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 This work is dedicated to all hearts and minds that point in multiple 

directions concurrently, to everyone who, when they look at the blank canvas of 

future moments, sees possibility over danger, and to anyone whose eyes are 

bigger than their stomachs when planning the future. 

 Our mettle is quickened in trials by fire and in leaps of faith beyond our 

own comprehension. When fatigue has removed our last defenses, who we 

choose to be in that moment defines who we are ever after.  

 This, as it has always been, is just the beginning. 
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PREFACE 

“To make clear my exposition in writing this brief commentary on painting, 

I will take first from the mathematicians those things with which my subject is 

concerned.  

In all this discussion, I beg you to consider me not as a mathematician but 

as a painter writing of these things. Mathematicians measure with their minds 

alone the forms of things separated from all matter. Since we wish the object to 

be seen, we will use a more sensate wisdom. We will consider our aim 

accomplished if the reader can understand in any way this admittedly difficult 

subject… Therefore, I beg that my words be interpreted solely as those of a 

painter” (Alberti, L. B. 1435).
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GLOSSARY 

Rendering – “The main function of the [graphics rendering] pipeline is to 
generate, or render, a two-dimensional image, given a virtual camera, 
three-dimensional objects, light sources, shading equations, textures, and 
more” (Akenine-Möller  & Haines, 2008, pg 11). 

Virtual Pinhole Projection Camera – is a construct through which scene data is 
recorded to a two-dimensional pixel plane. Virtual describes the camera 
as existing and operating in computer code. Pinhole Projection defines 
that the “incoming light” passes through a single point; this is the camera‟s 
position. (Shirley & Morley, 2003, pg 63-67). 

Ray – a geometric construct defined by a vector and a point. The vector 
originates from the point. Both vector and point are defined using three or 
four-dimensional coordinate space.  

Ray Casting - The first ray originates from the camera center and is cast in the 
direction from the camera through the pixel plane. Rays are calculated for 
intersection with geometric objects. This is how the renderer calculates if 
and where and object is “seen” in the final image. 

Ray Tracing – To calculate reflections and refractions a ray-trace renderer 
creates new rays that bounce into the scene or through objects to 
calculate new colors per pixel. 

BRDF – the Bi-directional Reflectance Distribution Function. The BRDF 
describes the quality of reflected energy, given a set of input energy given 
over a set of various incident angles, off a measured surface. Every 
surface has its own BRDF. The BRDF describes the sizes and qualities of 
reflected light over a surface. This is seen as the soft (diffuse) and crisp 
(specular) highlights on surfaces (Dutré, Bala & Bekaert, 2006). 

Ambient Lighting Component – is a description and approximation of the light 
that fills a scene. It describes the amount of background light in a scene. It 
is a color additive component to shaders. This component is described by 
color. 

Diffuse Lighting Component – describes light reflected off of rough surfaces. The 
presence of the diffuse lighting component on a shader allows for the 
presence of self-shading where there is a light and dark side of an object 
based on the object‟s surface direction. Where the surface points more 
toward the light the surface will receive more light; the converse is true as 
well. This component is described by color. 
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Specular Lighting Component – is a shading approximation used to describe the 
highlights on the surface of an object. The specular component is useful in 
showing where a surface fits on the continuum of rough to smooth. For 
very smooth objects the highlight generated is very sharp and usually very 
small. For more course surfaces the highlight generated is usually softer 
and larger. This component is described by color and shape of highlight. 

GPU – is the graphics processing unit located on the video card. Current GPUs 
contain multiple cores per processing unit. In current gaming and 
development video cards, the processing units are unified architecture that 
supports vertex, geometry and pixel processing. 

Hardware Profiles – Each graphics card has a set profile describing what it can 
do. The profiles are defined by two factors: graphics API and GPU 
architecture. All GPGPU programs must be written to the standard set by 
the local hardware profile. Newer graphics cards have modern hardware 
profiles and therefore support greater functionality. 

NVidia CUDA™ – is a “general purpose parallel computing architecture – with a 
new parallel programming model and instruction set architecture…” (pg. 
3). Advantages to CUDA are its scalable programming model, parallelism, 
ability to be programmed with C-style native language, and direct 
connection to GPU.  

CUDA Kernel – Kernels are c-style functions which run on all threads of the GPU 
during calculation 

NVCC – is the complier that separates host code from device code and compiles 
device code to PTX format. 

PTX – CUDA assembly style device code. 
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ABSTRACT 

Britton, Andrew D. M.S., Purdue University, May 2010. Full CUDA 
Implementation of GPGPU Recursive Ray-Tracing. Major Professor: Dr. Bedrich 
Benes. 

