
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

7-12-2010

Efficient Storage of Semantic Web Data
Mihir S. Wagle
mwagle@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Wagle, Mihir S., "Efficient Storage of Semantic Web Data" (2010). College of Technology Masters Theses. Paper 26.
http://docs.lib.purdue.edu/techmasters/26

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Mihir Wagle

Efficient Storage of Semantic Web Data

Master of Science

Jeffrey Brewer

James Mohler

John Springer

Jeffrey Brewer

Gary Bertoline 7/9/10

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Efficient Storage of Semantic Web Data

Master of Science

Mihir Wagle

07/09/10

EFFICIENT STORAGE OF SEMANTIC WEB DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mihir Wagle

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2010

Purdue University

West Lafayette, Indiana

ii

To my parents for their continuous love and support.

iii

ACKNOWLEDGMENTS

I feel fortunate to be a part of the Computer and Information Technology

department at Purdue University. I am deeply grateful to my chair, Prof. Jeffrey

Brewer for his invaluable guidance and support. I especially appreciate his kind

and considerate nature and want to thank him for being so patient throughout my

studies.

 I would like to thank Prof. John Springer and Prof. James Mohler for their

insightful comments and suggestions. I would also like to thank, Prof. Nathan

Hartman and Micah Bojrab for providing me with access to their laboratory in

order to perform the experiments.

iv

TABLE OF CONTENTS

 Page
LIST OF TABLES ... v
LIST OF FIGURES .. vi
ABSTRACT ... vii
CHAPTER 1. INTRODUCTION .. 1

1.1. Scope ... 1
1.2. Significance .. 2
1.3. Research Question ... 3
1.4. Assumptions ... 3
1.5. Limitations ... 4
1.6. Delimitations ... 4
1.7. Definitions ... 5
1.8. Summary .. 6

CHAPTER 2. LITERATURE REVIEW .. 7
2.1. Motivation and existing techniques ... 7
2.2. Summary .. 16

CHAPTER 3. FRAMEWORK AND EVALUATION .. 17
3.1. Framework .. 17
3.2. Evaluation ... 18
3.3. Summary .. 27

CHAPTER 4. DATA ANALYSIS ... 28
4.1. Graphical representation ... 28
4.2. Analysis and explanation .. 35
4.3. Summary .. 36

CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS .. 37
5.1. Conclusions .. 37
5.2. Discussion .. 38
5.3. Future Directions .. 39
5.4. Summary .. 39

LIST OF REFERENCES .. 40

v

LIST OF TABLES

Table Page
Table 3.1 Query response time for LUBM(1,0) ... 23
Table 3.2 Query response time for LUBM(5,0) ... 24
Table 3.3 Query response time for LUBM(10,0) ... 24
Table 3.4 Query response time for LUBM(20,0) ... 25
Table 3.5 Query response time for LUBM(50,0) ... 26
Table 3.6 Time taken to load the dataset ... 27

vi

LIST OF FIGURES

Figure Page
Figure 4.1 Scatter plot for query 1 for LUBM(1,0) ... 28
Figure 4.2 Query response time for LUBM(1,0) .. 29
Figure 4.3 Query response time for LUBM(5,0) .. 30
Figure 4.4 Query response time for LUBM(10,0) .. 31
Figure 4.5 Query response time for LUBM(20,0) .. 32
Figure 4.6 Query response time for LUBM(50,0) .. 33
Figure 4.7 Time taken to load the dataset .. 34

vii

ABSTRACT

Wagle, Mihir S. M.S., Purdue University, August, 2010. Efficient Storage of
Semantic Web Data. Major Professor: Jeffrey Brewer.

With the adoption of RDF (Resource Description Framework), OWL (Web

Ontology Language) and SPARQL (SPARQL Protocol And RDF Query

Language) as standards for the semantic web, it has become essential to look

into datawarehousing systems that are dedicated to working with the RDF data

(World Wide Web Consortium). Traditional datawarehouses have focused on

relational databases and have been optimized to work with the relational data.

However, working with RDF data involves exploiting the triple nature of the data.

As the size of the database increases, the time required to evaluate the queries

on the database increases as well (Rohloff & Dean, et al., 2007). However, not

only do the users need access to information as soon as possible, but also the

information that is presented to them needs to be relevant to their search (Spink

& Wolfram, et al., 2000). Through this project, the author looked into the different

storage techniques for RDF data and attempted to strike a balance between the

access time for information retrieval and parameters such as the storage space

needed for the data and the complexity of the queries. BigOWLIM and Pellet

which are built around open source frameworks such as Jena and Sesame

viii

respectively were used for this study. The work done in this project is of

significance mainly to small and medium enterprises since small datasets having

about a million triples have been considered.

1

CHAPTER 1. INTRODUCTION

This chapter introduces the study with the scope, significance, research

question and the definition of key terms. The assumptions, limitations and

delimitations of the work are also stated thereafter.

1.1.

The Resource Description Framework (RDF) schema is primarily used for

storing and working with information on the World Wide Web. RDF is primarily

made up of triples having a specific form (subject, object, predicate). The Web

Ontology Language (OWL) provides a layer of abstraction and describes the

relationships between these three RDF components. OWL enables one to query

data from heterogeneous sources. The SPARQL Protocol and RDF Query

Language (SPARQL) are an implementation of OWL and are similar to the

Structured Query Language (SQL) that is used for relational databases. Efforts

have been made to exploit the similarities between SQL and SPARQL while

designing datawarehouses. In fact, the current implementations of many

datawarehouses support both – SQL as well as SPARQL. This project looked

into the different storage techniques for RDF data and attempted to strike a

Scope

2

balance between the access time for information retrieval and parameters such

as storage space needed and the complexity of the queries. The focus was

primarily on the RDF data and not on the relational data that one comes across

in general datawarehouses.

