
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

7-14-2010

Live Migration Of Parallel Applications
Raul Fabian Romero
Purdue University, rromero@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Romero, Raul Fabian, "Live Migration Of Parallel Applications" (2010). College of Technology Masters Theses. Paper 27.
http://docs.lib.purdue.edu/techmasters/27

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Fabian Romero

Live Migration of Parallel Applications

Master of Science

Thomas J. Hacker

John A. Springer

Eric T. Matson

Thomas J. Hacker

Gary R. Bertoline 07/09/2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Live Migration of Parallel Applications

Master of Science

Fabian Romero

07/13/2010

LIVE MIGRATION OF PARALLEL APPLICATIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Fabian Romero

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2010

Purdue University

West Lafayette, Indiana

 ii

Copyright 2010 by

Romero, Fabian

 iii

To my wife, parents, and sisters for their encouragement, motivation, and support

that greatly inspired me to achieve my academic goals.

 iv

TABLE OF CONTENTS

 Page
LIST OF TABLES ...vi
LIST OF FIGURES .. vii
ABSTRACT .. viii
CHAPTER 1. INTRODUCTION .. 1

1.1. Background .. 1
1.2. Significance .. 4
1.3. Scope ... 5
1.4. Personal Statement of Research Interest ... 6
1.5. Research Question ... 6
1.6. Assumptions ... 7
1.7. Limitations .. 8
1.8. Delimitations ... 8
1.9. Definitions of Key Terms... 9
1.10. Summary .. 10

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 11
2.1. Approach to this Review ... 11
2.2. Related Work .. 11
2.3. Summary .. 14

CHAPTER 3. FRAMEWORK AND METHODOLOGY .. 15

3.1. Theoretical Framework ... 15
3.1.1. Approach to Research and Methodology.. 15
3.1.2. Hypotheses ... 17

3.2. Method.. 18
3.2.1. Population ... 18
3.2.2. Sample ... 18
3.2.3. Data Collection ... 18
3.2.4. Data Instruments .. 19
3.2.5. Data Analysis .. 19

3.3. Timeline and Dates ... 19
3.4. Variables... 20

CHAPTER 4. DATA ANALYSIS ... 21
4.1. Correctness .. 21

 v

 Page
4.2. Performance ... 23

4.2.1. Number of Processors .. 23
4.2.2. Time to complete benchmark with migrations 23
 4.2.2.1 HPL based .. 24
 4.2.2.2 OMEN based .. 27

 4.2.2.3 Runtime without parallel benchmark 31
4.3. Summary .. 32

CHAPTER 5. CONCLUSIONS, DISCUSSIONS, AND FUTURE
RECOMENDATIONS ... 33

5.1. Conclusions .. 33
5.2. Discussion .. 34
5.3. Faults Experienced ... 35
5.4. Future Recommendations .. 36
5.5. Summary .. 37

LIST OF REFERENCES .. 38

APPENDICES

Appendix A. HPL Dataset .. 41
Appendix B. OMEN Dataset .. 46
Appendix C. BASH script ... 52

 vi

LIST OF TABLES

Table Page
Table 4.1 HPL Finished 48 Tests ... 22

vii

LIST OF FIGURES

Figure Page
Figure 1.1 OpenVZ-Based Experimental Architecture .. 3
Figure 2.1 Virtual/Virtual Scenario .. 12
Figure 2.2 Physical/Physical with Fail/Swithover Scenario 13
Figure 3.1 MPI-Based Connection and Transmission of Two VMs..................... 16
Figure 4.1 HPL -One VM Migrated over Eight Migration Cycles 25
Figure 4.2 HPL -Two Simultaneous VMs Migrated over Eight
Migration Cycles ... 26
Figure 4.3 HPL -Four Simultaneous VMs Migrated over Eight
Migration Cycles ... 27
Figure 4.4 OMEN -One VM Migrated over Eight Migration Cycles 28
Figure 4.5 OMEN -Two Simultaneous VMs Migrated over Eight
Migration Cycles ... 29
Figure 4.6 OMEN -Four Simultaneous VMs Migrated over Eight
Migration Cycles ... 30
Figure 4.7 OMEN -Eight Simultaneous VMs Migrated over Eight
Migration Cycles ... 30
Figure 4.8 Experimental Trial of Multiple Simultaneous Migrations
 out of Eight Migration Cycles when No Parallel Jobs were Running 31

viii

ABSTRACT

Romero, Raul F. M.S., Purdue University, August, 2010. Live Migration of
Parallel Applications. Major Professor: Thomas J. Hacker.

It has been observed on engineering and scientific data centers that the

absence of a clear separation between software and hardware can severely

affect parallel applications. Applications that run across several nodes tend to be

greatly affected because a single computational failure present in one of the

nodes often leads the entire application to produce incorrect results or to even

die. This low observed reliability requires a combination of a proactive and

reactive solution in order to preserve the state of parallel jobs running on

degraded nodes; therefore it is possible to avoid runtime errors in parallel

applications.

This thesis addressed the critical problem of low reliability in parallel jobs

by implementing a fault tolerance approach based on OpenVZ virtualization. By

using virtual machines on which parallel applications were running, this study

showed that it was feasible to make parallel jobs independent of any particular

hardware/software implementation; therefore when a degraded node is detected,

the virtual machine(s) running on this degraded node(s) may be migrated with its

parallel jobs to a healthier node. This study examined the correctness and

performance of implementing live migration on hosts loaded with parallel jobs,

and determined that it is possible to efficiently save the state of parallel

applications after live migration of virtual machines to a more reliable node.

1

CHAPTER 1. INTRODUCTION

For many years computational systems were unable to meet many of the

computational power requirements for scientific and engineering applications,

resulting in tremendous delays in obtaining the expected results of important

calculations. High performance computing systems came to the rescue providing

enormous amounts of power; but a disadvantage was as the number of

computational components increased, the mean time to failure decreased,

resulting in a poor reliability (Hacker, Romero, Carothers, 2009). As parallel

applications run across several computational nodes, the potential for a failure in

these distributed programs is even more likely. This reality became the

inspiration of this study by motivating an approach based on virtual live migration

to move parallel processes from degraded to healthier hosts.

1.1.

After joining together many computing nodes to serve as a single large

computing system, high performance computers were able to satisfy many of the

scientific and engineering requirements, providing the means to obtain faster and

precise solutions to the complex calculations submitted by scientists and

engineers. Nonetheless, this large collection of computers, usually spread

around several locations, tend to experience a very high rate of component

failure, which hardly impacts the calculations of large parallel applications.

Background

For this thesis, the use of an operating system-level virtualization

environment OpenVZ was investigated to perform live migration of containers or

virtual machines (VMs), on which multi-processor parallel applications were

running. By using this virtual technology (OpenVZ) this thesis focused on

2

investigating a way to help parallel jobs succeed when a hardware failure is

detected on the system, based on the following list of objectives:

1. Validate the correctness implications of the live migration of parallel jobs.

2. Measure the performance of live migration.

3. Verify the feasibility of implementing live migration on MPI based systems.

4. Test the speed-viability relationship after implementing multiple live

migrations of parallel applications.

5. Measure the efficiency of implementing multiple live migrations of virtual

machines to keep applications running on the most reliable nodes.

By the time this study was written, many reactive solutions such as

checkpoint/restart were present in the market, offering expensive high availability

implementations to recover systems in the event of a component failure.

Nonetheless, HPC systems may fail several times per hour, making reactive

solutions somehow ineffective to satisfy the computational needs on time to save

the state of critical applications; due to the high rate of failure occurrences.

For this reason, Hacker et al’s (2009) prediction model was

complementary to this study, because their study provided a solution to identify

nodes under risk of failure. Therefore, by detecting a degraded node on time and

by taking actions to save the state of its computations, it was possible to find a

way to improve the chances of success for critical scientific jobs in order to

satisfy the expectations of the scientific community.

This thesis investigated and demonstrated how virtualization technology

can greatly improve the chances of success of scientific and engineering

applications by using migration of virtual machines without turning down the

system. To do this, the study used a Linux based virtualization technology started

by SWsoft (the company that owns the commercial virtualization software

Virtuozzo) called OpenVZ. It is a light and flexible paravirtualization software that

the study demonstrated to work well with parallel applications. One of the

benefits of using this operating system (OS) based virtualization technology was

3

that it did not require a dedicated allocation of memory (RAM) and there was only

one kernel installed in the physical machine, avoiding unnecessary layers. When

there are fewer layers for the data to go through, this means that it is processed

through fewer cycles, avoiding unnecessary steps and improving processing

speed (Fischer & Mitasch, 2006).

The basic architecture of OpenVZ is shown in figure 1.1, consisting of only

two added OpenVZ layers when compared with traditional no-virtual systems. As

shown in this figure, the containers (VMs) were created on top of an OpenVZ

template and can be spread among many hosts.

Figure 1.1 OpenVZ-Based Experimental Architecture.

To install and run this proactive virtualization approach the project used

four servers: Two Dell 1950 with 64-bit 8-Core Intel Xeon processors, and two

HP Proliant DL-165C with 8-core Quad-Core AMD Opteron. The network fabrics

used were based on a 10-Force network gigabit switch, and high speed, low

latency Myricom 10Gb/s switch. The virtualization software OpenVZ was installed

4

over a CentOS 4.5 OS, and 30GB-based virtual machines (VM) were then

created on top of the virtualization kernel. Over this structure the VMs were

configured to work together, exchanging parallel messages with MPI, as showed

above in figure 1.1. Later, there were created two experimental scenarios, one

based on High Performance Linpack (HPL), which was compiled and set up on

one system to simulate a parallel work while running the migration tests, and

OMEN, a parallel application software that was compiled and implemented on

another system to assess and compare the live-migration behavior of different

parallel environments.

1.2.

This study found that the stability of scientific and engineering applications

was highly dependent on the performance of large scale computing systems,

therefore it is important to avoid any hardware related failure that might affect the

applications. Unfortunately, as the number of components increases in this large

scale computing system, the mean time to failure decreases due to the increment

of components susceptible to fail (Hacker et. al. 2009).