Pioneered by the works of Whitted and Appel, ray tracing has become a 

standard format for image rendering. Ray tracing is a very accurate mathematical 

calculation of light and color, but is a very slow process. The question becomes 

how can researchers combine the speed of GPU calculations with the rendering 

quality of ray-tracing? The focus of this research is to solve this question. Our 

research will test the effectiveness of decreasing render times by implementing a 

full GPGPU ray trace renderer with recursive ray casting.  

 The purpose of this study is to test the speed of brute force ray tracing 

calculation on the GPU versus the optimized ray tracing capabilities of a 

production quality renderer. Specifically, how much faster, if at all, can the GPU 

speed up rendering. 

 For this study the author created two renderers, a CPU renderer and a 

GPU renderer, written in C++ and CUDA respectively. The author written 

renderers are implemented without spatial partitioning or ray-object prediction 

algorithms. The rendering speed of the CPU, GPU and Mental Ray renderers 

were tested in two scene groups with the first group containing one scene and 

the second group containing three scenes. The first test scene contains a 5 sided 

box of 10 triangles and 48 spheres. The second group of scenes contains the 

same box of 10 triangles with an expanding set of objects. The first, second and 

third scenes contain 900, 10000 and 30000 objects, respectively. All renderers 
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generated 25 frames per scene. The average time for renders was compared for 

each test. Each renderer was tested on multiple hardware devices. 

 The GPU renderer outperformed both the author written CPU renderer 

and the Mental Ray renderer in both tests. In the first test scene, the average 

render times for the GPU, CPU and Mental Ray renderers were 988.94, 75246.3, 

and 6007.067 milliseconds, respectively. For the second group of test scenes of 

900, 10000 and 30000 objects the author written GPU renderer outperformed 

Mental Ray in speed of rendering. Due to the spatial partitioning algorithm in 

Mental Ray, the GPU renderer out performed by smaller amounts as the number 

of rendered objects increased. It is believed that at a large enough number of 

rendered objects the parallel nature of the GPU will fail in comparison to the 

spatial partitioning algorithms in Mental Ray. 
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CHAPTER 1. INTRODUCTION 

Computer graphics requires clear, detailed, visually rich images to 

successfully communicate intended topics with a desired audience. Of the 

existing rendering schemes, ray-tracing is at the heart of most rendering models 

of generating high visual fidelity imagery.  The core of this research stems from 

an artist seeking to understand photorealistic rendering algorithms and how to 

increase rendering speed. Once the material is understood artists will be able to 

bring their artistic visions and visual vocabularies to computer graphics. It is the 

aim of this education of an artist in computer graphics programming that artists 

will learn another tool to create more artistry. The arena of ray-tracing is chosen 

because the technologies sit at the nexus of multiple computer graphics 

disciplines. Implementing a renderer requires the artist learn about linear algebra, 

shader descriptions, the science of electromagnetic transport over multiple 

surfaces, programming, geometric descriptions, and rational, versus intuitive, 

logic. The lessons learned herein should also provide the technology artist with 

the concept that the computer, with its 0‟s and 1‟s, is a tool, just as paintbrushes, 

chalk-sticks or pencils are tools. This research should help the reader better 

understand ray-tracing applications. 

A solid understanding of ray-tracing and its additional functionality is no small 

task for the artist converting to technology.  Whereas the artist in classical 

training contexts will learn about light, shape, shadow, form and line, these 

lessons are taught in an experiential environment. Artists are taught to see light, 

color, form, line and shape and then trained to recreate their vision in a variety of 

materials: paper and pencil, pen and ink, etching, printmaking, sculpture, or 
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watercolor. The artist must understand, as Alberti mentioned, the mathematics of 

line of sight. 

Ray tracing is a well understood process in computer graphics. This 

understanding starts with the work of Appel (1968) and Whitted (1980) through 

their introductions of ray-casting and ray-tracing, respectively. With the advent of 

the latest GPUs that out-perform CPUs in graphical data calculation, a rising 

question becomes how can the GPU be used to increase the efficiency of a ray-

trace renderer. 

The field of mathematics Alberti references in his text is the study of linear 

algebra. Linear algebra covers matrices, vectors and points, or directions, 

orientations and locations. A mathematical object that contains both a point and a 

vector is a ray. 