1.2.

Organizations have traditionally used relational databases to store data. In

October 2009, the World Wide Web Consortium (W3C) accepted RDF and OWL

as the standard for the storage of the World Wide Web data (World Wide Web

Consortium). Since RDF and OWL have been accepted as the standard for the

World Wide Web, it becomes important to look into systems that are dedicated to

working with the RDF data. Although, the RDF format has been accepted as the

format for the World Wide Web, essentially it could even be used for storing large

amounts of data that is related to a particular corporation or enterprise

(Konopnicki & Shmueli, et al., 2005).

Significance

The key fields on which the search terms are based in datawarehouses

are usually indexed. Indices have been implemented in datawarehouses for

faster information retrieval. However, storing these indices becomes an

additional overhead. Prior work has focused on index compression techniques

for datawarehouses in order to reduce the disk space (Ferragina & Gonzalez, et

al., 2009). However, compressing and decompressing these indices in real-time

can lead to a time delay in information retrieval. General purpose

datawarehouses use horizontal partitioning in order to store the separate tuples

3

of information. Abadi and Marcus et al. (2009) attempted to partition the data on

the basis of indexed columns. While vertical partitioning of the data speeds up

the retrieval process, it is only applicable for a subset of RDF data that makes

use of property tables. As the size of the database increases, the time required to

evaluate the queries on the database increases as well (Rohloff & Dean, et al.,

2007). However, users need answers to their queries as fast as possible and the

time required for information retrieval is of prime importance to them (Spink &

Wolfram, et al., 2000). Thus, there is a need to find a general approach that is

applicable across the different types of datasets. Hence, it becomes important to

determine and work on a trade-off between access time and storage space.

1.3.

What is the impact on the query response time of RDF data due to

parameters such as the input size of the data and the complexity of the queries?

Research Question

1.4.

The following are the assumptions in the study:

Assumptions

1. The LUBM (Lehigh University BenchMark) dataset was used to generate the

RDF data and was assumed to be a true representation of the homogeneous

data in an RDF store (Guo & Pan, et al., 2004).

2. The system was assumed to be a standalone system (i.e., there did not exist

multiple users querying the data store simultaneously).

4

1.5.

The following are the limitations of the study:

Limitations

1. The focus was primarily on the RDF data and not on the relational data that

one comes across in general data warehouses (i.e., the author did not take

into account a general purpose database).

2. The author considered the RDF data and the Web Ontology Language for

querying the RDF data as the standard for the World Wide Web. The author

did not attempt to look into any alternate methods for the World Wide Web.

3. Although the author varied the storage space that was needed for the data,

the focus of this study was essentially in terms of the complexity of the

queries.

4. Stand-alone systems have been used for this project i.e., the systems do not

take into account any network related problems.

1.6.

The following are the delimitations of the study:

Delimitations

1. The author did not take into account datasets other than the LUBM dataset.

2. The editor, Eclipse was used for the system involving Pellet. Similarly the

Sesame workbench was used for the system involving BigOWLIM. The

author did not take into account the impact that these systems had on the test

results of the study.

5

1.7.

• Resource Description Framework (RDF) – RDF is a standard model for

data interchange on the Web. RDF has features that facilitate data

merging even if the underlying schemas differ, and it specifically supports

the evolution of schemas over time without requiring all the data

consumers to be changed. RDF extends the linking structure of the Web

to use URIs to name the relationship between things as well as the two

ends of the link. This is usually referred to as a triple having the form

(subject, object, predicate). Using this simple model, it allows structured

and semi-structured data to be mixed, exposed, and shared across

different applications (Groppe & Ebers, et al., 2009).

Definitions

• Web Ontology Language (OWL) – OWL builds on RDF and RDF Schema

and adds more vocabulary for describing properties and classes. It

incorporates features such as relations between classes (e.g.,

disjointness), cardinality (e.g., "exactly one"), equality, characteristics of

properties (e.g. symmetry), and enumerated classes. It essentially

describes the relationships between the three RDF components (Laborda

& Conrad, 2005).

• SPARQL Protocol and RDF Query Language (SPARQL) – It is the query

language that is primarily used for querying the RDF data. SPARQL can

be used to express queries across diverse data sources, whether the data

is stored natively as RDF or viewed as RDF via middleware. SPARQL

contains capabilities for querying required and optional graph patterns

6

along with their conjunctions and disjunctions. (Neumann & Weikum,

2008).

• Volume of a query: A low-volume query is one where the number of query

results is very small (less than 5%) relative to the number of triples in the

triple-store (Guo & Pan, et al., 2004). Conversely, a high-volume query is

one that returns a large portion of the stored triples in response to a query.

• Complexity of a query: A low-complexity query is one that requires very

little processing power to complete, while a high-complexity query is one

that requires substantial computing power to complete.

1.8.

This chapter provided an overview to the research work, including scope,

significance, research question and definitions. The next chapter outlines the

motivations for using RDF data. Also, it provides an overview of the current

techniques used for storing the RDF data.

Summary

7

CHAPTER 2. LITERATURE REVIEW

This chapter talks about the work done by other researchers in this field. It

provides the background for the work being done by the author.

2.1.

The study conducted by Spink, et al. in 2000 looked into the querying

habits of users over the World Wide Web – their preferences and the search

query terms entered by them. The study involved surveys of users using the

Internet for finding information from popular search engines like Google, MSN,

Yahoo, etc. The survey showed that people, especially those without a technical

background rarely went beyond the top 10 results that the search engine

provided. It clearly showed that the users were more concerned with getting the

correct top few results rather than going through all the links that the search

engines provided. This introductory paper, clearly demonstrating the user focus

on precision over recall, showed the need to delve deeper into the field of

information retrieval in order to get the top results correct without making the

users wait for a long time to get to the information that they are looking for (Spink

& Wolfram, et al., 2000). Their work clearly demonstrates the importance of

rapidly getting the accurate results.