Significance

The approach presented in this thesis addressed this reliability problem

and explored the use of virtual live migration to move applications from a

degraded node to a healthier one. By doing so it was possible to avoid incorrect

termination of applications and kept them running independently from the

hardware platform. As mentioned in the previous section, this study served as a

complementary work to Hacker’s study, on which a prediction model was

explored in order to identify computational nodes under risk of failure. This

prediction algorithm worked based on three computational statuses: up, down,

and degraded where up meant that the host was alive and working normally,

down was used for a dead or out of service host, and finally degraded status was

used to refer to a still operational host that had been identified under risk of

failure. The degraded state was of most interest for the purposes of this

investigation due to the work presented based on the migration of VMs from

5

degraded nodes, that is, this thesis explored a combination of a reactive with a

proactive solution to save the state of parallel applications running on degraded

computational node(s).

As an overview to the problem and proposed solution presented in this

section, following are the most important factors regarding importance of

counting with a better reliability for parallel applications:

• Critical large scale parallel applications should not rely on the

health of a single hardware platform.

• Operating systems and its applications should have the ability to

transfer to reliable nodes when a failure is predicted.

• Concurrent migration of several VMs can help preserve the state of

the entire parallel application by running parallel jobs on the most

reliable hosts only.

1.3.

For this study the author based his assumptions on primary and

secondary literature sources and the thesis followed a deductive scientific

method on which hypothesis and theory were tested according to the principles

of the quantitative research methodology.

Scope

This study intended to decrease the failure rate observed in MPI-based

parallel applications, which are affected by their tight dependency on hardware

platforms. The alternative provided to separate the enormous dependency of

applications from hardware consisted upon exploring the use of virtual live

migration to move parallel jobs out of affected hardware.

For the purposes of efficiently live migrating VMs running parallel jobs, this

study investigated the operating system-level virtualization environment OpenVZ.

The study focused on the correctness and performance of live migrating single

and multiple VMs that were running parallel applications in multiprocessor

systems and were communicating via MPI over TCP.

6

1.4.

The author planned to accomplish this thesis project in the field of High

Performance Computing (HPC) for two purposes: first to put into practice his

recently acquired technical and organizational skills, and second, to assemble an

interesting solution for the scientific community that minimizes the poor reliability

observed on HPC systems. He chose a Master thesis project as a means of

challenging his project management skills while implementing an interesting and

well organized project that involved the use of state of the art technologies.

Personal Statement of Research Interest

1.5.

Is it possible to schedule parallel applications to run on the most reliable

large-scale supercomputing system and reduce the rate of unsuccessful parallel

jobs? By implementing a VM based live migration approach to move applications

out from suspected failing nodes; would it be possible to overcome the low

reliability observed in large spread parallel applications?

Research Question

It is important to keep parallel applications up and running even if their

current computational processors have been predicted to fail. The impact of

computational hardware failures on parallel applications is tremendous, because

usually in a system composed of 100 hosts, a single node failure can lead to the

unsuccessful termination of a whole parallel application even if it had been

running for months.

Consequently, while parallel applications evidence a very low mean time

to failure, non-parallel applications that work on a single computational host have

a larger mean time to failure. In order to understand this high impact and high

probability of failure in parallel application, assume that there is a data center

with 20 nodes and 19 of them are predicted to fail (as an example for incorrect

environmental conditions), in this instance, there would be at most 1/20

probability of successfully completing the application. Of course, for this

successful case to be possible, the application would have to run only in the

working or up system. On the other hand, if we ran a parallel application on the

7

same 20 hosts-based data center and only a single host was predicted to fail, the

entire parallel application would at risk for incorrect termination if the jobs in the

failing host cannot be moved. As demonstrated, the chances of the failure

parallel application are high, and this is not good for the scientific community that

deserves strong reliable systems.

From a hardware point of view, when the reliability of the computational

hardware is assessed, it has been observed on supercomputer systems that

there is a significant cost behind large amounts of processing power. The

probability of experiencing a component or node failure on a HPC cannot be

compared with the probability of a standalone system failure. If a personal

computer on average is affected once every three years, an HPC system with

thousands of nodes might fail several times per day (Liang, Zhang, Xiong, &

Sahoo, 2007). According to this comparison, applications running on large

computing systems have a high probability of failure, and therefore it is important

to discover a solution that helps minimize the impact of unexpected component

failure.

1.6.

Assumptions

The assumptions inherent to the study are:

1. Based on reported UNIX computing logs, many component failures

can be predicted before any catastrophic event takes place.

2. This study assumed that a prediction algorithm has been implemented

in a large scale supercomputing system in order to identify functioning

nodes that were at risk for failure.

3. Because a node was predicted to fail, there were enough computer

resources available to fulfill the parallel application requirements on the

target host.

8

4. Because this investigation was interested in assessing the efficiency of

live migration during the execution time of a parallel application, the

study took into consideration the total runtime of the parallel application

plus the total time to pursue the live migrations.

5. The two parallel applications used for this study (High Performance

Linpack and OMEN) effectively manipulated MPI messages and

worked flawlessly over an OS-based virtualized environment.

1.7.

Limitations

The limitations for the study of reducing the fault rate experienced by

parallel applications included:

1. Accuracy of HPL and OMEN to execute parallel calculations.

2. Performance of migrating operating system-level virtualization

environments based on OpenVZ.

3. Accuracy of UNIX based time managers to calculate the total time

involved in migrating VMs and completing a parallel application.

1.8.

The delimitations for the study of reducing the fault rate experienced by

parallel applications included:

Delimitations

1. Computing resources available in the High Performance Computing

laboratory of the Computer and Information Technology department of

Purdue University, during the period of Fall 2009 to Spring 2010.

2. Four computational servers that were configured to work with the operating

system-level virtualization environment OpenVZ.

9

3. Examination of only two different types of parallel applications: HPL

(Dongarra, Bunch & Stewart, 2009) and OMEN (Klimeck & Luisier, 2010).

4. The creation of two similar virtualization environments to assess the

correctness, performance, and reliability implications of the proposed

approach with HPL and OMEN.

5. Configuration of two network paths for the virtual environments: a 1Gb/s

Ethernet network and a Myricom 10Gb/s SR fiber network.

1.9.

Checkpoint – This is a position in the log that indicates a point at which all

filesystem structures are stable and consistent. After all modified

information, including the index block, data blocks and so on is written to

the log, the system writes a checkpoint region to a fixed block on disk.

This information is useful at start up time and particularly after a system

failure. (Preston, 1999).

Definitions of Key Terms

Correctness – This term is used in computer science with respect to an algorithm

to say that the algorithm behavior and output is free of errors so it is

correct with respect to a specification.

Cyberinfrastructure - This is a term originated by the National Science

Foundation (NSF) to describe the information technology resources used

by researchers, clinicians, engineers and artists to create new knowledge.

(Solomonides, 2008).

Grid Computing – This new technology emerged in the late 90’s, underpins

distributed problem-solving solution. Research sharing, coordinating

problem solving and dynamic multi-institution are basic characteristics of

grid computing. (Jin, Pan, Xiao & Sun, 2004).

Parallel Computing - A form of computation in which many computations are

carried out simultaneously (Almasi & Gottlieb, 1989).

10

Paravirtualization – This is a type of virtualization in which the underlying

operating system is modified to provide virtualization capabilities.

Virtualization: Refers to one piece of hardware running multiple kernels on top of

a lower layer of software that manages their access to the hardware. Each

kernel, called a guest, acts as if it has the whole processor to itself.

(Adelstein & Lubanovic, 2007).

1.10.

Chapter 1 is an overview of the fundamentals concepts of this study. It

provides a general explanation of the problem as well as the scope,

assumptions, limitations, and delimitations of the expected solution. The next

chapter provides an overview of related work, and uncovers certain aspects of

the literature that contributed to the creation of this research project.

Summary

11

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

2.1.

The following literature review is based on primary and secondary

literature sources that contributed to the construction of this document and

served as a point of reference to find contributing or contradictory ideas.

Approach to This Review

2.2.

Previous studies in this field noted the importance of improving reliability

for High Performance Computing (HPC) systems. For instance, Liang et al.

(2006) performed a similar study about failure prediction on an IBM BlueGene/L

supercomputer system. They provided three failure prediction models that

operated based on distinguishable classifications of the hardware component,

which raised a flag after detecting a failure. It is certainly an impressive approach

that draws attention to the efforts made on regulating the low reliability of a large

computing system (IMB BlueGene supercomputer). Liang et at.(2005) authored

another motivating paper on the same topic that discussed the failure behavior

observed in a large computing system. They provided several models and

methodologies that certainly helped to distil the most relevant error messages

over a large collection of events. These works contributed to this research by

providing different methods to identify or predict computational hosts in degraded

state, which is essential before implementing the proposed migration approach.

Related Work

Other research analyzed the benefits of implementing checkpoint and

restore, intended to save the state of the machine for prevention or recuperation

purposes. The paper developed by Hacker et al. (2007) had a structure based

on mathematical models, where there was a useful investigation about

checkpoint/restore and queue structures functionalities. This study served as a

12

point of departure for this thesis by means of the reactive strategies that were

useful for supercomputer systems.

Virtual machines have the potential to increase in popularity because of its

uneven number of advantages and disadvantages. As proof of this potential,

Fischer and Mitasch (2006) proposed two OpenVZ-based virtual environments

that consisted on a virtual/virtual scenario executed over multiple physical

machines, and a physical/physical with fail/switchover of virtual machines. Even

though their experiment was focused on High Availability (HA), the proposed

approach served as the starting point of the expected utilization of VMs to

improve the low reliability of HPC systems. By implementing the virtual/virtual

scenario shown in figure 2.1, they sought to eliminate the existence of a single

processing node by allowing another host to hold another virtual machine

(Fischer & Mitasch, 2006).