 

Figure 1.1 - The construction of a ray 

Rays are the backbone of ray-tracing. It is these rays that are cast from 

the „eye‟ into the world. These rays are then calculated to check intersections 

with objects. Where an intersection exists, the ray returns color information. This 

color information is based on two inputs: lighting and materials. Materials are 

defined through a set of specular, ambient and diffuse parameters. Lighting can 

be defined through two methodologies: direct lighting and indirect lighting. Direct 

lighting calculations use linear algebra to define light positions and lighting 

directions. These calculations define lighting on an object where light is received 

directly from the light source, and not from multiple bounces. Indirect Lighting 

simulations calculate the light that bounces over multiple diffuse surfaces. These 

lighting calculations are more complex and require Monte Carlo integration to 
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approximate light paths over multiple diffuse reflections. The work of Dunn and 

Parberry (2002), 3D Math Primer for Graphics and Game Development, outlines 

all necessary concepts including: vectors, points, matrices, transformations, 

orientations, coordinate systems and three dimensional math. In addition to the 

study of linear algebra, the new technology artist must learn to implement the 

formulas and logic required to construct a ray-tracer. This construction requires a 

computer and a programming language to support all the ray-tracing functionality 

required to generate hi-quality images. The programming language of choice is 

C++. The texts used to study C++ are the works of Gaddis, Walters and 

Muganda (2007) and two texts by Meyers (2001 & 2005). 

 

Programming on the GPU will be performed with CUDA 2.3. The use of 

the CUDA programming interface requires the use of NVidia graphics cards. 

Programming with CUDA applies certain limitations: no support for 

polymorphism, recursion, or double data types (when using CUDA compute 

architecture 1.1 or less). In addition to these limitations exists a best practices 

limitation of reducing the amount of data transferred between the GPU and the 

CPU. Modern prosumer CPUs have anywhere from two through eight logical 

cores, whereas modern, prosumer graphics cards contain anywhere from 96 to 

192 cores. In addition to the greater amount of processing cores, the GPU 

architecture makes the graphics card operate as a stream processor. The GPU 

cores are programmable and can process large amounts of data. Because of the 

highly paralleled nature and stream processing of GPU architecture, rendering on 

the GPU represents the possibility of a large gain in rendering speed.  

1.1. Research Question 

What is the speed increase of performing ray tracing on the GPU versus 

on the CPU? 
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1.2. Scope 

To execute the rendering research the author has created two different 

renderer implementations: one on the CPU and the other on the GPU. The CPU 

software will be written using C++, object-oriented coding practices, and 

recursion. The GPU renderer is written in CUDA replacing recursion with loops. 

The scope of this project is limited to the creation of a functional software 

renderer and one functional hardware renderer. Hardware implementation will be 

written and tested on NVidia graphics cards in the 8800 series or later. Testing 

on the NVidia cards will ensure that the GPU supports the CUDA language and 

architecture. Creating cross-platform ports, support for multiple graphics card 

vendors, and extending the code to multiple languages is outside the scope of 

this research. The rendering tests will be performed using multiple GPUs and 

CPUs. Each test will render pre-defined 3D scenes containing a series of implicit 

spheres and triangles, multiple lights, reflections, shadows and material 

descriptions.  

1.3. Significance 

The significance of this research fills a professional void for the author. 

With an established background in 3D art, 2D art, and 3D animation for 

production and education, the author is conversant in applying 3D practices and 

systems to create imagery. This level of understanding reaches a limit as the 

knowledge base approaches the mathematical and technical realms of 3D 

computer graphics. Extending the researcher‟s understanding of 3D technical 

and mathematical concepts will enable to researcher to accomplish and 

understand a wider array of tasks and goals. These goals are achieved through 

the study of ray-trace rendering because the methods required to create a ray-

tracer include: shaders, lights, shadows, rays, geometry. In addition to the base 

rendering concepts enhancing rendering performance via the GPU is a crucial 

step because of the architecture of modern GPUs and their abilities to 

simultaneously calculate large data-sets. The power in performing functions on 
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the GPU is the massively parallel nature of the GPU‟s architecture. Modern 

CPUs contain two to four cores. Modern graphics card for the high-end consumer 

contain as many as 480 cores (figure 1). Each core works in parallel. This 

massive parallelism is designed to calculate large data sets in real time (60 

frames per second). 

 

Figure 1.2 - Comparison of amount of computational cores between high-end, 
consumer CPU and high-end, consumer GPU 

1.4. Assumptions 

This study assumes the following to be true or in place in for this study: 

 All tests will be performed on computers with NVidia graphics cards with 

8800 GTX technology, or later. 

 The GPU renderer code will be compliled using CUDA 2.3.  

 The tested video cards will support at least the lowest level CUDA 

compute architecture with some capable of running the latest compute 

capability of 1.3. 

 All rendering code is precompiled and loaded for the testing machine. 
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1.5. Limitations 

This research draws on the following limitations: 

 In order to prove effectiveness this study is only recording timed data of 

rendering tests. 

