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INTRODUCTION: 

The concept of chromatin as a regulator of gene expression has been the foundation for nearly 
all studies of eukaryotic transcription over the past 25 years since the discovery of the first 
nuclear histone acetyltransferase, Gcn5, by Jim Brownell and David Allis [1,2]. The histone 
proteins that form the building blocks of chromatin restrict access to the underlying DNA, and as 
early as the 1950s and 1960s it was clear that the presence of histones was inhibitory to RNA 
synthesis. The observation that histones could be chemically modified by the post-translational 
addition of acetyl or methyl groups [3,4] led to the idea, first championed by Vincent Allfrey, that 
histone acetylation could act as a switch to control transcription [5]. Multiple in vitro studies in 
the following decades supported the idea that acetylation of histones could stimulate 
transcription from a chromatin template (reviewed in [6,7]). Moreover, histone acetylation clearly 
correlated with active transcription within cells [6,7]. However, the lack of any good candidates 
for enzymes that could add (or remove) the acetyl mark to histones within the nucleus was a 
major stumbling block to understanding how histone acetylation could control gene expression. 

In [8] in this Special Issue, Jim Brownell and David Allis describe the intense search for this 
nuclear histone acetyltransferase activity, which succeeded due to clever biochemical 
approaches combined with use of a underappreciated organism, Tetrahymena thermophila, that 
provided a rich starting material for biochemical purifications in the form of its specialized 
transcriptionally active macronuclei [1]. Using this approach, the Allis group tracked this nuclear 
histone acetyltransferase down to a 55 kDa protein that was homologous to a yeast protein, 
Gcn5 [2]. Gcn5 was not the first histone acetyltransferase to be identified; that distinction falls to 
the cytoplasmic histone acetyltransferase Hat1 that was cloned just one year earlier by Rolf 
Sternglanz and colleagues [9,10]. However, Gcn5 provided a much stronger link between 
histone acetylation and transcription because Gcn5 had already been identified as an “adaptor 
protein” in the yeast Saccharomyces cerevisiae that was necessary for transcription activation 
by transcription factors such as Gcn4 [11]. Thus, the identification of Gcn5 as a nuclear histone 
acetyltransferase provided a clear connection between an enzyme that modified histones within 
chromatin and gene expression, supporting Allfrey’s original hypothesis that histone acetylation 
could act as a switch to control RNA synthesis. A new era in transcription research quickly 
emerged with the discovery of enzymes that deacetylate histones (HDAC1/Rpd3) [12], or add 
other chemical moieties like methyl groups (SUV39H1) [13]. At the last count, more than 16 
different histone modifications have been identified in mammalian cells [14], providing a 
complex combinatorial network that defines chromatin structure and biology. 

In this Special Issue, we bring together many of the original researchers involved in the initial 
studies to identify and characterize Gcn5, together with leaders from the field who have 
contributed to our understanding of this quintessential histone acetyltransferase. First, Jim 
Brownell and David Allis describe the discovery of Gcn5 [8], followed by Brittany Albaugh and 
John Denu who highlight key structural and catalytic attributes of Gcn5 as the defining member 
of the Gcn5-related N-acetyltransferase (GNAT) protein superfamily [15]. Next, Michael Sack 
and colleagues describe a protein that is closely related to Gcn5, Gcn5L1, which lacks intrinsic 
histone acetylation activity but is still involved in protein acetylation as part of multi-subunit 
complexes that regulate aspects of vacuolar organelle function [16]. Gcn5, like Gcn5L1, is also 
found as part of large multi-subunit complexes, and in [17], Shelley Berger, Patrick Grant, and 
Fred Winston describe the genetic and biochemical studies that led to the identification of the 
most famous of these Gcn5 complexes, the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex in 



 
  

   
 

      
   

      
     

  
 

 
   

 
    

     
     

    
   

    
     

      

 
    

   
  

  
     

    
     

  
  

        
     

   

   
  

   
     

  
   

         
 

   
     

  
 

the yeast S. cerevisiae. Next, Jose M. Espinola Lopez and Song Tan describe the close 
interactions between Gcn5 and its immediate binding partners, the Ada2, Ada3 and Sgf29 
proteins, that influence Gcn5 activity and control its incorporation into different complexes [18] . 
A recent series of cryo-EM studies have provided a window into SAGA structure and function, 
and our current understanding of the structure of the Gcn5 complexes and their function is 
outlined in the Special Issue by Dominique Helmlinger, Gabor Papai, Didier Devys, and László 
Tora [19]. The discussion of SAGA’s role in transcription is elaborated on by Brian Strahl and 
Scott Briggs in [20], who also discuss the interplay between histone modifications catalyzed by 
SAGA and other chromatin marks including histone phosphorylation, ubiquitination, and 
methylation. 

Strikingly, many subunits of the Gcn5 complexes are shared with other chromatin or 
transcription regulatory complexes. In particular, several of the TAF subunits in SAGA are 
shared with the general transcription factor TFIID. In [21], Marc Timmers describes the shared 
and specialized TAF subunits in SAGA, while in [22] Carme Nuño-Cabanes and Susana 
Rodríguez-Navarro discuss other SAGA subunits that are shared with other complexes, or that 
may have independent biological functions. Although SAGA was first characterized as an 
acetyltransferase, this multi-subunit complex also possesses a second histone modifying 
activity: deubiquitination of mono-ubiquitinated histone H2B. In [23], Ryan Mohan’s group 
describe how SAGA’s deubiquitinase activity was first identified, and provide insight into its 
potential biology roles in transcription and other cellular processes. 