Motivation and existing techniques

8

The study carried out by Dong and Halevy in 2007 looked into the basic

data storage methods that are predominantly used for the World Wide Web. It

delved deeper into the inverted list structure for the Semantic Web as well as

extensions to it that could help in efficient retrieval of data. Dong and Halevy

indexed heterogeneous data from multiple sources through a central (virtual)

triple store, so as to support queries that combine keywords and structural

specifications. The study talked about research methods that were designed to

support flexible querying over databases. It showed that incorporating structure

into inverted lists could considerably speed up query answering. It also, showed

methods that not only allow the users to specify query structure when they can,

but also allows them to fall back on keywords in the absence of a fixed

framework, could potentially be of prime importance. Dong and Halevy proposed

a hybrid index that combined the strengths of the following two approaches:

• Dup-ATIL: duplicating a row that includes an attribute name for each of its

ancestors in the hierarchy

• Hier-ATIL: keyword in each row includes the entire hierarchy path

The main contribution of their study was that it underscored the

importance of inverted lists, even if in the modified form, when it comes to

efficient querying over heterogeneous data sources. The author of this study has

built further upon this work and looked into the different ways for storage of data

structures that support efficient querying over heterogeneous data sources.

Groppe and Ebers et al. (2009) looked into existing work for languages

that are used to query for information over the World Wide Web. While there is

9

SQL (Structured Query Language) for structured databases, there was a need to

identify querying languages for unstructured and semi-structured data. The

author came across the RDF (Resource Description Framework) for working with

unstructured data. RDF represents the basic support to write metadata on Web

resources and to grant interoperability among heterogeneous applications when

exchanging these metadata. The author then focused on the similarities and

differences between SQL and SPARQL (SPARQL Protocol and RDF Query

Language) when it comes to querying the RDF data. While there are many

similarities between SQL and SPARQL, SPARQL has its own characteristics

different from SQL, that could be exploited for optimizing the SPARQL queries.

The approach of Groppe & Ebers, et al., of dynamically restricting the triples and

working with indices can help to efficiently perform computations on the RDF

data.

The use of RDF can be in a controlled environment such as an enterprise

or an uncontrolled environment such as the World Wide Web. The author then

looked into existing research that talked about the use of search indices to

aggregate data from all kinds of applications and servers (Konopnicki & Shmueli,

et al., 2005). Their study suggested that it was important to integrate information

from a variety of sources including but not limited to objects, documents,

semantic information, XML and other text data. The study by Konopnicki &

Shmueli focused on the requirements of a query language in order to harness

this unstructured, heterogeneous data. This study demonstrated that RDF data

10

could be used for enterprises and did not necessarily have to be restricted to the

World Wide Web.

Relational OWL (Web Ontology Language) provides a layer of abstraction

for querying data from heterogeneous sources. Laborda and Conrad (2005)

looked into the representation format for both, schema and data information

based on the Web Ontology Language. Their aim was to enable seamless

integration of databases from different formats that could provide for scalable

processing of join operations over the heterogeneous data formats. The use of

relational OWL enables us to write formal conceptualizations of domain models

(i.e., the ontology). After creating an ontology, the researchers were able to

encode knowledge about things and their inter-relationships within their specific

domain into a machine-understandable format, which could later be decoded and

interpreted. One of the primary advantages of using relational OWL is the simple

interconnectivity of existing ontologies. Two communities using different

ontologies could easily collaborate, as soon as a semantic mapping is created

between these two ontologies. This has potential applications in the field of peer-

to-peer databases. For applications where the recall value is not so important as

compared to the precision value (e.g., searching over the World Wide Web),

multiple, peer to peer databases could be used. This could drastically reduce the

access time.

The author then focused on the general compression techniques used in

databases. While structured data is different from RDF data, the underlying index

compression techniques for data storage are essentially the same. Also, there

11

has been a lot of work in the field of inverted list storage techniques (Ferragina &

Gonzalez, et al., 2009). Indices have been implemented in datawarehouses for

faster information retrieval. However, storing these indices becomes an

additional overhead. Prior work has focused on index compression techniques

for data warehouses in order to reduce the disk space. The author looked into

existing research in the field of index compression in the form of prevalent

compression algorithms such as the suffix array, Lempel Ziv index and full-text

compressed indices (Ferragina & Gonzalez, et al., 2009). The ratio of access

time to storage space provides an insight into the efficacy of the different

algorithms. However, the author observed that compressing and decompressing

these indices in real-time can lead to a performance delay in information retrieval

on account of the overhead associated with these tasks.

Web documents contain a lot of links to other documents. The Uniform

Resource Indicators (URIs) cover a significant portion of the RDF documents.

Storage space could be saved by making use of the relative paths of these

documents. General purpose compressors such as gzip neither take into account

the format of the RDF data nor the XML links that accompany the RDF data on

the World Wide Web. XML compressors can provide very high compression

rates. However, these compressors are not equipped with query processing

capabilities. Lee and Kim et al. (2008) proposed a compression mechanism that

consists of two levels based on the dictionary based encoding. The first level is to

find an URI index of an URI reference to be compressed in the URI dictionary.

The second level is to find an URI reference index and replace the URI reference

12

with URI reference index. The two level dictionary based encoding approach: one

for compressing the URI parts of URI references and the other for compressing

whole URI references looks to be quite promising. The work done by Lee and

Kim et al. (2008) focused on achieving the maximum possible compression for

RDF data by making use of the XML links that inherently accompany the data on

the World Wide Web. However, there is still a significant amount of work

remaining when it comes to compressing and de-compressing the data in real-

time for faster information retrieval. Also, their study focuses on compressing the

links in the XML data that essentially accompany the RDF data on the World

Wide Web. It does not make any attempt to look into factors that could have a

bearing on the RDF data itself.