Figure 2.1 Virtual/Virtual scenario (Fischer & Mitasch, 2006)

The other scenario can also be highlighted for its contributions to this

study. This scenario was based on a physical/physical with fail/switchover

configuration as shown in figure 2.2. The experiment this time consisted in the

migration of all the VMs contained in a single physical machine to a different

physical server. This is especially important to this investigation because the

authors of the scenario also contemplated the possibility of a catastrophic failure

13

affecting a whole computing system. Fischer and company claimed that if a

failure can be pro-actively predicted, several virtual machines running in a single

physical machine can also be migrated to a healthier machine. Their work

differed from this study in that they did not contemplate exclusively live

migrations of VMs, nor did they assess the impact of virtualization on parallel

applications.

Figure 2.2 Physical/Physical with Fail/Switchover (Fischer & Mitasch, 2006).

Recall that the main objective of this work is to assess a live migration

approach to improve the low reliability observed in parallel systems. Another

study ran similar tests on live migration of virtual machines, Clark et al. (2005)

focused on cluster environments and observed the importance of separating

hardware from software. This enabled administrators to remove a physical

machine from service (including applications running) by transferring its load to

another physical host. Clark et al. (2005) claimed that their approach left the

original machine free and ready for maintenance purposes. Their study differed

from this thesis in that it highlighted the availability of using Xen VMM

virtualization software to significantly improve manageability instead of OpenVZ.

They accomplished a minimum service downtime of 60ms by carrying out live

14

migration over Quake 3 on a commodity cluster; and 210ms over the SPECweb

benchmark. Their calculations were made with two physical machines connected

through a high performance communication switch.

The approach of Clark et al. (2005) also differed from this study in that it

did not assess the performance of different network fabrics nor did it use different

interactive applications (other than OMEN and HPL) to test the performance of

live migration. The study also concluded that the performance made live

migration a practical tool “even for servers running interactive loads” (Clark et al.,

2005). Finally, there was a difference in that a paravirtualized tool (Xen) does

not allow free efficient resource usage and density. Xen required fixed memory

and disk definitions (Xen has hard, fixed caps), while OpenVZ had burstable

memory usage, which made it possible to subscribe more users to a server

running on top of OpenVZ.

2.3.

Chapter 2 is a collection of several related literature sources that

influenced the flow of this research. Some of the sources served as a notable

point of reference for comparative purposes and/or better comprehension of the

problem. The next chapter provides the fundamental framework and

methodologies used to implement the proposed virtual live migration approach

and list the most important details about the data collection process.

Summary

15

CHAPTER 3. FRAMEWORK AND METHODOLOGY

3.1.

This section provides details about the research background and elements

used to build the experimental environments of this project, such as

methodology, data, variables, and population among others.

Theoretical Framework

3.1.1. Approach to Research and Methodology

This study followed a quantitative research approach by systematically

investigating the properties and phenomena of live migration of virtual machines

on which multi-processor parallel applications were running. A correlational

quantitative research was conducted to determine if a relationship existed

between the quantifiable variables that influenced the performance, correctness,

and reliability of live migration and to what degree.

The methodology employed to run the measurements was based on two

varying parallel scenarios that exchanged MPI messages. As show in figure 3.1,

the first scenario was based on High Performance Linpack (HPL) and the second

(not shown in this figure) was based on OMEN parallel application. For both of

these parallel scenarios the same tests were performed in order to have

comparable results. The tests executed under each of these parallel scenarios

were separated into two groups or virtual networked environments, configured to

communicate over one of two network paths: a Gigabit Ethernet or a 10 Gb/sec

network fabric.

The idea of conducting these experiments over two different networks was

to assess and compare the effects of network bandwidth and latency during the

execution of parallel applications and the live migration of parallel jobs.

16

Figure 3.1 MPI-Based Connection and Transmission of Two VMS

The series of experiments conducted to understand the effects of live

migration on parallel applications and the ability to complete without errors,

consisted in varying the following four major variables:

• Type of parallel application or benchmark (HPL or OMEN).

• Number of VMs allocated to the MPI parallel application or

benchmark, ranging from 2 to 11 virtual containers.

• Network fabric. A series of experiments were conducted over the

1Gb/sec, and then over the 10Gb/sec networks.

• Number of simultaneous live migrations performed during the

runtime of the parallel application. The migration options were

1,2,4, or 8 simultaneous live migrations, and for each, a total of 8

migration cycles were invoked to be migrated, independently from

the number of simultaneous migrations started.

17

To validate the correct completion at the parallel applications, the study

observed and assessed the final results of the computations upon termination.

The results were compared in experimental trials with and without live migrations

running. After the calculations were completed in both experimental scenarios,

the observed results were always the same, therefore it was possible to

determine that every job with OMEN and HPL were successfully completed with

the same results.

3.1.2. Hypothesis

Because the high rate of failure occurrences on large scale

supercomputing systems affects the behavior of applications (Hacker, 2007) and

the traditional reactive approach might work together with a proactive approach

to overcome this problem, the null and alternative hypothesis that this study

wanted to address were the following:

H₀: Multiple live migration of VMs on which parallel applications are

running does NOT reduce the fault rate experienced by parallel

applications.

Ha: Multiple live migration of VMs on which parallel applications are

running reduces the fault rate experienced by parallel applications.

If the hypothesis H₀ is rejected, eventually the effect of large scale failure

occurrences on parallel applications can be reduced by implementing virtual live

migrations. The results will be examined in chapter 4 using values obtained from

different networks and from experiments based on HPL and OMEN. Eventually,

hypothesis H₀ will be rejected based on the results, which demonstrated that it is

possible to reduce the fault rate of parallel applications.

18

3.2.

The following topics provide details about the information sources and the

manipulation of data.

Method

3.2.1. Population

The population consists of a collection of 34 OpenVZ-based virtual

containers loaded with CentOS 5 and running a parallel application. These virtual

machines (VMs) were distributed among four servers and communicated using

MPI over TCP.

3.2.2. Sample

The sample of interest corresponds to two sets of 17 virtual machines that

were specifically created for each of the two virtual environments. Each virtual

environment is based on a different parallel application, and was configured to

communicate over both Gigabit Ethernet network, and 10 Gb/s network.

3.2.3. Data Collection

Based on the script included on appendix C, all the total live migration

times (seconds) were collected and added to a spreadsheet which

simultaneously included and excluded, parallel computations running over

different scenarios. Depending upon the total number of virtual machines

(processors) sequentially allocated to calculate the benchmark (HPL or OMEN),

the total execution time of completing 8 migration cycles during the runtime of the

parallel application was recorded.

19

3.2.4. Data Instruments

The first data instruments were a series of BASH shell scripts that were

written to automatically start the timer, launch the migrations, run the parallel

calculations, and allocate VMs to the appropriate MPI based communication

environment.

Microsoft Excel (2007) and the R statistical software (Dalgaard, 2008),

were also used to plot and create bar graphs to reflect the correlation and

differences observed from the collected data.

3.2.5. Data Analysis

The correlation between the number of simultaneous migrations and the

total time to migrate while executing the parallel calculations is illustrated by

measuring the direction and strength of the linear relationships among the series

of experiments. To better understand the behavior and correlation of the

collected data, bar chart diagrams were used along the phases of this

investigation which effectively plotted the total execution time of the live migrated

parallel application. Additionally, bar charts were used to illustrate the standard

deviation and identify outliers in the dataset.

3.3.

Timeline and Dates

Below is a timeline framework that describes work distributed among three

academic semesters commencing Summer 2009:

• Five months to configure the virtualization environments, investigate

related work and outline the first three chapters of the thesis.

• Five months to run the experiments and collect results after repeating

each test a minimum of three times.

20

• Three months to classify, identify patterns in data, execute statistical

analysis, and write respective technical and analytical chapters of the

thesis.

• Three months to get final conclusions, and present/defend the thesis.

3.4.

The independent variable that was manipulated along this study was the

“number of virtual machines”, which were sequentially allocated to each

experimental trial (each virtual machine was configured to use only one

processor). This independent variable consisted of a range of 2 to 11 VMs that

were invoked for each series of live migrations. Additionally, the dependent

variable that was influenced by the number of virtual machines invoked in each

test was the “parallel application execution time” which consisted of a

measurement in seconds of the total time for each experimental trial to perform 8

live migration cycles during the runtime of the parallel benchmark.

Variables

21

CHAPTER 4. DATA ANALYSIS

This chapter presents the findings for different metrics used to evaluate

the correctness and performance of live migrating parallel applications. It further

presents the summary of the differences observed among the virtual

environments.

4.1.

The parallel programs used in this study, HPL and OMEN, must be able to

successfully complete their operations after some of the parallel jobs have been

live migrated to a different node. Correctness was measured here, using the

output of each of the parallel programs that reported the ending status of its

expected arithmetic or physical calculations.

Correctness

The HPL script xhpl worked based on a configuration file called HPL.dat,

which contained the configuration parameters of the HPL arithmetic calculations.

Among this parameters, it was possible to specify an output file to automatically

generate final status reports after concluding the linear calculations. Therefore

and as shown in table 4.1, it was possible to verify that no errors were reported

during the arithmetic calculations for all experiments conducted with or without

running virtual migrations.

22

Table 4.1

HPL finished 48 tests

48 Tests completed and passed residual

checks

0 Tests completed and fail residual

checks

0 Tests skipped because of illegal input

values

The results observed in table 4.1 are a good example of what was

observed during the execution of HPL based experiments. In this example 48

tests of linear arithmetic operations were conducted and once finished, HPL

reported all tests were completed successfully. No tests were skipped because of

illegal input values, as showed in the HPL output example.

For the experiments conducted with OMEN, this study followed a different

approach than the one previously described for HPL. Since OMEN did not

automatically provide termination status as HPL did, in order to validate the

correct execution of OMEN this study observed the number of successfully

computational phases completed, which were reported in the OMEN output files.

This number was then compared from the OMEN experiments were no

migrations were executed and compared to the number reported when live

migration was included in the OMEN experiments. All cases yielded the same

number of successfully computational phases completed.

It is important to note that for each set of experiments (OMEN or HPL

based) the state of the virtual containers was checked after live migration, and

the author of this thesis concluded that each virtual machine successfully

recovered from migration. This included verifying the memory state, network

interfaces, operating system, file systems, and running applications. All of these

23

resources worked properly in the destination node after conducting the live

migrations.

