 times for each thread count and size category.

4.1. Sample Set Size Collection

Table 4.1 shows the web page size categorization collected from the set

of 30,000 web pages collected from the Open Directory Project.

22

Table 4.1 Size Category Ranges

Size Category Size Range
(Kilobytes)

Mean Median

Small 0.32 KB – 72 KB 31 KB 30 KB
Medium 72 KB - 272 KB 148 KB 137 KB
Large 272 KB – 39000 KB 765 KB 493 KB

Figures 4.1 and 4.2 are examples of small web pages. Figure 4.1 shows

that the page only includes a few lines of text which explains the extremely small

file size. Similarly, the second example in figure 4.2 shows a web page with one

image and a limited amount of text.

Figure 4.1 www.sdsife.org – 0.34 KB

23

Figure 4.2 http://www.bornewasser-hacker.de/ – 33.8 KB

Examples of medium sized web pages are shown in figures 4.3 and 4.4.

Figure 4.3 http://www.uberbeergeek.com/bih/ – 99.7 KB

24

Figure 4.4 http://airbrush-forum.net/ – 167 KB

 The next two figures illustrate examples of large web pages. What’s not

visible in Figure 4.5 is that many of the graphics on the page were animated GIFs

which may have contributed to the large file size. In addition to the main content,

the page in Figure 4.6 consists of an image scroller with approximately 15

images that load when the page is requested.

25

Figure 4.5 http://www.pinetree-golf-club.jp/ – 20.3 MB

Figure 4.6 www.pilatesbangkok.com – 2.05 MB

26

4.2. Experiment Results

After completing the sample set analysis, a simple interface was created

on the thumbnailer that allowed a user to input the number of web pages,

threads, and select a size category. When all worker threads finished processing

the queue of pages, the experiment data was logged. This data consisted of

debugging messages and experiment variables such as duration, number of web

pages, and the selected size category. The following figure shows a screenshot

of the interface.

Figure 4.7 Thumbnailer Screenshot

27

 The experiment was also conducted with a single thread to establish a

baseline for the experiments. A single thread on large web pages can take a long

amount of time to capture 10,000 pages. Instead of capturing the full 10,000

pages, the thumbnailer ran until it captured 6511 pages and the duration was

logged. Table 4.2 shows the duration it took to capture 10,000 small and medium

web pages, and 6511 large web pages with a single thread. Tables 4.3 and 4.4

show the durations in seconds it took to process the 10,000 web pages for each

thread count and size group.

Table 4.2 Duration Baseline – Single Thread

 Small Medium Large

Number of Pages 10,000 10,000 6511

Duration (seconds) 35,928 50,019 56,026

Avg. Seconds/Page 3.5928 5.0019 8.606

Table 4.3 Duration Data: 10-50 Threads
 Trial 10 Threads 20 Threads 30 Threads 50 Threads

Sm. Med. La. Sm. Med. La. Sm. Med. La. Sm. Med. La.

1 4612.82 5960.86 11892.68 3420.60 5279.99 10463.02 3222.91 4995.71 8352.668 2866.93 4249.62 5513.35

2 4568.00 5761.86 11667.14 3932.50 5331.87 10314.57 3318.13 5032.60 8168.529 2903.13 4294.30 5520.86

3 4637.71 5971.74 12207.09 3821.61 4878.51 10378.94 3340.71 5105.40 8187.294 2896.99 4344.59 5515.26

4 4555.32 5677.30 12103.95 3470.06 5441.98 10153.25 3340.58 5101.27 8034.034 2985.71 4250.74 5512.79

5 4587.15 5755.81 12241.89 3573.02 5284.90 9962.55 3403.97 5062.52 7992.855 2872.73 4301.78 5601.51

6 4583.00 5777.21 11977.73 3666.34 5111.67 10068.87 3777.51 4989.65 8182.065 2934.22 4207.91 5589.91

7 4555.32 5804.72 12040.35 3544.11 5255.32 10272.85 3390.45 5046.77 8173.574 2933.56 4155.09 5593.13

8 4587.15 5843.18 11875.29 3723.24 4955.05 10226.14 3325.07 5208.73 8058.742 2904.74 4204.67 5545.58

9 4583.00 5827.68 11820.03 3645.75 4810.39 9898.62 3202.04 5226.06 8149.128 2946.84 4299.05 5548.98

10 4500.67 5855.83 11560.58 3637.04 4912.69 9917.35 3393.34 4809.58 7988.226 2834.62 4255.05 5522.92

Avg. 4577.01 5823.62 11938.67 3643.43 5126.24 10165.62 3371.47 5057.83 8128.71 2907.95 4256.28 5546.43

28

Table 4.4 Duration Data: 75-175 Threads
Trial 75 Threads 125 Threads 150 Threads 175 Threads

Sm. Med. La. Sm. Med. La. Sm. Med. La. Sm. Med. La.