 Abadi and Marcus et al. (2009) explored the scalability issues with respect

to current data management solutions for RDF data. They primarily focused on

two approaches in order to store the RDF data: a) the use of property tables and

b) vertical partitioning of the RDF data. The property table technique

denormalizes RDF tables by physically storing them in a wider, flattened

representation similar to traditional relational schemas. Flattening the data

involves finding sets of properties that tend to be defined together. The flattened

property table representation requires fewer joins to access, because self joins

on the subject column are eliminated. However, there are several limitations of

this approach:

• Nulls: Because few properties are defined for all subjects in the subject

cluster, the resulting join tables have many null values.

13

• Multi-valued attributes: Attributes having multiple values and many-to-

many relationships are difficult to express in a flattened representation.

• Proliferation of Union Clauses and joins: Most of the queries are not

restricted to a single property table. Querying multiple flattened tables

leads to complex union clauses and joins.

 Abadi and Marcus et al. (2009) then proposed an alternative approach of

vertically partitioning the RDF data. It involved creating a two column table for

each unique property in the RDF dataset. The first column contained subjects

that defined the property. The second column contained the object values for the

subjects. In order to evaluate the performance of vertical partitioning, they

executed queries generated by a Web-based RDF browser over a large scale

catalog of library data. Further, it was observed that if a column-oriented DBMS

(a database architected specially for the vertically partitioned case) was used

instead of a row oriented DBMS, a significant performance improvement was

observed, with querying time dropping from minutes to seconds. While vertical

partitioning speeds up the retrieval process, it is only applicable for RDF data that

makes use of property tables. The author of this project observed that there was

a need to find a general approach that was applicable across the different types

of datasets.

From the standpoint of a relational database, the constraints on scalability

and efficiency are derived from the very nature of the RDF data model, which is

based on a triple format. Weiss and Karras et al. (2008) studied the schemes that

utilize the triple nature of RDF data by indexing the RDF data in six possible

14

ways, one for each possible ordering of the three RDF elements. They created a

Hexastore with six indices because for the RDF triple of (subject, object,

predicate), 3! = 6 different orderings are possible. Each index structure in the

Hexastore was centered on one RDF element and defined a prioritization

between the other two elements. This approach exploits the triple nature of RDF

data. The vertical partitioning approach would appear as a special case of the

Hexastore where the index would be centered on the subject or object. While this

method overcomes the problem of accessing data without property tables, it also

leads to an increase in the index storage space. The author of this project

observed that a single update or insert operation would affect all six indices,

thereby slowing down the performance. This project has attempted to determine

and work on a trade-off between the access time and parameters such as

storage space and complexity of queries.

Neumann and Weikum (2008) provided an implementation of RDF data

storage that used the six index approach of the hexastore. They studied the

existing solutions that store and index the RDF triples while completely

eliminating the need for physical design tuning. Instead of making any changes

to the physical design, they focused on scalable join processing. Additionally,

Neumann and Weikum developed light weight methods for information passing

between separate joins at query run-time. These provided a highly effective filter

on the input streams of joins. Also, their work involved improving upon the

previously proposed algorithms for join-order optimization by making accurate

selectivity estimations for very large RDF graphs. The use of very fast merge

15

joins greatly improved the information retrieval time. However, their approach did

not provide a complete SPARQL implementation.

Neumann and Weikum (2008) also developed the RDF-3X engine, an

implementation of SPARQL that pursues a RISC-style architecture. RDF-3X

provided a generic solution for storing and indexing RDF triples that completely

eliminated the need for physical design tuning. It leveraged the work done by

them with respect to the fast merge join operations. Also, RDF-3X made use of a

query optimizer for choosing optimal join orders using a cost model based on

statistical synopses for entire join paths. A selectivity estimator based on

statistics for frequent paths acted as the input for the query optimizer. The author

of this project proposes to evaluate and independently test the efficacy of RDF-

3X on different datasets as a part of the further development of this work.

Guo and Pan et al. (2004) developed the LUBM (Lehigh University

Benchmark) in order to benchmark different OWL Knowledge Base Systems.

The LUBM featured an ontology for the university domain and synthetic OWL

data scalable to an arbitrary size. The benchmark helps to evaluate knowledge

base systems with respect to extensional queries over a large dataset that

commits to a single realistic ontology. Based on the benchmark, their work was

essentially focused on the scalability of systems working with RDF data. On the

other hand, this project has attempted to focus on the impact of change in query

complexity on the different OWL Knowledge Base Systems.

Rohloff and Dean et al. (2007) compared the performance of different

triple store technologies using the LUBM framework. Their work dealt with

16

different deployment scenarios where the triple store needs to load data and

respond to queries over a very large knowledge base (on the order of hundreds

of millions of triples). While their work focused on the scalability of the triple store

systems, they used proprietary technologies such as AllegroGraph and Virtuoso

for their study. Their work is useful for the large enterprises that have access to

such high performance systems.

2.2.

This chapter provided a brief overview of the motivations for the focus on

RDF data for the World Wide Web and few data storage techniques. Though

there have been widely proposed methods for the storage of RDF data in

literature, none have found widespread use in any commercial applications due

to various factors such as the access time for information retrieval and the

scalability factor on account of the overhead on storage space. The next chapter

focuses on the specific methodology and the framework developed for this study.

Summary

17

CHAPTER 3. FRAMEWORK AND EVALUATION

This chapter discusses the framework used for this project done by the

author. It also talks about the experiments conducted in order to evaluate the

performance of the system.

3.1.

The author compared the following two systems:

Framework

a. Pellet (Clark & Parsia) which is based on top of the Jena framework

(Sourceforge) and

b. BigOWLIM (BigOWLIM Corporation) which is based on top of the

Sesame framework (Aduna Corporation).