4.2.

This study focused on the performance of applying live migrations of

virtual machines in containers running MPI-based parallel programs in order to

measure the effectiveness of the live migration approach. This study interpreted

performance as the successful termination of parallel calculations by a migrated

computational host compared with the time and resources used. Performance

was measured based on the number of processors involved in the parallel

calculations and the total time taken to complete the parallel program (runtime)

while live migrations were executed.

Performance

4.2.1. Number of Processors

This metric consisted of exploring the significance of impact by utilizing

fewer or more virtual machines in the parallel calculations. For all experiments

only one processor per VM was configured, therefore it was simpler to measure

the statistical difference using the different numbers of VMs while simultaneously

migrating some of them. By using this configuration this study sought to discover

the performance impact of migrating a total of eight VMs during the parallel

benchmark running time. The purpose of maintaining this constant number of

eight migrations was to have the same point of reference for all experimental

trials. Further in this study it was easier to compare the results obtained from all

the tests that involved different number of VMs for parallel calculations, while

migrating the same number of eight VMs during the total execution of the parallel

benchmark.

24

4.2.2. Time to complete benchmark with migrations

This analysis explored the possibility of a statistically significantly

difference in total time spent to execute the parallel tasks with and without

migrations. This thesis implemented the same metrics under HPL and OMEN to

measure the time to execute parallel jobs.

4.2.2.1.

Output was collected from each of the 240 HPL executions after running

multiple live migrations with 1, 2, 4, and 8 simultaneous migrations; over the

1Gb/s and 10Gb/s networks. All the HPL computations were successfully

completed as each xhpl application output confirmed. This means that HPL can

tolerate OpenVZ based live migration regardless of the number of simultaneous

migrations. The dataset corresponding to HPL-based figures can be found in

appendix A.

HPL based

Following the experimental methodology described in a previous section,

HPL benchmark performance with and without simultaneous live migrations was

assessed. The results of assessing the time to execute HPL with only one VM

migrated at a time over eight migration cycles are shown in figure 4.1. In this

figure, the first two of each set of five bars represent the total HPL execution time

over the 10Gb/s and 1Gb/s networks respectively. For each category, a total of

eight live migration cycles was conducted sequentially (one by one) during the

total benchmark execution time. Each bar shows the average of three

experimental trials, with error bars on top of each, representing the resulting

standard deviation.

There was selected a number of three experimental repetitions due to the

long time it took to complete each trial of the parallel application. The HPL

runtime (without including live migration nor manipulation tasks) lasted about 15

minutes, and it was necessary to run it 30 times per group of experiments (1VM,

2VM, 4VM, and 8VM migrations) resulting in 120 HPL executions only over the

1Gb/s network, so a total of 240 times including the experiments conducted over

25

both of the network fabrics. The same number of experiments were performed for

the OMEN based experiments, with the difference that OMEN-based tests lasted

about 30 minutes each one. Therefore, to have an estimate of the total time to

run the experiments for this research in an ideal scenario when neither errors,

migrations nor manipulation time were included, the entire phase of experiments

lasted about 180 computational hours.

Figure 4.1 HPL -One VM Migrated over Eight Migration Cycles

As shown in figure 4.1, the third and fourth bars of each set correspond to

No HPL 1Gb/s and No HPL 10Gb/s represent only the total time of eight

sequential migration cycles. These bars, however, do not include the time to

execute the parallel benchmark. The final category in each set of five bars is

Only HPL, which represents the total time to execute HPL without running any

live migration. The only variable progressively modified is the number of VMs that

were used for the parallel computations ranking from 2 to 11 VMs. From this

figure it is simpler to identify the total time required to move the VMs, which was

significantly less than the total time to complete the parallel calculations.

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10 11

H
PL

 t
im

e
(s

ec
s)

No. of processors (VMs)

10Gb

1Gb

No HPL 1Gb

No HPL 10Gb

Only HPL

26

Figure 4.2 shows the results of running HPL with two simultaneous live

migrations over eight migration cycles. Note that in this figure the bars were not

as linear as they were in the one migration based trial because, the HPL does

not scale well with two simultaneous migrations. In general, the total execution

performance of HPL over both of the networks was very poor.

Figure 4.2 HPL -Two Simultaneous VMs Migrated over Eight Migration Cycles

Also note that in figure 4.2, it took 201.6% more time to complete the HPL

calculations over the 10Gb/s network when using five processors than it was in

the one migration experiments, which of course is not good to experience a

prolonged running time. Even though the performance for the two migration

based experiments decreased, HPL was able to complete successfully as

confirmed by the output showed after completing the linear calculations. It is

important to emphasize here that the number of live migration cycles remained

the same, which was eight for all experiments in this study; however the only

factor that indeed varied was the amount of simultaneously triggered migrations

(out of eight).

Figure 4.3 shows that HPL execution time was very inconsistent with four

simultaneous migrations, as was also the case for the two migration experiments

showed in figure 4.2. At best, HPL running time decreased 32.6% for the four

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10 11

H
PL

 t
im

e
(s

ec
s)

No. of Prossesors (VMs)

10Gb

1Gb

No HPL 1Gb

No HPL 10Gb

Only HPL

27

processors-based experiment compared with the single migration. At worst, HPL

running time increased 247.8% for the five processors. Experiments were also

conducted with eight simultaneous migrations that are not shown here but the

HPL execution time was also unstable, showing again that the HPL performance

was negatively affected by simultaneous VM live migrations.

Figure 4.3 HPL -Four Simultaneous VMs Migrated over Eight Migration Cycles

To summarize the results, HPL worked well with single live migrations but

did not scale well. The results observed from the two or more simultaneous live

migrations, showed that the performance of HPL was significantly degraded.

4.2.2.2.

OMEN based

Similar to the experiments conducted with HPL, this thesis tested the

performance of the OMEN parallel application using MPICH2. Following the

same methodology used for HPL, a Bash shell script program was developed in

order to manipulate the live migrations. A copy of one of the versions of this

script can be found in appendix C.

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10 11

H
PL

 t
im

e
(s

ec
s)

No. of Processors (VMs)

10Gb

1Gb

No HPL 1Gb

No HPL 10Gb

Only HPL

28

Figure 4.4 shows the results of the first execution of OMEN experiments,

when migrating only one VM at a time over a cycle of eight live migrations. The

categories were the same as those used for the HPL experiments with 10 (2 to

11) sets of five bars, starting with the total execution time when migrations were

included over the 10Gb/s and 1Gb/s networks. The third and four bars

represented the total time to live migrate one VM at a time out of eight migration

cycles. Finally, the fifth bar of each set showed the total time to complete OMEN

without executing VM live migration. The dataset corresponding to OMEN-based

figures can be found in appendix B.

Figure 4.4 OMEN -One VM Migrated over Eight Migration Cycles

Similar to the results of HPL showed in figure 4.1, OMEN tolerated a

single live migration, and was able to scale well when live migrations were

included during the runtime of the application. From this figure a slight difference

in performance between the networks is observed, showing only a small

advantage in favor of the 10Gb/s (3-11). On average there was only a 1.3%

execution time advantage to 10Gb/s over the 1Gb/s network.

Figure 4.5 shows the performance of OMEN when migrating two VMs

simultaneously. This graph may be compared with Figure 4.2, where the same

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11

O
M

EN
 T

im
e

(s
ec

s)

No. of processors (VMs)

10Gb

1Gb

Only mig. 1Gb

Only mig. 10Gb

Only OMEN

29

categories were used to assess the performance of running HPL with eight

cycles of two simultaneous migrations, but this time the experiment was

conducted with OMEN instead of HPL.

Figure 4.5 OMEN -Two VMs Simultaneously Migrated over Eight Migrations
Cycles

OMEN tolerated two simultaneous VM migrations, scaled well and finished

successfully with no errors reported during the experiments. Additionally, Figure

4.5 shows that over the 10Gb/s network the performance was just 2.6% more

efficient than it was over the one VM migration based. This two VM based trial

also provided a 2.18% performance gain over the 1Gb/s network.

In contrast to the behavior of HPL after executing the same sets of

experiments with four and eight simultaneous migrations as demonstrated in

Figures 10 and 11, this study found that OMEN tolerated multiple simultaneous

migrations very well when performing experiments over the 10Gb/s network. The

performance gain of four and eight migrations was 3.65% and 3.79%

(respectively) better than the performance provided in the single migration

experiments.

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11

O
M

EN
 T

im
e

(s
ec

s)

No. of processors(VMs)

10Gb

1Gb

No OMEN 1Gb

No OMEN 10Gb

Only OMEN

30

Figure 4.6 OMEN -Four VMs Simultaneously Migrated over Eight Migrations
Cycles

Figure 4.7 OMEN -Eight VMs Simultaneously Migrated over Eight Migrations
Cycles

Likewise, over the 1Gb/s network a 4.31% and 5.28% better performance

was noted. In order to complete OMEN calculations with multiple live migrations,

not only does it terminate successfully but it also required less time to complete

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11

O
M

EN
 t

im
e

(s
ec

s)

No. of processors (VMs)

10Gb

1Gb

Only mig. 1Gb

Only mig. 10Gb

Only OMEN

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10 11

O
M

EN
 t

im
e

(s
ec

s)

No. of processors (VMs)

10Gb

1Gb

Only mig. 1Gb

Only mig. 10Gb

Only OMEN

31

than the experiments with a single migration. Therefore, this thesis concluded

that OMEN tolerated multiple live migrations much better than HPL.

4.2.2.3.

Figure 4.8 depicts a closer view of the results after running eight

migration cycles in series of one, two, four, and eight simultaneous live

migrations over each of the networks fabrics (1Gb/s Ethernet and 10Gb/s

Myricom). For these experiments no parallel benchmark was running in order to

have a point of reference regarding the time lapsed to complete live migrations.