 All testing GPUs must be CUDA™ enabled, loaded with Windows XP or 

higher and have software to compile C++ and CUDA code. 

1.6. Delimitations 

This research draws the following delimitations to reinforce scope of study: 

 GPU functionality will not be tested on video cards made by vendors other 

than NVidia. 

 Research will not study qualitative data from a sampling of users and their 

impressions of quality or effectiveness of tested renderers 

1.7. Chapter Summary 

 

This research focuses on applying the calculation efficiency of the GPU to 

the rendering processes of ray tracing. The purpose in marrying these two 

technologies together is gaining the speed increases of the GPU.
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CHAPTER 2. LITERATURE REVIEW 

 

Figure 2.1 - Illustration of rays, vectors and angles required in ray tracing 

2.1. Ray Tracing 

Ray-tracing finds its roots in the works of artists and mathematicians from 

centuries earlier. In Alberti‟s desire to understand the mathematics behind art 

and vision, he described sight and vision in a matter aligned perfectly with 

computer graphics, and especially ray-tracing. Alberti states: “Let us imagine the 

rays, like extended very fine threads gathered… going back together inside the 

eye where lies the sense of sight. They are like a trunk of rays from which, like 

straight shoots, the rays are released and go out towards the surface in front of 

them” (Alberti, 1435, p. 40).  
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According to Shirley and Morley (2003), ray-trace renderers are built upon 

a series of simple algorithms that are used, in turn, to generate digital images. In 

contrast to a rendering method like scan-line rendering, ray-trace rendering is 

becoming more-popular because of increased computing power and the 

renderers ability to cleanly solve problematic topics such as realistic material 

transparencies and object shadows. 

 

Algorithm 2.1 – Ray tracing pseudo-code  

The algorithmic process of ray-tracing is simple to understand. There exist 

objects to create and methods for describing their connections. The base list of 

required objects to create are: camera, ray (a position and direction), two-

dimensional array of pixels (an empty image), light(s), and shape(s). All objects 

in the scene are connected via independently calculated rays. In order for the 

renderer to „see‟ objects and render them, those objects must be in the line of 

sight of the camera. The line of sight is calculated as a ray, whose originating 

position is the camera and whose direction is determined by the location of the 

empty image. Rays are cast into the scene and wherever these line of sight rays 

intersect with various shapes, the renderer calculates which object is hit first and 

what color that object is. The color is calculated by casting rays, from a point on 

the surface, into the scene to “see how the world „looks‟ to that point” (Shirley & 

for  ( current pixel width: x) 

 for  (current pixel height: y) 

  for (every shape) 

   find all shapes visible to this pixel 

  if (pixel x,y sees shape) 

   draw closest shape at pixel x,y 

  if (pixel x,y does not see shape) 

   draw background color at pixel x,y 

Draw all pixels to image 
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Morley 2003). Each surface point is checked for facing direction toward or away 

from the light sources. Any surface section facing toward a light whose view of 

the light is unobstructed will receive a lighting contribution. This contribution is 

based also on the amount to which the surface section points toward the light. 

2.1.1. Ray – Object Intersections 

All ray-trace rendering is computed through collision detection of objects 

and rays. Rays are cast from the camera, through each pixel of the image, and 

tested for ray-object intersection. In order for the viewer to see an object in 

space, it must be in the viewer‟s direct line of sight, or in the reflected and 

refracted lines of sight. The computer must test line of site properties by shooting 

a ray from the camera into the scene and checking to see if the ray intersects 

with objects. This functions used for checking differ for various objects, though 

the principles are the same. Without optimization, default ray-casting techniques 

require a high degree of calculations dependent on the resolution x & y and 

number of objects in the scene description. This generates ray-intersection 

calculations in the amount of per pixel width, height and per object in scene 

description (Shirley & Morley, 2003). It can be described by the following 

equation: 

  (1) 

2.1.2. Spatial Partitioning 

In order to speed up the rendering of a scene, an optimized algorithm of 

ray-casting is required. By grouping multiple objects together into Bounding 

Volume Hierarchies (BVH), ray-to-object intersection tests can be avoided on a 

strict per-pixel-per-object basis. With collected hierarchies, if a cast ray does not 

intersect a BVH, then it does not intersect any members of the BVH (Akenine-

Möller & Haines, 2002). The search complexity now becomes a logn. Both 
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Akenine-Möller & Haines (2002) and Shirley & Morley (2003) describe variations 

on well tested implementations of BVHs: axis-aligned bounding-boxes (AABBs) 

and oriented bounding-boxes (OBBs). 

