Architected Cardiovascular Implants for Accommodating Growth

Sung Hoo Kang
Johns Hopkins University, shkang@jhu.edu

Galip Erol

Emilio Bachtiar

Azra Horowitz

Follow this and additional works at: https://docs.lib.purdue.edu/iutam

Part of the Engineering Commons

Recommended Citation
Architected Cardiovascular Implants for Accommodating Growth

Sung Hoon Kang1,2, Galip Ozan Erol1,2, Emilio Bachtiar1,2, and Azra Horowitz3

(1)Department of Mechanical Engineering, Johns Hopkins University, shkang@jhu.edu
(2)Hopkins Extreme Materials Institute, Johns Hopkins University
(3)Department of Biomedical Engineering, Johns Hopkins University

KEYWORDS:
Architected material, 3D printing, medical device

Right ventricle–to–pulmonary artery (RV-PA) conduits are frequently used as a surgical palliative treatment for a variety of congenital heart diseases in infants and children [1]. Due to the growth of the infant or child, these conduits require replacement as they cannot grow, which involves several major open-heart surgery before adulthood [2-5]. To address this issue, we have investigated a novel architected RV-PA conduit that “grow” via tailored self-unfolding mechanisms triggered by flow and time so that fewer complications as well as surgeries are required to maintain and develop normal pulmonary blood flow from infancy to adulthood. We will present our numerical simulation results for design of architected implants to control their shape changes as the flow rate increases with the growth of a child. We will also present our experimental results of testing 3D printed architected implant devices using an in-vitro set-up that can simulate pulsatile flow changes with the growth of a person to characterize the behaviors of architected implants for verification of our design. Both numerical and experimental data show that our architected implant devices can match the required shape changes to accommodate the growth of children by increasing the dimensions of the devices by self-unfolding mechanism. We anticipate that our architected RV-PA conduit will result in operation of the conduits over longer periods of infant and child growth into adulthood. The findings from our study can also contribute to other types of implant devices that require customized deformation/shape change mechanisms by the interplay between geometry and material.

Acknowledgments

This research was partially supported by National Institute of Health (grant 5R21HD090663-02) and Johns Hopkins Whiting School of Engineering Start-Up Fund.

References