Runtime without a parallel benchmark

Figure 4.8 Experimental Trials of Multiple Simultaneous Migrations out of Eight
Migration Cycles -No Parallel Jobs Were Running

The performance of the 10Gb/s network was better than the 1Gb/s

network across all experiments. As shown in Figure 4.4, the 10Gb/s network

was 32.3% more efficient than the 1Gb/s network when live migrating only one

VM at a time out of eight migration cycles. This difference was narrower as the

number of simultaneous migrations increased, 24.4%, 18.2%, and 11.6% time

was gained when migrating two, four, and eight VMs respectively, over the

Myricom 10Gb/s network.

0

20

40

60

80

100

120

140

1 2 4 8

Ti
m

e
(s

ec
s)

Experimental set

1Gb

10Gb

32

4.3.

Chapter four presented the quantitative analysis and outcome obtained

after executing a series of experiments and comparing the results with the major

patterns found. It provided an analysis of the correctness and performance of live

migration with and without parallel jobs. The next chapter presents a summary of

the most important issues found in this study and concludes with

recommendations for future continuation of this research.

Summary

33

CHAPTER 5. CONCLUSIONS, DISCUSSIONS, AND FUTURE
RECOMMENDATIONS

This chapter summarizes the major findings observed in this work. A

discussion section and recommendations for future continuation of this research

is offered.

5.1.

The author of this thesis evaluated the viability of using live migration of

virtual machines as an alternative to keeping parallel applications healthy by

preventing them from failing. This study was specifically focused on evaluating

the efficiency and correctness of a proactive approach in correlation to traditional

reactive methodologies.

Conclusions

As long as failure is predicted on time or for maintenance purposes, It is

possible to successfully migrate parallel jobs from one or multiple degraded hosts

to one or multiple healthy ones. Therefore, virtualization proved to be a good

alternative to save the state of the parallel calculations by allowing them to

complete on a different host. For this reason this study rejects the hypothesis H₀

of chapter 3, because multiple live migration of VMs on which parallel

applications were running were able to reduce the fault rate experienced by

parallel applications.

The performance of simultaneous live migrating multiple VMs is more

efficient than the sequentially migration of a single VM. After conducting several

series of experiments based on sequential migration of only one VM at a time

and multiple simultaneous migrations, the results accounted for the gain in

performance of multiple simultaneous live migrations. This means that if a

degraded computer machine holds 10 VMs, all of them could be effectively live

34

migrated at once, instead of migrating them one by one, which improves the total

execution time of the parallel application.

OMEN demonstrated better tolerance than HPL to the live migration of

parallel jobs. As the number of processors or VMs involved in the parallel

computation improved, the total time to complete the benchmark decreased.

Overall, OMEN scaled well with different numbers of simultaneous migrations

without affecting the final results of the computations.

LAM/MPI and MPICH-2 worked very well with virtual machines. The

connections, synchronization, transfer, and manipulation of data was fluently

achieved among the virtual containers. Overall the results of the experiments

indicated that it was possible to successfully live migrate a parallel application

using these powerful platforms of high performance computing.

The total execution time of parallel calculations with VMs migrated during

the runtime of the application was impacted by the network fabric. The 10Gb/s

based experiments were constantly more efficient than the experiment conducted

over the traditional 1Gb/s network, though the difference was always small. In

general, the time to live migrate VMs that run parallel jobs is dependent upon the

bandwidth and latency of the network.

5.2.

This thesis tested the power of OpenVZ virtualization and found that the

live migration process worked flawlessly with parallel jobs independent of the

number of simultaneous migrations and the successful completion of parallel

applications. This study also determined that there was a positive effect on the

rate to calculate the parallel tasks depending upon the network fabric used during

the live migration process. Even though virtualization was a good alternative to

increase the mean time to failure of parallel applications, this is still a new

technology that requires further research to improve its scope and enhance its

scalability.

Discussion

35

There was some uncertainty about the behavior of MPI processes during

the live migration. It was not clear if there were packages lost when the receiver

process was unresponsive while it was frozen within a migrating container. After

investigating this issue, the conclusion was that there was an advantage to using

MPI over TCP because part of the TCP protocol behavior is to automatically

attempt to retransmit lost packets when the receiver was unresponsive.

Virtual live migration can provide many benefits, however, not without a

cost. The percentage overhead ranges from 11.35% for two processor

experiments to 65.21% for the eight processor experiments. Other fault tolerant

approaches, such as checkpoint and restart are compelled to frequently

checkpointing the entire application, which usually takes an unreasonable

amount of time and slows the system down with a massive load. In contrast, live

migration of virtual machines only transfers precise nodes used by a parallel

application, which requires only a fraction of the bandwidth consumed by the

traditional checkpoint approach. The advantage is that aside from a small

increase in total execution time, this process can be done while the system

operates and will not affect the normal behavior of the applications. For these

reasons, the extra cost of implementing live migration is insignificant when

compared with the inherent benefits.

5.3.

There were observed two major types of faults experienced during

experiments: time considerations for the parallel applications and resource

allocation for the VMs.

Faults Experienced

 First, for the initial experiments the total execution time of the parallel

applications was not enough to allow for the execution of eight migrations cycles

when more than seven processors (VMs) were involved in the parallel

calculations. As mentioned in the results section, HPL and OMEN always

terminated successfully when live migrations were conducted; nonetheless these

correct results were not reflecting the execution of the same number of eight

36

migrations for all of the experiments, which causes inconsistencies in the final

results. To solve this issue, the total execution time of the parallel applications

was increased enough to allow for eight live migrations even when eleven

processors (VMs) were involved in the calculations. This total time varied from

895.4 to 424.9 seconds (2 to 11 VMs) for HPL, and from 1205.7 to 259.1

seconds (2 to 11VMs) for the OMEN experiments.

Second, during the initial experiments with OMEN there was not enough

memory allocated for the VMs. For the first experiments with HPL, 10GB of

memory allocated per VM was fine to compile HPL, complete the parallel

calculations, and migrate each VM. Unfortunately this was not the case for

OMEN because it could not even be compiled over 10GB-based VMs. Therefore,

to solve this lack of memory issue, it was necessary to increase the amount of

memory of each VM to 30GB and repeat all of the HPL-based tests to avoid

inconsistencies with OMEN-based experiments.

5.4.

The virtualization application used in this study was only the UNIX

operating system-based OpenVZ. The study can be further improved by testing

the live migration behavior with several virtualization platforms and over different

operating system instances. Because the platform requirements to run parallel

applications greatly vary, using several experimental platforms could allow

testing the speed and parallel job migration behavior over many different

technologies.

Future Recommendations

Another interesting experiment would be to implement an entire reliability

system for large computing systems. By establishing a prediction model that

accounts for the detection of degraded hosts, with a virtualization environment

that automatically launches VM live migration to keep the parallel jobs working

until completion. This experiment would have the potential to join together a

traditional reactive approach with the proactive solution presented in this study.

37

5.5.

This final chapter included the major finding in this research. It also

presented a discussion section followed by recommendations for further

improvements on the presented research.

Summary

LIST OF REFERENCES

38

LIST OF REFERENCES

Adelstein, T., Lubanovic, B. (2007). Linux System Administration. Solve real-life

linux problems quickly. O’Reilly Media.

Almasi, S., Gottlieb, A., (1989). High Parallel Computing. IBM systems Journal.

Benjamin-Cummings. 29, 1. Redwood, CA.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach, C., Pratt, I., &

Warfield, A. (2005). Live migration of virtual machines. Proceedings of

the 2005 Conference on Symposium on Networked Systems Design &

Implementation. 2, 273-286.

Dalgaard, P. (2008). Introductory Statistics with R. Statistics and Computing. 2nd

edition, Springer. 16, 364.

Dongarra, J. C., Bunch, J., &Stewart, P. (2009). High Performance Linpack.

online article.

 HTTP://WWW.NETLIB.ORG/LINPACK.

Figueiredo, R. J., Dinda, P. A., & Fortes, J. A. (2003). A Case for Grid Computing

on Virtual Machines. Proceddings of the 23rd International Conference

on Distributed Computing Systems.

Fischer, W., & Mitasch, C. (2006). High availability clustering of virtual

machines-posibilities and pitfalls. 12th Linuxtag, Wiesbaden,1-14.

Gray, J., & Shenoy, P. (2000). Rules of Thumb in Data Engineering. Advanced

technology division, Microsoft Corporation. 16th Internet conference on

Data Engineering, 3-12.

Hacker, T. J., & Meglick, Z. (2007). Using Queue Structures to Improve Job

Reliability. ACM, Proceedings of the 16th International Symposium on

High Performance Computing, 43-54.

Hacker, T. J., Romero, F., & Carothers, C. D. (2009). An analysis of clustered

failures on large scale supercomputing systems. Journal of Parallel and

Distributed Computing. 1-14.

http://www.netlib.org/linpack�

39

Jin, H., Pan, Y., Xiao, N., & Sun, J. (2004). Grid and Cooperative Computing.

Proceedings of the Third International Conference of Lecture Notes in

Computer Science.

Kangarlou, A., Xu, D., Ruth, P., & Eugster, P. (2009). Taking Snapshots of Virtual

Networked Environments with Minimal Downtime. Proceddings of the

3rd International Workshop on Virtualization Technology in Distributed

Computing. ACM. Reno, Nevada.

Kleiman, S.R. (1986). Vnodes: An Architecture for Multiple File System Types in

Sun UNIX. Computer Science Division Sun Microsystems, 1-5.

Klimeck, G., Luisier, M. (2010). Atomistic Modeling of Realistically Extended

Semiconductor Devices with NEMO/OMEN. IEEE Computing in Science

and Engineering (CISE), 12, 28-35.

Liang, Y., Zhang, Y., Jette, M., Sivasubramaniam, A., & Sahoo, R. (2006). Blue

Gene/L failure analysis and prediction models. Dependable Systems and

Networks International Conference, 425-435.

Liang, Y., Zhang, Y., Sivasubramaniam, A., Sahoo, R.K., Moreira, J., & Grupta,

M. (2005). Filtering failure logs for a Blue Gene/L prototype. Dependable

Systems and Networks. Preceedings International Conference, 476-485.