 

Figure 2.2 – Illustration of octree as spatial partitioning 

 An octree is a spatial subdivision method for dividing the scene objects 

into smaller partitions. Referring back to equation 1, that algorithm is of type O(n) 

per pixel. This is a clumsy searching method to check for ray-object intersections. 

Most rays will intersect a handful of objects. 

Figure 2.2 illustrates the nature of spatial subdividing in octrees. Both 

Ericson (2005) and Akenine-Möller, Haines and Hoffman (2008) describe the 

symmetrical subdividing process of the octree. Each node, in order to make child 

nodes, is subdivided in half along each axis yielding 8 smaller nodes. Ericson 

presents a linear octree array solution for hierarchy traversal (pg. 314). His 

research further explains the implementation of a binary key for the hierarchy 

traversal called the Morton key. This binary key positioning simplifies the 
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hierarchy traversal to O(1) access. This is preferred over a pointer-based 

hierarchy because this is O(log n) complexity. 

Consider the following scene (Figure 2.3). This render contains 48 objects. 

The largest amount of objects a single ray will intersect is either three or four. 

The left-side image will calculate if all rays intersect all objects. However, if the 

scene is partitioned two levels deep then twelve sub-cubes will only be tested 

once for intersections. This leaves 75% of the cast pixels to calculate a single 

intersection each. The remaining 25% of the rays will only perform intersection 

checks on at most 12 objects. 

 

 Figure 2.3 – No spatial partitioning (left); octree partitioning (right) 

2.1.3. Illumination 

Shaders are material descriptions on objects. Shaders describe if an 

object‟s look is reflective, refractive, soft, spongy, etc. Most shaders require the 

presence of lights in order to properly calculate their effects. In order to increase 

rendering time and render efficiency, shaders have broken natural reflectance 

functions into two main categories: diffuse reflections and specular reflections. 

The Blinn (Blinn, 1977) and Phong (Phong, 1975) shaders are examples of this. 

Diffuse reflections are soft reflections as seen on matte surfaces, while specular 

reflections are the shiny highlights found on smooth surfaces like mirrors and 
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chrome. Beyond this description there are other factors of materials that must be 

described: transparency, bump-mapping, normal-mapping, ambient-occlusion, 

surface color, specular high-light color, etc. The real world presents a large array 

of reflection and surface types, and there are many shader technologies to 

encompass the description of each one. 

As ray-tracing algorithms were being “popularized and developed” in the 

late 70‟s and early 80‟s (Shirley & Morley, 2003), material descriptions were 

being generated to meet surface description demands of ray-tracers. The work of 

material description pioneers such as Blinn (1977), Phong (1975), Cook and 

Torrance (1981) appears in publications around this time frame as well. Akenine-

Möller & Haines (2002) outline some of the canonical material functions to come 

of this early work, specifically dealing with the specular, diffuse and ambient 

components of material descriptions.  

The work of He, Torrance, Sillion and Greenburg (1991) defines the need 

for a comprehensive model for reflected light that encompasses multiple 

reflectance situations: specular, directional diffuse and uniform diffuse. Because 

the model uses wavelength calculations for light, and incidence angle and 

surface roughness calculations for the surface descriptions it can describe a 

smooth transition between the three different reflectance types. Their reflectance 

model adds further features of describing the role polarized light on material 

appearance, including polarized light into the shader algorithm library, and 

provides for listed above. Their model is also analytic. This shader is based on 

the bi-directional reflectance distribution function (BRDF) algorithm. Their results 

map very closely to experimentally tested reflectance on physical surfaces. 

2.1.4.  Direct Illumination & Shadows 

“There is also a third condition in which surfaces present themselves to 

the observer as different or of diverse form. This is the reception of light” (Alberti, 

1970, p. 44). Pharr and Humphreys (2004, pg 35) describe direct lighting as “light 
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that arrives at the surface directly from emissive objects.” They continue to define 

this type of light by differentiating it from indirect lighting, saying that direct 

lighting does not consider the light that bounces through a scene before 

contributing to the light at a given point. Further reading of Akenine-Möller & 

Haines (2002) lists multiple iterations of the rendering equation for the local 

lighting model. The simplest form of the local lighting model is defined as the total 

intensity for a surface point being equal to the summation of ambient, diffuse and 

specular components. 

As described by Shirley, Ashikhmin, Gleicher, Marschner, Reinhard, Sung, 

et al. (2005), one of ray-tracing‟s strengths is its straightforward approach to 

calculating shadows and reflections. Their work goes on to say that once a basic 

ray-tracer program is generated, the addition of shadows is an easy matter. 