Gcn5 is highly conserved across eukaryotes, and also forms part of large multi-subunit 
complexes in plants, insects, and in mammalian cells. In [24], Klaus D. Grasser, Vicente Rubio, 
and Fredy Barneche describe the plant SAGA complex, which although similar to other 
organisms, contains some striking differences with regards to the deubiquitination module. In 
[25], Eliana Torres-Zelada and I describe how studies in the model insect Drosophila 
melanogaster led to the identification of a metazoan-specific Gcn5 complex (ATAC), and 
discuss how insects contain an additional Gcn5 complex that is absent from yeast or 
mammalian cells [25]. In [26], Evangelia Koutelou, Aimee Farria, and Sharon Dent describe how 
studies in mammalian cells and in mice have led to new insight into the roles that Gcn5 and its 
paralog, PCAF, play during development and in disease. This focus on Gcn5’s role in human 
disease is further elaborated by Beste Mutlu and Pere Puigserver in [27] who discuss how 
Gcn5’s role in acetylating non-histone targets, particularly PGC-1α, contributes to its function as 
a nutrient sensor that regulates energy metabolism. 

Although histones were the first targets of Gcn5 to be identified, hundreds of non-histone 
proteins are also acetylated by Gcn5. In [28], Michael Downey describes the approaches used 
to identify Gcn5 substrates, providing a comprehensive list of the Gcn5 substrates that have 
been currently identified in different species. Intriguingly, this list includes transcription factors, 
chromatin remodelers and cell cycle proteins, leading to the question of how broadly these non-
histone substrates contribute to Gcn5’s function. Genetic studies in S. cerevisiae, highlighted in 
this Special Issue by Emily Petty and Lorraine Pillus in [29] provide clues as to many of the roles 
for Gcn5 in cell cycle control, potentially due to acetylation of both histone and non-histone 
targets. The revised nomenclature of Gcn5 as a lysine acetyltransferase (KAT2 in S.cerevisiae 
and Drosophila, KAT2A and KAT2B in mammals) [30] reflects this broader substrate specificity, 
although readers will find Gcn5 referred to by both terms within articles in this Special Issue – 
reflecting its initial characterization as a histone acetyltransferase. 



   
  

   
  

   
    

 

   

   
   

 
    

   
   

   
   

  
   

   
 

   
 

  
  

  
      

  

 

   
   

    
   

    
    

 
  

    
 

   

    
   

 

Throughout the past 25 years, many different scientific researchers have contributed to studies 
on Gcn5, and it has been a joy to work with many of these authors in putting together the 
current Special Issue. In particular, my own interest in Gcn5 and in chromatin biology owes 
much to my postdoctoral training with Jerry Workman and Susan Abmayr. Sadly, Susan passed 
away on July 18, 2019, and this BBA Special Issue on Gcn5, the quintessential histone 
acetyltransferase is dedicated to her memory. 

CAPTION: 

Susan Abmayr, PhD: March 13, 1956 - July 18, 2019 

Susan was a wonderful scientist and mentor who had a passion for the tiny fruitfly, Drosophila, 
and for studying transcription in the context of developmental biology. She had a life-long 
interest in transcription beginning with her work as a research assistant with Sarah Elgin using 
Drosophila as a genetic model for heterochromatic gene silencing. She then moved to 
Rockefeller University in New York for her PhD studies with Robert Roeder, where she met her 
husband and long-time collaborator, Jerry Workman. During her postdoctoral training with Tom 
Maniatis at Harvard University, she discovered some of the key transcription factors that control 
muscle development including Mef2. Susan continued to study muscle development during her 
independent research career first in the Department of Biochemistry and Molecular Biology at 
Penn State University, and later at the Stowers Institute for Medical Research in Kansas City. 
Although Susan was well recognized for her studies on muscle development, she was also 
instrumental in expanding the studies on Gcn5 in the Workman group into Drosophila. Her 
expertise in Drosophila genetics and developmental biology culminated in over 25 co-authored 
papers that shed light on SAGA, ATAC and ADA function in particular tissues to control 
developmental processes such as oogenesis, embryo development, and neuronal targeting. 
Susan was a rigorous and occasionally, when needed, a tough mentor, but she also exemplified 
the qualities of persistence and hard work – leading by example and working side-by-side in the 
fly room to demonstrate techniques and teach her students. Given her life-long interest in 
transcription and her substantial contributions to understanding Gcn5 function, it is fitting to 
celebrate her life and achievements in this Special Issue on Gcn5. 

BIOGRAPHY: 

Vikki Weake is an Associate Professor in the Department of Biochemistry at Purdue University. 
She graduated from Massey University in New Zealand and obtained her PhD in Genetics from 
the same institution for work on dosage compensation in Drosophila with Max Scott. Following 
her graduate work, she moved to the Stowers Institute in Kansas City, USA to work as a 
postdoctoral fellow with Jerry Workman and Susan Abmayr where her work focused on 
characterizing tissue-specific functions of SAGA. She moved to the Department of Biochemistry 
at Purdue University in West Lafayette, Indiana in 2012 to establish her own lab. During her 
postdoctoral work, she had shown that mutations that disrupt SAGA cause defects in neuronal 
development in the eye. This connection between chromatin, transcription and neuroscience 
initiated her interest in the interplay between these fields, and her lab now works on the 
transcriptional mechanisms involved in aging in neurons using the Drosophila eye as a model 
system. In addition, her lab continues to work on characterizing a recently discovered 
Drosophila Gcn5 complex that is unique to insects. Her work is funded by the National Science 
Foundation and the National Eye Institute within the National Institutes of Health. 
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