Liang, Y., Zhang, Y., Xiong, H, & Sahoo, R. (2007). An Adaptive Semantic Filter

for Blue Gene/L Analysis. Parallel and Distributed Processing

Symposium. IPDPS 2007. IEEE International, 1-8.

Mirkin, A., Kuznetsov, A., Kolysh, K. (2008). Containers Checkpointing and Live

Migration. Proceddings of Ottawa Linux Symposium. 1(2), 85-90.

Nagarajan, B., Frank, M., Christian, E., & Stephen, S. (2007). Proactive Fault

Tolerance for HPC with Xen Virtualization. Proceddings of the 21st

Annual Conference on Supercomputing.

Patterson, D. A., Gibson, G., & Kartz, R.H. (1988). A Case for Redundant Arrays

of Inexpensive Disks (RAID). ACM SIGMOD Record, 17 (3), 109-116.

40

Petitet, A., Whaley, R., Dongarra, J., & Cleary, A. (2009). HPL-A Portable

Implementation of the High-Performance Linpack Benchmark for

Distributed-Memory Computers. Online article.

 HTTP://WWW.NETLIB.ORG/BENCHMARK/HPL.

Preston, C. (1999). Unix Backup & Recovery. Protecting your Filesystem,

Database, and Operating System Data. O’Reilly Media, 242.

Singh, R., Graham, P. (2008). Performance Driven Partial Checkpoint/Migrate for

LAM-MPI. 22nd International Symposium of High Performance

Computing Systems and Applications. IEEE. (pp.110-116). Winnipeg,

MB, Canada.

Solomonides, T. (2008). Studies on Health Technology and Informatics.

Proceedings of Healthgrid 2008. 138.

Vaughan, N. S., New Approach to Virtualization is a Lightweight. Computer

Conference, 39(11) 12-14.

Zhao, Y., Raicu. I., & Foster, I. (2008). Scientific Workflow Systems for 21st

Century, New Bottle or New Wine?. IEEE Congress on Services, 1,

467– 471.

http://www.netlib.org/benchmark/hpl�

APPENDICES

41

Appendix A

HPL Dataset

Running time of HPL with no live migration during the run time:
 12ps= 6000 5000 6000 5000 6000 5000 6000 5000 6000 5000 6000 5000

VMs

No
Migration

HPL

No
Migration

HPL

No
Migration

HPL

Average
Only HPL -

No
Migration

Standard
Deviation

2 888.801 895.495 869.5825 884.6261667 13.4512579
3 743.293 742.974 723.5885 736.6185 11.28543819
4 641.948 642.699 627.352 637.333 8.651951861
5 623.814 624.101 573.7115 607.2088333 29.00989655
6 556.611 557.263 563.571 559.1483333 3.843990288
7 466.513 466.163 524.4775 485.7178333 33.56731215
8 392.938 392.809 451.0415 412.2628333 33.5833724
9 390.725 390.872 393.8645 391.8205 1.771681193

10 420.402 421.379 417.175 419.652 2.200063408
11 425.673 424.964 430.825 427.154 3.198882774

Average: 556.1542

HPL 1 Migration
 Migrations over the 10 GB/s network:

VMs
No

Migration
HPL 10Gb

1Mig
HPL 10Gb

1Mig
HPL 10Gb

1Mig
Average

10Gb
Standard
Deviation

2 869.5825 985.707 990.086 993.586 989.793 3.947663486
3 723.5885 875.198 860.013 906.198 880.4696667 23.53946491
4 627.352 774.029 810.43 795.799 793.4193333 18.31680404
5 573.7115 707.856 696.006 691.285 698.3823333 8.537255433
6 563.571 656.409 720.264 723.068 699.9136667 37.70222302
7 524.4775 678.744 673.37 647.491 666.535 16.71003953
8 451.0415 580.102 575.504 609.923 588.5096667 18.68645323
9 393.8645 547.975 636.483 528.837 571.0983333 57.42762173

10 417.175 555.047 549.059 543.573 549.2263333 5.738829962
11 430.825 604.91 572.311 536.533 571.2513333 34.20081435

Total avg: 700.8598667

42

Migrations over the 1 GB/s network:

VMs
HPL 1Gb

1Mig
HPL 1Gb

1Mig
HPL 1Gb

1Mig
Average

1Gb
Standard
Deviation

2 1158.993 1101.362 1100.892 1120.41567 33.409777
3 1198.965 1138.657 1166.602 1168.07467 30.180959
4 1030.426 1036.162 1006.1 1024.22933 15.960262
5 1094.78 831.261 1053.905 993.315333 141.82347
6 881.602 1129.609 1080.93 1030.71367 131.40825
7 833.053 933.46 815.653 860.722 63.590899
8 879.329 827.942 938.561 881.944 55.355844
9 658.571 519.106 733.809 637.162 108.94083

10 660.037 771.629 674.55 702.072 60.673627
11 665.663 759.718 756.295 727.225333 53.342009

Total avg: 914.5874

Only migrations over the 1 GB/s network:

Trial

Only
Migration /

No HPL
1Mig 1Gb

Only
Migration -

No HPL 1Gb STDEV
1 120.95 121.5756 0.46039907
2 121.933 121.5756 0.46039907
3 122.086 121.5756 0.46039907
4 121.315 121.5756 0.46039907
5 121.594 121.5756 0.46039907

 Only migrations over the 10 GB/s network:

Trial

Only
Migration /

No HPL
1Mig 10Gb

Only
Migration -

No HPL
10Gb STDEV

1 77.697 78.8242 2.317325
2 77.659 78.8242 2.317325
3 77.961 78.8242 2.317325
4 82.964 78.8242 2.317325
5 77.84 78.8242 2.317325

43

HPL 2 Migrations

 Migrations over the 10 GB/s network:

VMs
No

Migration
HPL 10Gb

2Mig
HPL 10Gb

2Mig
HPL 10Gb

2Mig
Average

10Gb
Standard
Deviation

2 869.5825 1032.948 984.135 966.547 994.5433333 34.40237277
3 723.5885 2052.009 1921.752 2208.017 2060.592667 143.3254062
4 627.352 730.713 2339.139 1906.095 1658.649 832.2744088
5 573.7115 1919.022 2273.222 2128.555 2106.933 178.0871785
6 563.571 2099.297 1969.729 2012.553 2027.193 66.01298248
7 524.4775 2117.096 2198.703 2067.27 2127.689667 66.35380699
8 451.0415 1726.265 727.418 1719.841 1391.174667 574.8391091
9 393.8645 1678.11 566.699 509.192 918.0003333 658.9019599

10 417.175 3720.423 1392.381 509.669 1874.157667 1658.709402
11 430.825 842.734 798.747 890.268 843.9163333 45.77195423

Total avg: 1600.284967

 Migrations over the 1 GB/s network:

VMs
HPL 1Gb

2Mig
HPL 1Gb

2Mig
HPL 1Gb

2Mig
Average

1Gb
Standard
Deviation

2 1055.113 1193.305 1161.571 1136.663 72.38483
3 2145.32 2133.871 1849.646 2042.94567 167.50027
4 1069.749 2087.071 1975.596 1710.80533 557.96199
5 2352.447 2521.684 2001.878 2292.003 265.122
6 2121.624 2052.887 2229.658 2134.723 89.110518
7 2057.786 1877.439 2073.561 2002.92867 108.96309
8 1872.194 1706.541 864.901 1481.212 540.1293
9 742.428 1868.171 1484.121 1364.90667 572.26163

10 1515.983 1417.059 1177.923 1370.32167 173.80859
11 1140.127 1131.308 1609.787 1293.74067 273.73967

Total avg: 1683.02497

Only migrations over the 1 GB/s network:

Trial
JM 2Mig

1Gb

Only
Migration

1Gb STDEV
1 72.254 72.7206 1.26950868
2 74.438 72.7206 1.26950868
3 72.589 72.7206 1.26950868
4 71.013 72.7206 1.26950868
5 73.309 72.7206 1.26950868

44

Only migrations over the 10 GB/s network:

Trial
JM 2Mig

10Gb

Only
Migration

10Gb STDEV
1 49.102 49.3738 0.91501
2 50.294 49.3738 0.91501
3 49.252 49.3738 0.91501
4 50.177 49.3738 0.91501
5 48.044 49.3738 0.91501

 HPL 4 Migrations

 Migrations over the 10 GB/s network:

VMs
No

Migration
HPL 10Gb

4Mig
HPL 10Gb

4Mig
HPL 10Gb

4Mig Average
Standard
Deviation

2 869.5825 953.006 956.358 965.836 958.4 6.654287941
3 723.5885 827.81 811.693 831.379 823.6273333 10.48835899
4 627.352 677.587 1857.378 677.614 1070.859667 681.1448573
5 573.7115 2031.165 1900.849 3355.042 2429.018667 804.602371
6 563.571 660.65 1917.482 1891.75 1489.960667 718.3193373
7 524.4775 2090.633 2102.622 2026.028 2073.094333 41.1990756
8 451.0415 1884.152 506.695 1756.139 1382.328667 761.0174575
9 393.8645 501.111 1929.078 476.334 968.841 831.6819086

10 417.175 3879.858 505.106 1244.099 1876.354333 1773.992072
11 430.825 787.316 868.424 494.211 716.6503333 196.8605336

1378.9135

Migrations over the 1 GB/s network:

VMs
HPL 1Gb

4Mig
HPL 1Gb

4Mig
HPL 1Gb

4Mig Average
Standard
Deviation

2 950.693 955.552 961.631 955.958667 5.4803279
3 806.933 823.824 2037.449 1222.73533 705.61328
4 685.487 685.585 697.159 689.410333 6.7107211
5 2219.384 738.274 1981.996 1646.55133 795.4961
6 656.089 666.461 1982.779 1101.77633 762.98831
7 1923.229 2002.605 2027.665 1984.49967 54.521297
8 1856.984 511.282 3431.656 1933.30733 1461.6823
9 3750.203 1627.217 1590.269 2322.563 1236.5105

10 1118.68 1348.458 1524.314 1330.484 203.41346
11 747.886 769.763 3849.828 1789.159 1784.6252

1497.6445

45

Only migrations over the 1 GB/s network:

JM 4Mig
1Gb

Only
Migration

1Gb STDEV

48.051 48.3916 0.60096031

48.008 48.3916 0.60096031

49.374 48.3916 0.60096031

48.565 48.3916 0.60096031

47.96 48.3916 0.60096031

 Only migrations over the 10 GB/s network:

JM 4Mig
10Gb

Only
Migration

10Gb STDEV

37.808 38.3646 1.218796

40.284 38.3646 1.218796

38.509 38.3646 1.218796

38.24 38.3646 1.218796

36.982 38.3646 1.218796

46

Appendix B

OMEN Dataset

Running time of OMEN with no live migration during the run time:

VMs

No
Migration

OMEN

No
Migration

OMEN

No
Migration

OMEN

Average
Only

OMEN -
No

Migration
Standard

Dev.
2 1197.449 1184.191 1205.759 1195.7997 10.878184
3 807.335 808.262 806.193 807.26333 1.0363601
4 610.02 610.996 609.185 610.067 0.9064144
5 493.444 497.845 490.004 493.76433 3.9303028
6 410.443 423.719 412.022 415.39467 7.2521862
7 384.856 389.441 384.259 386.18533 2.8352471
8 346.415 345.46 344.186 345.35367 1.118298
9 293.22 290.561 291.451 291.744 1.3534981

10 250.337 256.372 249.319 252.00933 3.8123125
11 260.909 263.723 259.166 261.266 2.2993801

Average: 505.88473

OMEN 1 Migration
 Migration over 10Gb/s network:

VMs No Migration

OMEN
10Gb
1Mig

OMEN
10Gb
1Mig

OMEN
10Gb
1Mig

Average
10Gb

Standard
Deviation

2 1195.7997 1315.522 1272.361 1266.742 1284.875 26.6893658
3 807.26333 886.192 873.561 876.911 878.888 6.543465213
4 610.067 680.065 675.563 680.737 678.78833 2.813356951
5 493.76433 563.682 561.434 557.396 560.83733 3.185193453
6 415.39467 511.154 473.391 470.632 485.059 22.64099797
7 386.18533 422.915 422.378 417.409 420.90067 3.03576915
8 345.35367 397.098 388.385 393.549 393.01067 4.381374708
9 291.744 365.045 360.376 357.161 360.86067 3.964283079

10 252.00933 321.555 350.561 326.792 332.96933 15.45822093
11 261.266 306.478 297.189 300.999 301.55533 4.669422912

Total avg: 569.77443

47

Migrations over the 1 GB/s network:

VMs

OMEN
1Gb
1Mig

OMEN
1Gb
1Mig

OMEN
1Gb
1Mig

Average
1Gb

Standard
Deviation

2 1276.98 1264.125 1267.961 1269.689 6.599346963
3 886.362 883.215 882.493 884.0233 2.057265742
4 678.136 686.587 685.771 683.498 4.661517671
5 567.012 571.911 561.963 566.962 4.974188477
6 480.807 485.757 494.212 486.9253 6.778440701
7 450.741 453.788 445.263 449.9307 4.319882676
8 407.761 406.953 411.066 408.5933 2.179168725
9 369.84 376.406 370.623 372.2897 3.586282523

10 332.262 345.533 349.535 342.4433 9.041496687
11 306.323 306.462 310.238 307.6743 2.22128799

Total avg: 577.2029

Only migrations over the 1 GB/s network:

Trial

Only Mig. /
No OMEN

1Gb
Av Only Mig -

No OMEN 1Gb STDEV
1 128.992 129.4092 1.135838325
2 130.657 129.4092 1.135838325
3 127.884 129.4092 1.135838325
4 130.413 129.4092 1.135838325
5 129.1 129.4092 1.135838325

 Only migrations over the 10 GB/s network:

Trial

Only Mig. /
No OMEN
1Mig 10Gb

Av Only Mig. -
No OMEN

10Gb STDEV
1 98.763 87.5708 6.420597
2 86.208 87.5708 6.420597
3 83.778 87.5708 6.420597
4 86.16 87.5708 6.420597
5 82.945 87.5708 6.420597

48

OMEN 2 Migration
 Migration over 10Gb/s network:

VMs
No

Migration

OMEN
10Gb
2Mig

OMEN
10Gb
2Mig

OMEN
10Gb
2Mig

Average
10Gb

Standard
Deviation

2 1195.7997 1240.584 1234.866 1238.883 1238.111 2.936131639
3 807.26333 867.433 856.945 863.838 862.73867 5.329721975
4 610.067 655.1024 658.284 658.862 657.41613 2.024485726
5 493.76433 546.735 539.38 544.237 543.45067 3.740019563
6 415.39467 459.155 466.206 462.168 462.50967 3.537895184
7 386.18533 427.713 432.07 431.806 430.52967 2.442873786
8 345.35367 392.597 391.189 385.626 389.804 3.686106211
9 291.744 347.014 348.073 348.593 347.89333 0.804686481

10 252.00933 318.754 322.514 321.648 320.972 1.969043423
11 261.266 290.63 293.22 299.151 294.33367 4.368300623

Total avg: 554.77588

Migrations over the 1 GB/s network:

VMs

OMEN
1Gb
2Mig

OMEN
1Gb
2Mig

OMEN
1Gb
2Mig

Average
1Gb

Standard
Deviation

2 1238.521 1260.819 1246.106 1248.482 11.3372939
3 870.944 873.953 872.191 872.3627 1.511827481
4 669.253 669.947 676.402 671.8673 3.942437106
5 555.075 547.688 556.465 553.076 4.717619421
6 471.96 471.02 478.906 473.962 4.307348604
7 439.989 438.555 437.41 438.6513 1.292195935
8 395.666 395.897 390.421 393.9947 3.097040577
9 359.205 353.452 354.952 355.8697 2.984264789

10 325.034 325.057 330.554 326.8817 3.18035475
11 306.528 307.962 318.33 310.94 6.439966149

Total avg: 564.6087

Only migrations over the 1 GB/s network:

Trial
Only Mig. / No

OMEN 1Gb

Av. Only Mig -
No OMEN

1Gb STDEV
1 70.468 71.49 0.745166089
2 71.952 71.49 0.745166089
3 71.206 71.49 0.745166089
4 72.425 71.49 0.745166089
5 71.399 71.49 0.745166089

49

Only migrations over the 10 GB/s network:

Trial

Only Mig. /
No OMEN
1Mig 10Gb

Av. Only
Mig. - No

OMEN 10Gb STDEV
1 54.606 54.5354 0.509359
2 53.872 54.5354 0.509359
3 55.296 54.5354 0.509359
4 54.459 54.5354 0.509359
5 54.444 54.5354 0.509359

 OMEN 4 Migration

 Migration over 10Gb/s network:

VMs No Migration

OMEN
10Gb
4Mig

OMEN
10Gb
4Mig

OMEN
10Gb
4Mig

Average
10Gb

Standard
Deviation

2 1195.7997 1230.649 1226.999 1228.282 1228.6433 1.851633423
3 807.26333 846.591 843.924 849.927 846.814 3.007706601
4 610.067 648.235 651.465 652.258 650.65267 2.130973095
5 493.76433 545.789 543.665 553.207 547.55367 5.009788153
6 415.39467 503.515 456.421 469.216 476.384 24.35151693
7 386.18533 407.772 402.866 405.093 405.24367 2.456467857
8 345.35367 352.434 359.792 364.824 359.01667 6.231282479
9 291.744 364.009 341.967 347.124 351.03333 11.5292934

10 252.00933 319.67 316.866 323.081 319.87233 3.112436398
11 261.266 306.834 308.032 298.798 304.55467 5.021275668

Total avg: 548.97683

Migrations over the 1 GB/s network:

VMs

OMEN
1Gb
4Mig

OMEN
1Gb
4Mig

OMEN
1Gb
4Mig

Average
1Gb

Standard
Deviation

2 1218.112 1237.043 1236.819 1230.658 10.86573196
3 846.746 853.167 846.633 848.8487 3.74021314
4 657.828 656.586 655.376 656.5967 1.226034801
5 552.434 563.88 547.543 554.619 8.384811328
6 463.374 475.562 476.506 471.814 7.324478411
7 403.786 402.054 411.5 405.78 5.028792698
8 366.156 364.076 375.747 368.6597 6.225296807
9 358.493 347.544 358.2 354.7457 6.238546652

10 332.168 327.519 321.149 326.9453 5.53185415
11 306.927 302.859 303.637 304.4743 2.159398373

Total avg: 552.3141

50

Only migrations over the 1 GB/s network:

Trial

Only Mig. /
No OMEN

1Gb

Av. Only Mig
- No OMEN

1Gb STDEV
1 47.815 48.0642 1.236962691
2 46.139 48.0642 1.236962691
3 48.155 48.0642 1.236962691
4 48.812 48.0642 1.236962691
5 49.4 48.0642 1.236962691

Only migrations over the 10 GB/s network

Trial

Only Mig. /
No OMEN
1Mig 10Gb

Av. Only
Mig. - No

OMEN 10Gb STDEV
1 40.348 39.2704 1.029436
2 40.313 39.2704 1.029436
3 38.667 39.2704 1.029436
4 38.024 39.2704 1.029436
5 39 39.2704 1.029436

OMEN 8 Migration

 Migration over 10Gb/s network:

VMs No Migration

OMEN
10Gb
8Mig

OMEN
10Gb
8Mig

OMEN
10Gb
8Mig

Average
10Gb

Standard
Deviation

2 1195.7997 1214.091 1204.523 1214.776 1211.13 5.732071441
3 807.26333 844.53 832.183 839.914 838.87567 6.238646034
4 610.067 633.99 640.419 639.337 637.91533 3.442217648
5 493.76433 563.801 527.675 581.607 557.69433 27.47969595
6 415.39467 486.602 486.683 493.585 488.95667 4.008458848
7 386.18533 415.335 423.913 412.853 417.367 5.803246333
8 345.35367 356.332 354.664 347.658 352.88467 4.602617661
9 291.744 345.542 311.81 352.817 336.723 21.87977566