2.1.5. Cameras 

The work of Edward Angel (2008) outlines a variety of camera types and 

camera declaration scenarios. The cameras used in computer graphics can be 

divided into two groups: parallel projection and perspective projection cameras. 

Parallel projection cameras treat all lines of sight originating from the camera as 

being parallel. This generates images that yield no natural distance-based 

foreshortening. The objects in these images are consistently sized in relation to 

other objects regardless of distances from each other. Perspective projection 

cameras are physically accurate. Cameras of this nature automatically support 

foreshortening effects. In these cameras, line-of-sight rays, cast from the 

cameras, are not parallel thereby necessarily causing foreshortening. Angel 

specifically mentions (see page 241) that the major use of perspective cameras 

is in applications where it is important to generate realistic imagery, as in 

animation. Shirley and Morley (2003) discuss a specific version of the 

perspective projection camera: the thin-lens camera. The thin-lens camera 
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supports automatic depth-of-field focusing or blurring. It achieves this by 

incorporating the physical camera attribute known as focal length. 

2.1.6. Objects 

Shirley and Morley (2003) give detailed descriptions on basic primitive 

object implementation. Specifically their work in this chapter relates to the 

drawing triangles and spheres by defining the intersection of a ray and the 

triangle, or sphere, primitive object. Using the position and direction of the 

viewing ray, those parameters can be input in the mathematical descriptions of 

spheres and triangles with the resultant solved values defining if ray-object 

intersection has occurred, twice, once or not at all.  

Beyond the tasks of drawing a simple triangle primitive, a large section of 

computer graphics rendering requires the use of triangle meshes. Hill (2000) 

outlines the process of reading and drawing a complex list of polygons as a 

series of individually defined faces. These faces are then rendered as triangles 

(as mentioned above).  

2.1.7. Texture Mapping 

In his section on texture mapping, Edward Angel (2008) describes multiple 

uses and generation processes for creating texture maps. Texture mapping is the 

process of applying color patterns to geometry or fragments. The texture can be 

generated by procedural means or image digitization. Once the texture is 

generated it can now be applied to multiple uses as a color map, a bump map, a 

specular map, normal map, environment map or transparency map (Birn, 2000, 

pg 204-213).  Textures can be defined in a variety of dimensional spaces: 1D, 

2D, 3D or 4D textures. Procedural textures can be of type 2D or 3D, by defining 

texels in a two-dimensional array or a three-dimensional array. Pages 79 – 84 of 

Shirley and Morley (2003) describe pseudo-code that outlines the processes of 

generating various procedural textures: stripes, noise and turbulence. As Shirley 
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and Morley outline, these procedural texturing functions are implemented via 

periodic functions of sine and cosine. 

Once textures are created, there exists the problem of assigning textures 

to the surface of the geometry. This requires multiple coordinate systems: one for 

the geometric surface, and one for the texture space. Polar coordinates are 

required for generating surface UV coordinates. Generating the same UV 

(texture) coordinates for triangles requires separate functions.  

 

Figure 2.4 - UV coordinates define the placement of a texture on geometry. 

2.2. Speed Improvements 

Central to the core of this research is decreasing render times. 

Specifically, this research will decrease render times through the implementation 

of GPGPU programming.  
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2.2.1. GPGPU with CUDA™ 

GPUs are massively parallel processors. As illustrated in Figure 1.1, 

modern GPUs contain more processing cores than the latest consumer CPUs. 

The NVidia GTX 260 contains a power of 3.792 more cores than a quad-core 

CPU. With so many processors ready to be used the GPU needs an effective 

method of communicating with and managing the system resources to work in 

sync and not perform redundant work. As defined by NVidia Corporation (2009), 

CUDA is a “general purpose parallel computing architecture – with a new parallel 

programming model and instruction set architecture…” (pg. 3). Advantages to 

CUDA are its scalable programming model, parallelism, ability to be programmed 

with C-style native language, and direct connection to GPU. 

Using CUDA requires writing code for the host and the device. Herein, the 

.cu file contains commands that perform operations on the CPU and that launch 

operations on the GPU. These device operations are CUDA kernels. Code for 

each compute hardware must be compiled separately. C for CUDA code is 

written with C/C++ style implementations for host code and C style 

implementation for device code. Compiling a .cu file has two stages. The first 

stage is interpreted by the NVCC. A .cu file can contain a mix of host and device 

code. The NVCC separates the host code and the device code into: C code to 

run on the host, PTX code to run on the device.  

 

 

.cu file 
Contains host and device code. 