Pellet does not provide for persistent storage and performs the computations in-

memory. On the other hand BigOWLIM provides persistent storage and well as

implements disk-based reasoning. Initially the author of this project started out

with SwiftOWLIM (SwiftOWLIM Corporation) instead of BigOWLIM. The

SwiftOWLIM system provides persistent storage just like the BigOWLIM system

as they both make use of the Sesame framework. However, unlike BigOWLIM,

SwiftOWLIM performs the computations in-memory. This makes it a system that

is more comparable to Pellet. However, the author of this project observed that

18

SwiftOWLIM scaled very poorly and failed to execute even the simplest of the

queries on the most basic dataset of LUBM(1,0). Since SwiftOWLIM was not

scalable, the author of this project switched over to BigOWLIM instead.

The hardware specifications used for this project are as follows:

• 2.67 GHz Intel Core i7 – 920 Processor

• 12 GB RAM

• 8 MB Cache

• 1TB hard disk

The software specifications used for this project are as follows:

• Windows Vista Home Premium

• Java SDK 1.6 with Eclipse SDK 3.4

• Pellet 2.0.2 with Jena 2.6.2

• BigOWLIM 3.0 with Sesame 2.0

3.2.

 The author used the LUBM dataset and compared the query run-times of

the two systems mentioned above. The LUBM dataset is the standard

benchmark that has widely been adopted by major companies like Oracle to

measure the performance of Knowledge Base Systems (Oracle Corporation,

2009). Data stores like MySQL and PostgreSQL have already been tried out as

Evaluation

19

alternatives and have found to be wanting – both in terms of performance as well

as scalability (Rohloff & Dean, et al., 2007).

The author merged the relevant input files and combined them into a

single input file in order to simplify the loading process. Also, the author tested

the standard LUBM queries for both the systems. The author grouped the

queries into the following four classes:

• Class 1: Low volume, low complexity

• Class 2: Low volume, high complexity

• Class 3: High volume, low complexity

• Class 4: High volume, high complexity

The description of volume and complexity with respect to query types was taken

from the LUBM documentation and has been briefly described in section 1.7 of

chapter 1. The author ran a query of each of the four above mentioned sets as a

representative for that type. Each query was executed fifty times and the

response time was noted in order to mitigate statistical sampling errors. For the

queries, the author included the geometric mean of the query set, because it was

often used as the workload-average measure in benchmarks and was more

resilient to extreme outliers than the arithmetic average (Neumann & Weikum,

2008). Also, the cache memory of the system was flushed every time in order to

ensure that the results were not affected by the level of cache memory

optimization. The queries have been described briefly as follows:

• LUBM Query 1 was used as a low volume, low complexity query.

• LUBM Query 2 was used as a low volume, high complexity query.

20

• LUBM Query 14 was used as a high volume, low complexity query.

• LUBM Query 9 was used as a high volume, high complexity query.

Class 1 - LUBM Query 1:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE

{?X rdf:type ub:GraduateStudent .

?X ub:takesCourse

<http://www.Department0.University0.edu/GraduateCourse0>}

This query asks for the number of graduate students at a particular university at a

particular course.

Class 2 – LUBM Query 2:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y ?Z

WHERE

{?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

21

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y}

This query is fairly complex and involves a triangular relationship between the

GraduateStudent, the Department and the University.

Class 3 – LUBM Query 14:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X

WHERE {?X rdf:type ub:UndergraduateStudent}

This query simply lists out all the undergraduate students in the department. A

correct response for this query is a large fraction of the number of triples stored

in the triple-store.

Class 4 – LUBM Query 9:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

SELECT ?X ?Y ?Z

WHERE

{?X rdf:type ub:Student .

?Y rdf:type ub:Faculty .

?Z rdf:type ub:Course .

?X ub:advisor ?Y .

22

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z}

This query is fairly complex and involves a triangular relationship between the

Student, the Faculty and the Course. Also, a correct response for this query is a

large fraction of the number of triples stored in the triple-store. Although, this is a

high volume query like query 14, the number of results returned is much smaller

than that of query 14.

The individual metrics initially used by the LUBM were used as a starting

point for the data collection in this evaluation study. Data was collected on the

following parameters:

• Number of files: The number of files that were merged in order to

form the input file gave us this parameter.

• Input size: The size of the input file used to load the evaluation data

was noted in order to provide an idea about the disk space

requirements.

• Number of triples: Although the number of triples is usually

proportional to the input size, this parameter provided an accurate

measure of the size of the datawarehouse.

• Query response time: Query response time was calculated as the

geometric mean of the execution time for each of the four classes

of queries. Time was measured with the help of a stop-watch and

not in terms of the number of CPU cycles involved.

23

The input size of the data was varied along the following lines in order to

test the performance and scalability of the two systems:

• LUBM(1,0)

• LUBM(5,0)

• LUBM(10,0)

• LUBM(20,0)

• LUBM(50,0)

Table 3.1.

Query response time for LUBM(1,0)

 Geometric

Mean query

response time

for Pellet-Jena

system

Arithmetic

Mean query

response time

for Pellet-Jena

system

Geometric

Mean query

response time

for BigOWLIM-

Sesame system

Arithmetic Mean

query response

time for

BigOWLIM-

Sesame system

Class 1 3183 ms 3259 ms 3046 ms 3254 ms

Class 2 3338 ms 3583 ms 3229 ms 3371 ms

Class 3 3513 ms 3842 ms 3443 ms 3552 ms

Class 4 3415 ms 3672 ms 3338 ms 3501 ms

24

Table 3.2.