1 2410.92 3318.07 3826.76 1941.66 2185.28 -- 1869.10 2092.84 3312.52 -- -- 3219.28

2 2410.16 3264.78 3822.24 2064.93 2243.90 -- 1836.04 2029.54 3373.91 -- -- 3244.40

3 2441.98 3087.14 4056.65 2077.71 2106.93 -- 1856.15 2045.20 3164.50 -- -- 3301.82

4 2433.70 3079.59 3836.58 1936.03 2130.59 -- 1841.27 2102.67 3414.76 -- -- 3213.39

5 2472.65 3161.10 4002.97 1968.79 2256.66 -- 1829.02 2130.05 3318.65 -- -- 3232.05

6 2470.99 3238.67 3863.05 2092.78 2283.04 -- 1864.53 2089.83 3326.03 -- -- 3243.32

7 2422.07 3127.39 3943.23 2090.78 2209.83 -- 1839.23 2038.59 3221.15 -- -- 3295.19

8 2431.88 3286.71 3964.07 2041.89 2157.35 -- 1826.80 1983.68 3211.05 -- -- 3268.84

9 2411.65 3255.63 4087.72 1988.53 2173.25 -- 1861.89 2003.58 3317.25 -- -- 3243.88

10 2472.41 3340.20 3917.52 1960.29 2159.64 -- 1845.35 2108.73 3331.32 -- -- 3359.98

Avg. 2437.84 3214.66 3932.08 2016.34 2189.98 -- 1846.94 2062.47 3299.11 -- -- 3261.94

29

30

In figure 4.8, the duration was plotted against the thread count for small,

medium, and large pages. Refer to section 3.2 for details on how trend lines were

fitted.

Figure 4.8 Duration vs. Thread Counts Chart

4.3. System Profile

As stated in the methodology chapter, Perfmon was used to benchmark

the system. The appendix shows a full system profile for all data executions with

accompanying field definitions.

31

4.4. Summary

This chapter presented the various results for each size group. Due to the

complex nature of the Web, the durations varied slightly between trials. The next

section will analyze these results.

32

CHAPTER 5. DATA ANALYSIS AND CONCLUSION

This chapter will examine the results presented in chapter 4 and provide

insights based on the data collected. The system profile data will be discussed in

relation to the duration data collected. Finally, thread count recommendations will

be made and future research angles on this topic will be explored.

5.1. Findings

For small web pages, the thumbnailer’s efficiency decreased as the thread

count increased past 120. To examine the thumbnailer’s efficiency, the slope was

calculated between two adjacent points on the chart to observe whether or not an

improvement occurs as the number of threads was increased. In this context, the

thumbnailer’s efficiency refers to the duration it took to process the web pages in

the sample set; a higher efficiency indicates a lower number of seconds elapsed

in processing the 10,000 web pages. Because the chart slopes downwards, a

negative slope that approaches zero indicates that the thumbnailer was more

efficient at processing the sample set, i.e. the 10,000 pages were processed in a

smaller number of seconds. A zero slope indicates that an increased thread

count does not provide any visible improvement in the thumbnailer’s efficiency.

Table 5.1 shows the average duration for each thread count in the small size

category.

33

Table 5.1 Small Pages Thread Count Durations

Thread Count Small Avg. Duration
(seconds)

10 4577.01

20 3643.43

30 3371.47

50 2907.95

75 2437.84

125 2016.34

150 1846.94

To explain why the thumbnailer’s efficiency decreased, the system profile

can be examined. Table 5.2 below shows a partial system profile for small pages

using 1, 125 and 150 threads.