NVCC 
Splits host and device code for 

separate compilation 

 

C code 
Running on host 

PTX code 
Assembly style device code 

Figure 2.5 – Workflow of .cu file compilation 



  17 

 

 

2.3. Existing Real-Time Ray Trace Rendering Techniques 

2.3.1. Hardware 

Recent developments in real time ray tracing include new hardware 

devices. One device is IBM‟s CAS Cell BE processor. This processor is found in 

the PlayStation 3. From the work of Cox, Máximo, Bentes and Farias (2009), the 

processor is not specifically a ray tracing processing unit. This processor can be 

advantageous for ray trace rendering however. What makes this processor 

appealing is the parallel nature of the independent cores. The Cell BE processor 

is similar to modern GPUs because both hardware devices support SIMD 

architecture.  

 

Figure 2.6 – Diagram of Cell BE architecture (Cox, Máximo, Bentes and Farias, 
2009, pg. 9) 

 An altogether different device is the RPU, ray processing unit. The RPU 

was proposed by Woop, Schmittler and Slusallek (2005).  Their research 

introduced a “prototype implementation of a single chip, fully programmable Ray 

Processing Unit.” Most fascinating about the RPU are the ways it is 
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architecturally different from modern SIMD GPUs. Their prototype RPU supports 

recursion and function branching. The RPU runs at low clock speeds of 66MHz. 

Despite the low clock rates, the RPU can render at interactive frame rates, 

thereby competing with powerful GPUs. 

2.3.2. Software 

Leveraging the power of modern GPUs is NVidia‟s real time ray tracer, 

OptiX. The OptiX renderer is an abstracted perspective on standard graphics ray 

tracing. While being fully capable of rendering scenes with ray tracing for 

graphics applications: games, marketing, or design, OptiX was designed to be 

highly flexible and useful for any ray shooting computation (NVidia, 2010). 

Additional industrial applications of OptiX are: acoustic design, volume rendering, 

collision checks and radiation research. 

The flexibility of OptiX is found in its generality. The data that rays carry 

and collect, the intersection algorithms, camera construction, and the shading 

algorithms are all programmable. This allows for rendering in different 

environments with different types of radiation. The OptiX engine contains spatial 

partitioning structures. The included structures are KD-Trees and BVHs. To 

increase the quickness of calculation, NVidia included a smart load balancing 

system for thread execution. The OptiX engine also supports recursion and easy 

OpenGL interoperability. It requires CUDA 2.3. 

RTfact is a real-time renderer in development. The authors of RTfact are 

Georgiev and Slusallek (2008). RTfact is renderer based on C++ templates to 

create abstract definitions of rendering phenomena: Primitive, 

Intersectors, and Packet <size, type>. The primitive context contains 

not just mesh objects but can also contain photons. The primitive context does 

not perform intersection calculations; this is what the Intersectors are for. 

Intersectors provide the intersection functionality. The Packet context is easily 

scalable to contain one ray, or multiple rays. This ease of ray scalability is due to 
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the template nature of Packet. Rays are stored as a bundle of rays in one Packet 

context. The templated functionality allows the multiple rays per bundle to be 

calculated in parallel. “We advocate generic design as a key to flexibility and 

efficiency, especially for computationally intensive applications, such as real time 

ray tracing” (Georgiev & Slusallek, 2008, page 8). The authors show some time 

improvements with RTfact over other renderers: OpenRT, and Manta. 

2.4. Summary 

This chapter reviewed existing literature in the area of computer graphics 

rendering technologies. This review highlighted previous work done in the area of 

rendering technologies and software features. These features focused on ray 

tracing technologies such as: direct illumination models, shaders, cameras and 

shadows. The improvements to rendering speed are implemented using CUDA. 
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CHAPTER 3. METHODOLOGY 

This research is testing to what quantifiable degree is render time 

decreased when performing full recursive ray tracing on the GPU using CUDA. 

The testing methodology includes two renderers written by the author and one 

production-ready renderer available for professionals and consumers. The two 

renderers written by the author are used as the control (CPU renderer) and the 

testing group (GPU Renderer) to prove efficiency of GPU Rendering. The GPU 

renderer is being tested against a production as a more stringent testing 

benchmark on the efficiency of GPU Rendering. The production quality renderer 

(Mental Ray) is a robust renderer with many data, mathematical and logic 

functions to shorten or reduce redundant processes. The GPU-Assisted 

Renderer will not have this same robustness of rendering efficiency. These tests 

will show how much time is saved rendering on the GPU, if indeed time is saved.  

 The measured variable is the average time it takes to complete 25 frames 

of rendering, for both GPU and CPU. This time to complete will be measured on 

the computer performing the rendering tests. Variable data will be accurate to 

milliseconds. 

3.1. Algorithms 

This section describes the algorithms used in a ray tracer. 