10 252.00933 314.36 322.322 321.125 319.269 4.293240385
11 261.266 336.701 296.118 329.989 320.936 21.75344982

Total Avg: 548.17517

Migrations over the 1 GB/s network:

VMs

OMEN
1Gb
8Mig

OMEN
1Gb
8Mig

OMEN
1Gb
8Mig

Average
1Gb

Standard
Deviation

2 1212.777 1205.132 1222.792 1213.567 8.856465153
3 829.201 829.551 833.651 830.801 2.474368606
4 670.845 641.132 636.217 649.398 18.73551875

51

5 530.698 534.61 566.963 544.090333 19.90465012
6 492.356 489.016 502.19 494.520667 6.848569583
7 419.279 431.412 409.537 420.076 10.95925695
8 349.119 359.872 350.765 353.252 5.791858855
9 315.079 317.531 347.729 326.779667 18.18403149

10 317.45 321.011 331.045 323.168667 7.049656044
11 303.413 297.456 332.723 311.197333 18.87822042

Total Avg: 546.685067

Only migrations over the 1 GB/s network:

Trial

Only Mig. /
No OMEN

1Gb

Av. Only Mig
- No OMEN

1Gb STDEV
1 44.964 42.7602 3.366060784
2 43.559 42.7602 3.366060784
3 45.548 42.7602 3.366060784
4 42.63 42.7602 3.366060784
5 37.1 42.7602 3.366060784

Only migrations over the 10 GB/s network

Trial

Only Mig. /
No OMEN
1Mig 10Gb

Av. Only
Mig. - No

OMEN 10Gb STDEV
1 37.983 37.7784 1.225916
2 36.774 37.7784 1.225916
3 37.991 37.7784 1.225916
4 36.532 37.7784 1.225916
5 39.612 37.7784 1.225916

52

Appendix C

Bash Shell Script

#!/bin/bash
This Bash shell script executes live migration of OpenVZ VMs,
and controls the execution of OMEN and/or HPL parallel benchmarks
over two different network fabrics - 1Gb/s and/or 10Gb/s
By Fabian Romero
Fall 2009

#Debugging Function:
debug ()
{
 if [["$DEBUG" == "true"]]; then
 if [["$1" == "on"]]; then
 set -x
 else
 set +x
 fi
 fi
}

############## Migration Steps ################

myAA ()
{
 FPROB="MyriAA"
 echo
 TM1=$(date +%F | sed 's/-//g')
 TM2=$(date +%T | sed 's/://g')
 echo
 echo "Starting migration cycle 1..."
 ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]}
$VM1 >> /tmp/$FPROB-$TM1-$TM2.txt" &
 pid=$!
 ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM2
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 ppdd=$!
ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM3
>> /tmp/$FPROB-$TM1-$TM2.txt" &
ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM4
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 #wait
 wait $pid
 wait $ppdd
 echo "cycle 1 completed"

}

myBA ()
{
 FPROB="MyriBA"
 echo

53

 TM1=$(date +%F | sed 's/-//g')
 TM2=$(date +%T | sed 's/://g')
 echo
 echo "Starting migration cycle 2..."
 ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]}
$VM1 >> /tmp/$FPROB-$TM1-$TM2.tx " &
 pid=$!
 ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM2
>> /tmp/$FPROB-$TM1-$TM2.tx " &
 ppdd=$!
ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM3
>> /tmp/$FPROB-$TM1-$TM2.txt" &
ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM4
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 #wait
 #pid=$!
 wait $pid
 wait $ppdd
 echo "cycle 2 completed"

}

myCopyAA ()
{
 FPROB="MyriCAA"
 echo
 TM1=$(date +%F | sed 's/-//g')
 TM2=$(date +%T | sed 's/://g')
 echo
 echo "Starting migration cycle 3..."
 ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]}
$VM1 >> /tmp/$FPROB-$TM1-$TM2.txt" &
 pid=$!
 ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM2
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 ppdd=$!
ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM3
>> /tmp/$FPROB-$TM1-$TM2.txt" &
ssh root@${HOST[7]} "vzmigrate -r no --online -v ${HOST[8]} $VM4
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 #wait
 #pid=$!
 wait $pid
 wait $ppdd
 echo "cicle 3 completed"
}

myCopyBA ()
{
 FPROB="MyriCBA"
 echo
 TM1=$(date +%F | sed 's/-//g')
 TM2=$(date +%T | sed 's/://g')
 echo
 echo "Starting migration cicle 4..."
 ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]}
$VM1 >> /tmp/$FPROB-$TM1-$TM2.tx " &

54

 pid=$!
 ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM2
>> /tmp/$FPROB-$TM1-$TM2.tx " &
 ppdd=$!
ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM3
>> /tmp/$FPROB-$TM1-$TM2.txt" &
ssh root@${HOST[8]} "vzmigrate -r no --online -v ${HOST[7]} $VM4
>> /tmp/$FPROB-$TM1-$TM2.txt" &
 #wait
 #pid=$!
 wait $pid
 wait $ppdd
 echo "last cycle 4 completed, waiting for OMEN to finish"
}

########## LAM/MPI HPL or OMEN execution ###########
mpi2 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri2/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/2/' $HPL
 echo
}

mpi3 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri3/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/3/' $HPL
 echo
}

mpi4 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri4/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/4/' $HPL
 echo
}

mpi5 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri5/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/5/' $HPL
 echo
}

mpi6 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri6/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/6/' $HPL
 echo
}

55

mpi7 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri7/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/7/' $HPL
 echo
}

mpi8 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri8/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/8/' $HPL
 echo
}

mpi9 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri9/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/9/' $HPL
 echo
}

mpi10 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri10/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/10/' $HPL
 echo
}

mpi11 ()
{
 echo "Modifying HPL.dat..."
 ssh bob@${VMHOST[1]} sed -i -e '3s/[a-z]*[0-9]*/myri11/' $HPL
 ssh bob@${VMHOST[1]} sed -i -e '12s/[0-9]*/11/' $HPL
 echo
}

############ Migration ##########################
migration ()
{
 echo
 echo "**** Myranet *******"
 myAA
 #myAB
 myBA
 #myBB
 myCopyAA
 #myAB
 myCopyBA
 #myBB
}

testo ()
{

56

 echo
 echo "TEST Executing migration migration migration"
 echo "Executing migration migration migration"
 echo "Executing migration migration migration"
 echo "Executing migration migration migration"
 echo "Executing migration migration migration"
}

###################### TODO #####################
todo ()
{
 for((J=3; J<=3; J++))
 do
 for((I=9; I<=11; I++))
 do
 TM1=$(date +%F | sed 's/-//g')
 TM2=$(date +%T | sed 's/://g')
 echo
 echo
 echo "--------- STARTING NEW PROCCESS I= $I ----------"
 echo
 echo "Wait: adjusting mpdboot to n = $I ..."
 ssh bob@${VMHOST[1]} "mpdboot -n $I -f mpd$I.hosts" &
 wait
 echo "Running mpirun..."
 INICIO=$(date +%s.%N)
 ssh bob@${VMHOST[1]} "mpirun -np $I ./OMEN_steele-pgi64-mpich2
transmission.cmd >> $PA1/OMGigDos$J-$I-$TM1-$TM2" &
 migration
 wait
 FIN=$(date +%s.%N)
 DIFFE=$(echo "$FIN - $INICIO" | bc)
 echo "difference took $DIFFE secs" >> $LPATH/OMEN-GigDos$J-$I-
$TM1-$TM2

 done
 done
}

############ This is the MAIN script ################
echo
debug on
HPL="/home/bob/HPL.dat"
PA1="/home/bob"
LPATH="/root/ovz-mig"
echo
PWDIR="/root/ovz-mig"
echo "Output files will be in: ${VMHOST[1]} - $PA1"
TM=20 #This is the delay time in seconds
FPROB="GigaA"

######## 1Gb-Giga hosts ##########
HOST[7]=128.210.135.164
NAME[7]="openvz164"
HOST[8]=128.210.135.165

57

NAME[8]="openvz165"
VMHOST[1]=128.210.135.206
VM1=730
VM2=731
#################################

10Gb-myri hosts ##########
#HOST[7]=192.168.0.101
#NAME[7]="Myr-openvz164"
#HOST[8]=192.168.0.105
#NAME[8]="Myr-openvz165"
#VMHOST[1]=128.210.135.206
#VM1=730
#VM2=731
#################################
todo
echo "Output files are in: $LPATH"

debug off
Script completed

	Purdue University
	Purdue e-Pubs
	7-14-2010

	Live Migration Of Parallel Applications
	Raul Fabian Romero

	CHAPTER 1. INTRODUCTION
	1.1. Background
	1.2. Significance
	1.3. Scope
	1.4. Personal Statement of Research Interest
	1.5. Research Question
	1.6. Assumptions
	1.7. Limitations
	1.8. Delimitations
	1.9. Definitions of Key Terms
	1.10. Summary

	CHAPTER 2. REVIEW OF RELEVANT LITERATURE
	2.1. Approach to This Review
	2.2. Related Work
	2.3. Summary

	CHAPTER 3. FRAMEWORK AND METHODOLOGY
	3.1. Theoretical Framework
	3.1.1. Approach to Research and Methodology
	3.1.2. Hypothesis

	3.2. Method
	3.2.1. Population
	3.2.2. Sample
	3.2.3. Data Collection
	3.2.4. Data Instruments
	3.2.5. Data Analysis

	3.3. Timeline and Dates
	3.4. Variables

	CHAPTER 4. DATA ANALYSIS
	4.1. Correctness
	4.2. Performance
	4.2.1. Number of Processors
	4.2.2. Time to complete benchmark with migrations
	4.2.2.1. HPL based
	4.2.2.2. OMEN based
	4.2.2.3. Runtime without a parallel benchmark

	4.3. Summary

	CHAPTER 5. CONCLUSIONS, DISCUSSIONS, AND FUTURE RECOMMENDATIONS
	5.1. Conclusions
	5.2. Discussion
	5.3. Faults Experienced
	5.4. Future Recommendations
	5.5. Summary