Table 5.2 Small Pages Partial System Profile

Thread Count Memory Pages

Input/sec

Memory

Pages/sec

Avg. Disk

sec/Read

Avg. Disk

sec/Write

Avg. Network

Utilization (%

10 Mbit)

1 9 12 0.001 0.001 3.21 %

125 31 60 0.015 0.001 25.43 %

150 111 149 0.017 0.001 23.48 %

 Based on the performance counters outlined in the research methodology,

the profile shows that running the thumbnailer with 125 threads increased

memory paging to disk. Paging occurs to resolve hard page faults which are

caused by a process referring to a page that isn’t currently in memory and must

be retrieved from disk. As a result of paging, the disk read response time

increased above the 15ms threshold recommended by Microsoft TechNet

(2010b) when 125 or 150 threads were used. A 15ms read response time

34

indicates that the disk is keeping up with demands with very little overhead to

process more page faults.

Medium web pages exhibited similar results to small pages. The small and

medium size categories had size differences of less than 200 KB which is not a

major difference. Table 5.3 shows the average duration for each thread count in

the medium size category.

Table 5.3 Medium Pages Thread Count Durations

Thread Count Medium Avg. Duration
(seconds)

10 5823.62

20 5126.24

30 5057.83

50 4256.28

75 3215.93

125 2190.65

150 2062.47

 Table 5.4 shows the system profile for medium pages. The profile for 20

threads was also included to explain the abnormally small difference between 20

and 30 threads.

35

Table 5.4 Medium Pages Partial System Profile

Thread

Count

Memory

Pages

Input/sec

Memory

Pages/sec

Avg. Disk

sec/Read

Max Disk

sec/Read

Avg. Disk

sec/Write

Avg.

Network

Utilization

(% 10 Mbit)

1 7 7 0.001 0.339 0.001 3.61 %

20 9 11 0.003 0.522 0.001 26.47 %

30 144 145 0.004 2.547 0.001 25.35 %

125 38 93 0.007 0.328 0.001 28.23 %

150 129 129 0.009 0.566 0.001 25.14 %

 The memory usage shows that page faults were high in the 125 and 150

threads. Additionally, 30 threads exhibited a very high paging rate that which

explains the small improvement from when increasing the thread count from 20

to 30. Unfortunately, the non-production environment makes it difficult to

diagnose the exact cause of the paging, but it was likely the result of an external

Windows process that spawned throughout the 30 thread execution and

consumed part of the system’s resources. Although the average read response

time remained low, the 30 thread execution experienced a much higher

maximum disk read latency. This suggests that the disk paging occurred in small

bursts where the average response time was over 2 seconds rather than a

consistently high response time.

 The large size category tremendously benefited from an increased thread

count, this is demonstrated by the sharp curve decline. For example, it took over

12,000 seconds to process the 10,000 pages using 10 threads, and a little over

3,000 seconds when using 150 threads. Adding more threads after the 150

thread mark did not lead to a further drop in the processing duration. Table 5.5

shows the average duration for each thread count in the large size category.

36

Table 5.5 Large Pages Thread Count Durations

Thread Count Large Avg. Duration

(seconds)

10 11938.67

20 10165.62

30 8128.71

50 5546.43

75 3932.08

150 3299.11

175 3261.94

Table 5.6 shows the system profile for large web pages. It appears that

large web pages consumed the most network bandwidth. Memory paging

increased when 150 threads or greater were used. This led to an increase in the

disk response time past the 15ms threshold which led to a very slow response

time. Additionally, small and medium pages showed a higher memory paging

rate than large pages. This may have been by a larger amount of web pages that

responded with an HTTP 404 error in the small and medium size categories.

Although these pages were initially removed in the initial size collection, the

experiments occurred over a period of 5 weeks which may have led to a larger

number of 404s throughout the study.

Table 5.6 Large Pages Partial System Profile

Thread Count Memory

Pages

Input/sec

Memory

Pages/sec

Avg. Disk

sec/Read

Avg. Disk

sec/Write

Avg. Network

Utilization (%

10 Mbit)

1 5 6 0.001 0.001 4.34 %

150 66 67 0.012 0.004 32.80 %

175 162 178 0.024 0.006 38.29 %

37

5.2. Experimental Evaluation

H0: As the number of simultaneous capture threads increases for a fixed number

of web pages, the thumbnailer’s process duration does not decrease.

Ha: As the number of simultaneous capture threads increases for a fixed number

of web pages, the thumbnailer’s process duration decreases.