Query response time for LUBM(5,0)

 Geometric

Mean query

response time

for Pellet-Jena

system

Arithmetic

Mean query

response time

for Pellet-Jena

system

Geometric

Mean query

response time

for BigOWLIM-

Sesame system

Arithmetic Mean

query response

time for

BigOWLIM-

Sesame system

Class 1 16724 ms 17102 ms 16538 ms 16816 ms

Class 2 17321 ms 17619 ms 17119 ms 17454 ms

Class 3 18898 ms 18999 ms 18795 ms 18904 ms

Class 4 19839 ms 20012 ms 19753 ms 19954 ms

Table 3.3.

Query response time for LUBM(10,0)

 Geometric

Mean query

response time

for Pellet-Jena

system

Arithmetic

Mean query

response time

for Pellet-Jena

system

Geometric

Mean query

response time

for BigOWLIM-

Sesame system

Arithmetic Mean

query response

time for

BigOWLIM-

Sesame system

Class 1 37378 ms 38153 ms 37032 ms 37398 ms

Class 2 39307 ms 40702 ms 39017 ms 39423 ms

25

Table 3.3. continued

Query response time for LUBM(10,0)

Class 3 40358 ms 40721 ms 39998 ms 40543 ms

Class 4 42576 ms 42884 ms 42254 ms 42657 ms

Table 3.4.

Query response time for LUBM(20,0)

 Geometric

Mean query

response time

for Pellet-Jena

system

Arithmetic

Mean query

response time

for Pellet-Jena

system

Geometric

Mean query

response time

for BigOWLIM-

Sesame system

Arithmetic Mean

query response

time for

BigOWLIM-

Sesame system

Class 1 - - 74153 ms 74578 ms

Class 2 - - 78157 ms 78724 ms

Class 3 - - 80107 ms 80601 ms

Class 4 - - 84575 ms 84903 ms

26

Table 3.5.

Query response time for LUBM(50,0)

 Geometric

Mean query

response time

for Pellet-Jena

system

Arithmetic

Mean query

response time

for Pellet-Jena

system

Geometric

Mean query

response time

for BigOWLIM-

Sesame system

Arithmetic Mean

query response

time for

BigOWLIM-

Sesame system

Class 1 - - 185002 ms 185563 ms

Class 2 - - 194973 ms 195347 ms

Class 3 - - 199956 ms 200397 ms

Class 4 - - 210913 ms 211463 ms

Although loading the dataset is a one-time operation for most enterprises,

periodic back-ups need to be performed in order to maintain the consistency of

the data. Thus, it is important to have an estimate of the time taken to load the

data. Hence, the author also noted the time taken to load the data into the two

systems respectively.

27

Table 3.6.

Time taken to load the dataset

 Number of

files

Input size Number of

triples

Load time

(Pellet-Jena)

Load time

(BigOWLIM-

Sesame)

LUBM(1,0) 15 7.82 MB 103074 3641 ms 3518 ms

LUBM(5,0) 93 49 MB 645649 13234 ms 12576 ms

LUBM(10,0) 189 99.9 MB 1316322 24107 ms 22185 ms

LUBM(20,0) 402 212 MB 2781322 46426 ms 41653 ms

LUBM(50,0) 999 529 MB 6888642 117328 ms 116987 ms

3.3.

This chapter focused on the framework and the evaluation methodology

developed for this study. The chapter also discussed the experimental setup and

the process that was followed.

Summary

28

CHAPTER 4. DATA ANALYSIS

This chapter presents the analysis of data. It presents the findings for

different metrics used to evaluate the efficiency of the semantic web systems.

4.1.

A scatter plot was drawn in order to check for the consistency of the data.

Graphical representation

Figure 4.1 Scatter plot for query 1 for LUBM(1,0)

The above figure shows the query response time for the fifty data points for the

two systems. The author observed that the data was randomly distributed.

Although, the query response time for the BigOWLIM system is greater than the

29

query response time for the Pellet system for some of the observations, the

geometric mean of the fifty data points for the BigOWLIM system is smaller than

that of the Pellet system.

The graphical representation of the query response time against the class

of queries is as follows:

The blue line shows the response time for the Pellet – Jena system. The red line

stands for the BigOWLIM – Sesame system. The vertical axis shows the time in

milliseconds. The horizontal axis gives the class of queries.

LUBM(1,0):

Figure 4.2 Query response time for LUBM(1,0)

One can clearly see that the Pellet - Jena system is slower than the BigOWLIM –

Sesame system for all queries for LUBM(1,0). Also, one can see that LUBM

query 14 gave results faster than LUBM query 9 for LUBM(1,0) for both the

systems. This can be attributed to the fact that LUBM(1,0) has only 15 files and

30

about 0.1 million triples. Thus, a highly complex query like query 9 is executed

much faster as compared to a high volume query like query 14.

LUBM(5,0):

Figure 4.3 Query response time for LUBM(5,0)

For LUBM(5,0) the response time for both the systems is nearly the same.

However, the Pellet – Jena system is still slightly slower than the BigOWLIM –

Sesame system. Also, one observes that for LUBM(5,0) both the systems are

able to execute a high volume query like query 14 faster than a highly complex

query like query 9. LUBM(5,0) has 93 files and 0.6 million triples. Thus, one

observes that as the size of the dataset increases, it takes more time to execute

a highly complex query as compared to a high volume query.

31

LUBM(10,0):

Figure 4.4 Query response time for LUBM(10,0)

For LUBM(10,0) the pattern of query response time is similar to that of

LUBM(5,0). However, one observes that the time gap between these two

systems has increased slightly as the size of the dataset has increased from

about 0.6 million triples to about 1.3 million triples i.e., the BigOWLIM – Sesame

system appears to have improved its performance as compared to the Pellet –

Jena system as the dataset has scaled up in size.

32

LUBM(20,0):

Figure 4.5 Query response time for LUBM(20,0)

Since the Pellet system failed to execute the queries for LUBM(20,0), the author

progressively increased the input size of the database in order to find the exact

input data size at which Pellet stops working for the given system configuration.