To test the alternative hypothesis, it must be shown that the thumbnailer

processed the sample set of web pages in a smaller duration as the capture

threads increased for each of the size categories. This was proven to be true in

Figure 4.8, as the number of threads increased, the duration of processing the

set of 10,000 web pages decreased. The slope calculations in section 5.1 show

that it decreases as the thread count is increased. A zero slope indicates that an

increase in thread count provides no visible improvement to the duration.

The second part in proving the alternative hypothesis is to examine the

system profile and test that the thumbnailer cannot process more web pages

when a certain hardware limit is approached. As shown in Tables 5.2, 5.4, and

5.6, the highest thread count experienced hardware issues that may have

contributed to the limit approached. Small, medium, and large sites at different

thread thresholds suffered from excessive memory paging to disk creating a disk

bottleneck.

5.3. Recommendations

For all size groups, the main constraint was the disk response time when

increasing thread counts. This may have been caused by the thumbnailer saving

numerous screenshots to disk while other web pages were being downloaded.

To achieve higher thread counts, the disk problems would have to be addressed

by either optimizing the thumbnailer or adding multiple disks that can process the

data. Large pages consumed the most network bandwidth, which means that

they would require a faster connection to increase throughput. Although CPU

usage was not an issue, small and medium pages used slightly more CPU than

38

large web pages. This can be attributed to more thread switching caused by

spawning additional threads in a shorter period of time as sites were captured

(Narten, 1997). Specific thread count recommendations can be provided, but will

most likely be different if any part of the test system changes. On the system

used in this research, the thumbnailer showed marginal improvements in the

125-175 thread range for all size groups.

5.4. Conclusion & Future Research

Improving usability on the Web can benefit countless people in the world.

Thumbnails have been shown to improve interfaces and increase user

interaction. In this research, a scalable thumbnailer was built and a testing

methodology was presented. The testing methodology can be re-used in any

size-sensitive research. General recommendations were provided on the optimal

thread counts for different web page sizes.

 Future research can tackle other issues relating to web page thumbnails.

Updating the existing thumbnails still remains a challenge; research can be

conducted in checking the update frequency of web pages. A more granular size

categorization might produce better thread count recommendations that may be

more representative of web pages on the World Wide Web. The current

thumbnailer can be improved from a performance standpoint by deferring disk

access and optimizing the code. Finally, implementing a DNS pre-fetching

module would speed up the process of loading web pages and improve the

speed at which thumbnails can be generated.

5.5. Summary

This chapter analyzed the data for each size category and presented

thread count recommendations. The conclusions were given and future angles

on the research were presented.

BIBLIOGRAPHY

39

BIBLIOGRAPHY

Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., & Werthimer, D. (2002).
SETI@home: An Experiment in Public-Resource Computing.
Communications of the ACM, 45(11), 56-61.

Boldi, P., Codenotti, B., Santini, M., & Vigna, S. (2004). UbiCrawler: a scalable

fully distributed Web crawler. Software: Practice and Experience, 34(8).

Bondi, A. B. (2000). Characteristics of Scalability and Their Impact on

Performance. Proceedings of the 2nd international workshop on Software
and performance.

Broder, A. Z., Najork, M., & Wiener, J. L. (2003). Efficient URL caching for world

wide Web crawling. Proceedings of the twelfth international conference on
World Wide Web - WWW '03, 679. New York, New York, USA: ACM
Press.

Chen, Y., Ma, W., & Zhang, H. (2003). Detecting web page structure for adaptive

viewing on small form factor devices. WWW2003. Retrieved from
http://www2003.org/cdrom/papers/refereed/p297/p297-chen.htm.

Clemson University. (n.d.). Linear Regression and Excel. Physics Laboratory.

from http://phoenix.phys.clemson.edu/tutorials/excel/regression.html.

Cockburn, A., Greenberg, S., Jones, S., McKenzie, B., & Moyle, M. (2003).

Improving Web Page Revisitation: Analysis, Design, and Evaluation.
Growth (Lakeland), 4, 6-7, 11-16.

benchmark. (n.d.). In Computer Definitions. Retrieved May 10th, 2010,
from http://www.yourdictionary.com/computer/benchmark

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., et al.

(2002). Unraveling the Web Services Web. IEEE Internet Computing,
(April).

40

Czerwinski, M. P., Dantzich, M. V., Robertson, G., Hoffman, H. (1998). The
Contribution of Thumbnail Image, Mouse-over Text and Spatial Location
Memory to Web Page Retrieval in 3D. Microsoft Research.

reliable. (n.d.). Dictionary.com Unabridged. Retrieved February 25, 2010, from

Dictionary.com Website: http://dictionary.reference.com/browse/reliable

Foulonneau, M., Habing, T., & Cole, T. (2006). Automated Capture of

Thumbnails and Thumbshots for Use by Metadata Aggregation Services.
D-Lib Magazine. Urbana-Champaign. Retrieved from
http://www.dlib.org/dlib/january06/foulonneau/01foulonneau.html.

Free Software Foundation. (2003). Introduction to GNU Wget. Retrieved from
http://www.gnu.org/software/wget/.

Hightower, R. R., Ring, L. T., Helfman, J. I., Bederson, B. B., & Hollan, J. D.

(1998). Graphical Multiscale Web Histories: A Study of PadPrints.
Cognitive Science.

Internet World Stats (September 2009). Internet Usage Statistics Retrieved

March 10, 2010,
from http://www.internetworldstats.com/stats.htm

Kaasten, S., Greenberg, S., & Edwards, C. (2001). How People Recognize

Previously Seen web pages from Titles, URLs and Thumbnails.
Proceedings of Human Computer Interaction 2002.

Kaasten, S., & Greenberg, S. (2001). Integrating back, history and bookmarks in

Web browsers. CHI '01 extended abstracts on Human factors in
computing systems - CHI '01, 379. New York, New York, USA

Microsoft. (2010). Windows Performance Monitor. Technet. Retrieved from
 http://technet.microsoft.com/en-us/library/cc749249.aspx.

MSDN. (2004). Chapter 15 Measuring .NET Application Performance.

Prescriptive Architecture. Retrieved from http://msdn.microsoft.com/en-
us/library/ms998579.aspx.

MSDN. (n.d.). DA0505: Average Private Bytes allocated for the Process being

profiled. Retrieved from http://msdn.microsoft.com/en-
us/library/ee815699.aspx.

MSDN. (2010a). NEWID. Transact-SQL Reference. Retrieved from

http://msdn.microsoft.com/en-us/library/aa276822(SQL.80).aspx

41

MSDN. (2010b). Scheduling Priorities. Retrieved from
http://msdn.microsoft.com/en-us/library/ms685100(VS.85).aspx.

Narten, T. (1997). Mechanics of Thread Switching. Nachos Threads. Retrieved

from http://www.cs.duke.edu/~narten/110/nachos/main/node13.html.

Nationmaster.com. (n.d.). Encyclopedia > Lossless data compression.

Retrieved from http://www.statemaster.com/encyclopedia/Lossless-data-
compression.

Netscape. (2010). ODP - Open Directory Project. Retrieved from
http://www.dmoz.org/.

W3C RDF Group. (2004). RDF. Retrieved from http://www.w3.org/RDF/.

concurrent. (n.d.) The American Heritage® Dictionary of the English Language,

Fourth Edition. (2003). Retrieved April 9 2010
from http://www.thefreedictionary.com/concurrent

Microsoft Technet. (2010a). Monitoring Multiple Processor Computers. Microsoft
TechNet Library. Retrieved from:
 http://technet.microsoft.com/en-us/library/cc722478.aspx.

Microsoft Technet. (2010b). Performance data from Average Disk sec/Read

counter of the PhysicalDisk performance object. Microsoft Technet
Library. Retrieved from http://technet.microsoft.com/en-
us/library/aa996220(EXCHG.80).aspx.

Microsoft Technet. (2005a). Ruling Out Disk-Bound Problems. Microsoft TechNet
Library. Retrieved from:
http://technet.microsoft.com/en-us/library/aa997558(EXCHG.65).aspx.

Microsoft Technet. (2005b). Ruling Out Memory-Bound Problems. Microsoft

TechNet Library. Retrieved from:
http://technet.microsoft.com/en-us/library/aa998384(EXCHG.65).aspx.

thread. (n.d.) The American Heritage® Dictionary of the English Language,

Fourth Edition. (2003). Retrieved May 11 2010
from http://www.thefreedictionary.com/thread

Teevan, J., Cutrell, E., Fisher, D., Drucker, S. M., Ramos, G., Hu, C., et al.