The author observed that the Pellet system fails to execute queries beyond

LUBM(17,0). LUBM(17,0) has 333 files with 2299693 triples and an input size of

180 MB. The author tried to increase the size of the JVM (Java Virtual Machine).

However, the Pellet system still gave the error "java.lang.OutOfMemoryError:

PermGen space". Thus, Pellet fails because it performs its computations in-

memory.

33

LUBM(50,0):

Figure 4.6 Query response time for LUBM(50,0)

The Pellet – Jena system failed to execute the queries for LUBM(20,0) and

LUBM(50,0) despite increasing the memory allotted to the Java Virtual Machine

(JVM) to about 12 GB. The Pellet – Jena system successfully managed to load

the dataset. However, during query execution it failed to answer even the most

basic class of queries (Class 1). For the BigOWLIM – Sesame system, the query

response time patterns for both LUBM(20,0) and LUBM(50,0) were almost

identical. Thus, one observes that unlike the Pellet – Jena system, the

BigOWLIM – Sesame system is scalable. Also, one can see that the BigOWLIM

– Sesame system is faster than the Pellet – Jena system.

34

Load time:

Figure 4.6 Time taken to load the dataset

At first glance, the time needed to load the datasets appears to increase

exponentially. However, if one takes into account that the input data size, given

on the horizontal axis, is also increasing, then one observes the growth is not

exponential but rather close to linear. Also, one observes that the time taken to

load the dataset is slightly greater for the Pellet – Jena system as compared to

the BigOWLIM – Sesame system. This time difference as a percentage of the

total time taken to load the dataset progressively decreases as one moves from

LUBM(1,0) to LUBM(50,0).

35

4.2.

Based on the results, the author observes that the BigOWLIM – Sesame

system is faster and more scalable as compared to the Pellet – Jena system.

However, using the Pellet – Jena system too has its share of benefits. An

additional, but significant observation is that the BigOWLIM – Sesame system

accepts the input even if it is not formatted according to the specified RDF tags.

Thus, one of the most significant advantages of the Pellet – Jena system is that it

does a strong type checking of the input. The Pellet – Jena system throws a

runtime exception in case the input is not in the correct format. This is a very

significant advantage of the Pellet – Jena system particularly when it comes to

working with large datasets.

Analysis and explanation

There are a few reasons that could provide an explanation for the poor

performance of the Pellet – Jena system as compared to the BigOWLIM –

Sesame system:

• The Pellet – Jena system does an error checking of the input files. Hence,

it needs some additional time to perform the validation as compared to the

BigOWLIM – Sesame system.

• The Pellet – Jena system uses the tableau algorithm for evaluating the

queries (Haarslev & Moller, 2001). On the other hand, the BigOWLIM –

Sesame system uses the forward chaining algorithm for evaluating the

queries (Bacchus & Winter, 2001). This probably explains why the Pellet

– Jena system is not able to execute the queries for LUBM(20,0) and

above although it manages to load the dataset.

36

4.3.

This chapter presented the analysis of the data gathered in this research. The

next chapter presents the conclusions and recommendations for future directions

of the research.

Summary

37

CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS

This chapter summarizes the findings in this research. It further provides a

general discussion and directions for further extension of this research.

5.1.

The author evaluated the efficiency of two systems for the storage and

retrieval of semantic web data – Pellet, which is based on top of the Jena

framework and BigOWLIM, which is based on top of the Sesame framework.

Conclusions

The BigOWLIM – Sesame system is faster than the Pellet – Jena system.

The performance of the BigOWLIM – Sesame system is better than that of the

Pellet – Jena system across the different classes of queries for a given value of

input data. The queries have been classified on the basis of their complexity as

well as volume.

The author then varied the size of the input data. The performance of the

BigOWLIM – Sesame system was better than that of the Pellet – Jena system for

data of different input size. As the size of the input data increases, the author

observed that the Pellet – Jena system failed to meet the requirement of

scalability.

38

Although the BigOWLIM – Sesame system is faster than the Pellet – Jena

system and meets the requirements of scalability as well, one of its significant

drawbacks is that it does not perform a strong type checking of the input data.

This can prove to be a major limitation as the size of the input data increases.

The Pellet – Jena system, although a bit slower than the BigOWLIM – Sesame

system throws a runtime exception in case the input is not in the correct format.

5.2.

RDF has been accepted as the standard for the storage of semantic web

data by the World Wide Web Consortium. Efforts are on to develop systems that

are capable of efficient storage and retrieval of RDF data. While the goal is to

build systems that are fast and scalable, other factors such as type checking of

the input data that affect the adoption and implementation of any system should

also be considered.

Discussion

Based on the results, the author recommends the use of Pellet – Jena

system for datasets with less than a million triples. Although the Pellet – Jena

system is a bit slower than the BigOWLIM – Sesame system, one does not have

to worry about the quality of the input data since it automatically does the type

checking. For datasets with more than a million triples, one has to use the

BigOWLIM – Sesame system since the Pellet – Jena system is not scalable

beyond that for the system configuration used in this project.

39

5.3.

The LUBM dataset was used as the standard for evaluating the

performance of the systems. One could expand this study by considering other

benchmarks such as the University Ontology Benchmark. (Li & Yang, et al.,

2006).

Future Directions

Also, only two of the systems have been considered in this work. There

are other systems such RDF – 3X (Neumann & Weikum, 2008), that have been

recently developed and should be evaluated thoroughly in order to check for their

feasibility in terms of parameters such as their scalability as well as their

response time for responding to queries. Also, Pellet has now become the first

system to integrate itself with a backend that would be based on Oracle instead

of relying on an open source system such as Jena. Initial reports point to much

improved performance of such a system.

Finally, one could expand the study by studying the effect of concurrent

users on the performance of the system.