(2009). Visual Snippets: Summarizing web pages for Search and
Revisitation. Proceedings of the 27th international conference on Human
factors in computing systems.

42

World Wide Web Consortium (n.d.). Browser Statistics. Retrieved from
http://www.w3schools.com/browsers/browsers_stats.asp.

World Wide Web Consortium, (W3C). (1999). Header Field Definitions. Hypertext

Transfer Protocol -- HTTP/1.1. Retrieved from
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

World Wide Web Consortium (2003). Portable Network Graphics (PNG)

Specification (Second Edition). Retrieved from
http://www.w3.org/TR/PNG/.

Yoo, B., Lea, J., & Kim, Y. (2008). The Seamless Browser: Enhancing the Speed
of Web Browsing by Zooming and Preview Thumbnails. Proceeding of the
17th international conference on World Wide Web - WWW '08, 1019. New
York, New York, USA: ACM Press.

APPENDIX

Appendix Table: Summarized System Profile Data
Size Thread

Count
Disk sec/Read Disk sec/Write Memory

Pages/sec
Memory
Pages

Input/sec

Private Bytes (Memory Usage) Processor
Queue
Length

% Total Processor
Time (Thumbnailer

process)

Network Utilization
(bytes)

 Avg. Max. Avg. Max. Avg. Max. Avg. Min. Avg. Max Min./Avg./Max. Avg. Max. Avg. Max.

Sm
al

l

1 0.001 0.526 0.001 0.065 12 14240 9 16,228,352 143,672,185 291,876,864 0/0/4 1.75 38.5 42,106 793277

10 0.002 1.842 0.001 0.098 13 4624 13 37,068,800 249,291,686 416,649,216 0/0/15 15.75 49.5 274953 708614

20 0.008 0.507 0.001 0.072 50 5138 46 23,945,216 256,515,674 406,814,720 0/1/16 25.25 72.75 336,237 708,500

30 0.004 0.717 0.001 0.074 56 11579 46 37,052,416 362,701,691 471,797,760 0/2/21 22.5 66.25 293,681 583,920

50 0.003 1.277 0.001 0.093 27 4550 23 37,068,800 465,134,902 577,126,400 0/1/23 26.75 66 335,510 627,941

75 0.018 0.562 0.002 0.213 191 19440 191 37,064,704 584,137,784 677,998,592 0/3/73 29.5 59 351,662 642,228

125 0.015 0.239 0.001 0.019 60 1518 31 37,064,704 827,205,106 931,864,576 0/3/23 33.5 65.25 333,354 540,329

150 0.017 0.455 0.001 0.096 149 6364 111 37,060,608 932,964,116 1,039,273,984 0/2/24 27.5 66.75 307,804 522,897

M
ed

iu
m

1 0.001 0.339 0.001 0.116 7 4966 7 16,220,160 152,283,277 233,365,504 0/0/5 2.25 32.25 47,362 932,926

10 0.002 1.291 0.001 0.059 26 9121 26 37,072,896 294,269,837 549,629,952 0/1/18 16.75 51.75 316,429 817,192

20 0.003 0.522 0.001 0.071 11 4125 9 37,048,320 339,412,776 600,248,320 0/1/15 20.5 65.75 346,970 644,678

30 0.004 2.547 0.001 0.103 145 22206 144 37,052,416 397,514,188 507,994,112 0/1/15 20.75 58.5 332,316 659,895

50 0.007 0.43 0.001 0.121 104 22410 77 37,068,800 514,213,244 620,486,656 0/2/26 24.75 64 395,154 739,406

75 0.01 0.522 0.001 0.077 26 5559 26 37,064,704 629,864,484 715,038,720 0/0/12 18.25 57.75 339,667 644,682

125 0.007 0.328 0.001 0.089 93 8772 38 37,089,280 874,949,179 964,198,400 0/2/35 27.5 61.25 370,054 611,355

150 0.009 0.566 0.001 0.119 129 20253 129 37,081,088 980,178,937 1,050,140,672 0/1/145 20.75 88.5 329,536 581,174

La
rg

e

1 0.001 0.495 0.001 0.086 6 11387 5 37,060,124 289,201,155 556,951,102 0/0/4 3.14 49.65 56,940 894,441

10 0.003 1.036 0.001 0.067 76 18726 76 37,060,608 336,201,265 667,234,304 0/0/19 13.5 55 451,918 937,790

20 0.002 1.316 0.001 0.148 97 21868 97 37,068,800 388,529,655 580,481,024 0/0/13 10 36.25 447,538 853,519

30 0.002 0.78 0.001 0.129 8 3576 8 37,085,184 459,200,284 723,447,808 0/1/17 17.25 61.25 477,341 869,073

50 0.01 1.997 0.001 0.063 96 21175 95 37,117,952 558,826,926 756,109,312 0/1/19 19.75 59.75 485,556 917,988

29

44

75 0.01 1.89 0.001 0.056 18 4330 17 37,068,800 687,346,633 807,063,552 0/2/24 22.5 66.75 488,265 808,648

125 0.009 0.241 0.001 0.038 10 3358 10 37,081,088 932,572,628 1,055,809,536 0/1/41 17 70.5 432,184 693,967

150 0.012 0.547 0.004 0.099 67 20332 66 37,072,896 1,021,357,689 1,105,801,216 0/1/147 23.25 78.5 429,859 701,404

175 0.024 1.231 0.006 0.114 178 23159 162 37,192,842 1,182,331,791 1,236,755,228 0/2/162 26 93.75 501,913 802,755

45

46

Appendix Definitions

1. Avg. Disk sec/read: Indicates the average time it takes to read data from

the disk in seconds. According to Microsoft, the average value should be

below 10 ms with spikes not being higher than 50 ms.

2. Avg. Disk sec/write: Indicates the average time it takes to write data from

the disk in seconds. The average value should be below 10 ms and spikes

should be no higher than 50 ms (Microsoft TechNet, 2005a).

3. Memory pages/sec: Indicates the rate at which pages are read from or

written to disk. Microsoft TechNet (2005b) states that this value should be

below 1,000 at all times.

4. Memory Pages Input/sec: The rate at which pages are read from the disk

to resolve hard page faults.

5. Private Bytes: The maximum amount of virtual memory that the

thumbnailer process has currently allocated in bytes. Private bytes are

virtual memory locations that can only be accessed by the threads running

inside the allocating process (MSDN, n.d.).

6. Processor Queue Length (PQL): The number of threads in the processor

queue. The significance of the PQL is that if there are more tasks to run

than the processors can handle, threads queue up. A sustained queue of

more than two threads indicates a processor bottleneck (MSDN, 2004).

7. % Processor Time: The sum of processor time on each processor for all

threads of the thumbnailer process (Microsoft TechNet, 2010a). This value

is divided by the number of processors to produce an average.

8. Network Utilization in Megabits: Measured by collecting the total amount

of bytes transferred over the network adapter and converting it to

megabits.

	Purdue University
	Purdue e-Pubs
	9-4-2010

	Can a Scalable System be Built to Capture Web Page Thumbnails?
	Feras Hirzalla

	ETDForm9
	GSForm20PrintedToPdfFixedMajor
	HirzallaThesisAfterChanges
	CHAPTER 1. INTRODUCTION
	1.1. Background
	1.2. Research Question
	1.3. Scope & Contribution
	1.4. Significance
	1.5. Assumptions
	1.6. Limitations
	1.7. Delimitations
	1.8. Definitions
	1.9. Summary

	CHAPTER 2. LITERATURE REVIEW
	2.1. Literature Review Approach
	2.2. Web Page Thumbnails as User Interface Aids
	2.3. Generating Thumbnails
	2.4. Providing Reliable Thumbnails
	2.5. Scalable System Architecture
	2.6. Data Access & Web Services
	2.7. Updating Thumbnails
	2.8. Summary

	CHAPTER 3. METHODOLOGY
	3.1. Research Framework
	3.2. Sample Set & Data Collection
	3.3. Technology Overview
	3.3.1. Sample Set Size Collection
	3.3.2. System Profiling
	3.3.3. Thumbnailer Flow

	3.4. Data Analysis
	3.5. Summary

	CHAPTER 4. RESULTS
	4.1. Sample Set Size Collection
	4.2. Experiment Results
	4.3. System Profile
	4.4. Summary

	CHAPTER 5. DATA ANALYSIS AND CONCLUSION
	5.1. Findings
	5.2. Experimental Evaluation
	5.3. Recommendations
	5.4. Conclusion & Future Research
	5.5. Summary