5.4.

The essence of this study is to compare the performance of systems such

as Pellet and BigOWLIM, built around open source frameworks such as Jena

and Sesame respectively, for small and medium enterprises. This chapter

summed up the findings in this research. It also presented a general discussion

and recommendations for future extensions of the current research.

Summary

LIST OF REFERENCES

40

LIST OF REFERENCES

Abadi, D., Marcus, A., Madden, S., & Hollenbach, K. (2009). SW-Store: a

vertically partitioned DBMS for SemanticWeb data. VLDB Journal , 18,

385 - 406.

Aduna Corporation. (n.d.). OpenRDF Corporation. Retrieved January 10, 2010,

from Sesame Web site: http://www.openrdf.org/about.jsp

Bacchus, F., & Winter, M. A. (2001). Planning with Resources and Concurrency

A Forward Chaining Approach.

BigOWLIM Corporation. (n.d.). BigOWLIM Corporation. Retrieved January 10,

2010, from BigOWLIM Corporation Web site:

http://www.ontotext.com/owlim/

Clark & Parsia. (n.d.). Clark and Parsia Corporation. Retrieved April 4, 2010,

from Clark and Parsia Corporation Web site: http://clarkparsia.com/pellet/

Dong, X., & Halevy, A. (2007). Indexing Dataspaces. SIGMOD '07: Proceedings

of the 2007 ACM SIGMOD international conference on Management of

data (pp. 43 - 54). Beijing, China: ACM.

Ferragina, P., Gonzalez, R., Navarro, G., & Venturini, R. (2009). Compressed

text indexes: From theory to practice. ACM Computing Research

Repository , 13, 2.

41

Groppe, J., Groppe, S., Ebers, S., & Linnemann, V. (2009). Efficient Processing

of SPARQL Joins in Memory by Dynamically Restricting Triple Patterns.

SAC '09: Proceedings of the 2009 ACM symposium on Applied Computing

(pp. 1231 - 1238). Honolulu, Hawaii: ACM.

Guo, Y., Pan, Z., & Heflin, J. (2004). LUBM: A Benchmark for OWL Knowledge

Base Systems. Third International Semantic Web Conference (pp. 274 -

288). Hiroshima, Japan: Springerlink.

Haarslev, V., & Moller, R. (2001). Racer System Description. (pp. 701 - 705).

Springer - Verlag.

Konopnicki, D., & Shmueli, O. (2005). Database-Inspired Search. VLDB:

Proceedings of the 31st international conference on Very Large

DataBases (pp. 2 - 12). Trondheim, Norway: VLDB Endowment.

Laborda, C., & Conrad, S. (2005). Relational OWL - A Data and Schema

Representation Format. APCCM '05: Proceedings of the 2nd Asia-Pacific

conference on Conceptual modelling. 43, pp. 89 - 96. Newcastle, New

South Wales, Australia: Australian Computer Society, Inc.

Lee, K., Kim, G.-W., Son, J., & Kim, M. (2008). Web Document Compaction by

Compressing URI references in RDF and OWL Data. ICUIMC '08:

Proceedings of the 2nd international conference on Ubiquitous information

management and communication (pp. 163 - 168). Suwon, Korea: ACM.

Neumann, T., & Weikum, G. (2008). RDF - 3X: a RISC - style engine for RDF.

Proc. VLDB Endowment , 1 (1), 647 - 659.

42

Neumann, T., & Weikum, G. (2009). Scalable join processing on very large RDF

graphs. In SIGMOD '09: Proceedings of the 35th SIGMOD international

conference on Management of data (pp. 627 - 640). Providence, Rhode

Island, USA: ACM.

Rohloff, K., Dean, M., Emmons, I., Ryder, D., & Summer, J. (2007). An

Evaluation of Triple-Store Technologies for Large Data Stores. In On the

Move to Meaningful Internet Systems (pp. 1105 - 1114). Berlin:

Springerlink.

Sourceforge. (n.d.). Sourceforge Corporation. Retrieved April 4, 2010, from

Sourceforge Corporation Web site: http://jena.sourceforge.net/

Spink, A., Wolfram, D., Jansen, B., & Saracevic, T. (2000). Searching The Web:

The Public and Their Queries. Journal of American Society for Information

Science and technology , 52 (3), 226 - 234.

SwiftOWLIM Corporation. (n.d.). SwiftOWLIM Corporation. Retrieved January 10,

2010, from SwiftOWLIM Corporation Web site:

http://www.ontotext.com/owlim/

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: Sextuple Indexing for

Semantic Web Data Management. Proc. VLDB Endowment , 1 (1), 1008 -

1019.

World Wide Web Consortium. (n.d.). World Wide Web Consortium. Retrieved

April 6, 2010, from World Wide Web Consortium Web site:

HTTP://WWW.W3.ORG/2004/OWL/

	Purdue University
	Purdue e-Pubs
	7-12-2010

	Efficient Storage of Semantic Web Data
	Mihir S. Wagle

	New_Final_ETDForm9
	New_Final_GSForm20
	New_Mihir_Thesis
	CHAPTER 1. INTRODUCTION
	1.1. Scope
	1.2. Significance
	1.3. Research Question
	1.4. Assumptions
	1.5. Limitations
	1.6. Delimitations
	1.7. Definitions
	1.8. Summary

	CHAPTER 2. LITERATURE REVIEW
	2.1. Motivation and existing techniques
	2.2. Summary

	CHAPTER 3. FRAMEWORK AND EVALUATION
	3.1. Framework
	3.2. Evaluation
	3.3. Summary

	CHAPTER 4. DATA ANALYSIS
	4.1. Graphical representation
	4.2. Analysis and explanation
	4.3. Summary

	CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS
	5.1. Conclusions
	5.2. Discussion
	5.3. Future Directions
	5.4. Summary