3.1.1. The Rendering Equation 

The rendering equation is the central algorithm describing the entire 

rendering process. It describes geometry, light, objects and the BRDF. The 
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rendering equation can be formatted for different types of lighting methods. To 

calculate direct lighting Dutré, Bala and Bekaert (2006, pg. 44) format the 

rendering equation in the following manner: 

 

(2) 

 The integral sub-A defines the algorithm to take place over all objects. The 

next two terms describe the BRDF formulation for direct lighting. Specifically, “the 

direct term is the emitted term from the surface y visible to the point x along the 

direction xy; y = r(x, xy).” The next two terms are to describe the visibility of a 

surface point from the camera and the local surface information at Ay, V and G 

respectively.  

3.1.2. Ray Casting 

 

Algorithm 3.1 – Detailed ray tracing algorithm 

for  ( current pixel width: x) 

 for  (current pixel height: y) 

  define current view ray 

  for (every shape) 

   check Intersection-of-Ray-To-Shape 

   if (ray sees shape) 

    record shape: color, ID, distance from camera 

    sort shapes by distance from camera starting with closest 

  if (intersection happens for any shape in pixel x,y) 

   calculate reflections 

   blend reflection colors with main color 

   calculate Fog 

   assign new color to pixelPlane at x,y 

  if (no intersection happens for any shape in pixel x,y) 

   backgroundColor = FogColor 

   assign new color to pixelPlane at x,y 

Draw Image 
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 Figure 3.2 represents the main functional kernel of the rendering engine. 

For every pixel x and y, for every shape k cast a line of sight ray and check for 

object collisions. If a collision is detected record the object color, object ID and 

distance from camera of intersection. As ray-object intersections are calculated 

the STL::map container sorts them based on distance from camera. Once all 

shapes are calculated for intersection for one ray the closest object‟s color is 

assigned to the pixel plane. If no intersection is recorded for a ray, the 

background color is assigned. 

3.1.3. Cameras 

Most cameras used in CG are of two types: perspective or parallel 

projection. This does not include specialized or abstracted camera models like 

multiple centers of projection cameras. For the purpose of this research the 

perspective projection camera will be our camera model. It matches human 

vision better because it visually enlarges objects in the foreground and 

diminishes objects as they are further from the camera. Both parallel and 

perspective projection cameras cast rays through each pixel in the pixel plane. In 

order for a projection camera to work, each ray is cast from the center of the 

camera through each pixel.  
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Figure 3.1 - Casting a ray through a pixel (top); Camera and Pixel Plane models 
(bottom)  

3.1.4. BRDFs 

Dutré, Bala and Bekaert (2006) discuss shading models are algorithms 

that define various BRDFs. There are different classifications of BRDFs: 

approximations, physically based, and empirically based. The Lambertian, Phong 

and Blinn models are all approximations of BRDFs because they cannot 

accurately represent realistic BRDFs. The physically based BRDFs are the Cook-

Torrence and He models. These models account for energy conservation and 

BRDF reciprocity. The empirical models formulate their BRDFs from empirically 

gathered light-reflectance measurements. These BRDFs were designed to 

recreate the recorded reflectance phenomena. These are the Ward and 

Lafortune models. Understanding the Phong model provides the background on 

which to understand most shading models. 
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As initially defined by Phong (1975) in his shader model, the reflectance 

functions are as follows, with equation 5 being the summation of all components:  

 

 (2) 

  

 
(3) 

  

 (4) 

  

 (5) 

3.1.5. Lighting 

Akenine-Möller and Haines (2002) define the local lighting model with a 

light distance-attenuation component, d. Light attenuation is affected by three 

coefficients  (constant),  (linear),  (quadratic). 

 

(6) 

  

 (7) 

Each light has its own ambient, specular and diffuse components which 

can map to any shading model, or modified versions of them. 

3.1.6. Ray-Object Intersections 

Ray-Object intersections satisfy the G component of the rendering 

equation. As rays are cast from the camera into the scene they are tested for 

intersections with each of the objects in the scene. The definition of a ray comes 

from linear algebra and is a vector that originates from a point. It is often given in 

the form: 
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 (8) 

Now that a line of sight can be defined mathematically, they must be 

integrated into the mathematical definitions of other objects such as spheres and 

triangles. For spheres the solution to the intersection equation is of the quadratic 

equation form: 

 

(8) 

 

Except values a, b, and c are redefined using ray position and direction, 

and x is defined in terms of t, where t is distance between camera and 

intersection location. Thus the equation becomes: 

 

(9) 

 

Ray-triangle intersections are solved through the use of barycentric 

coordinates: α, β, γ. The point p is on the triangle, if and only if: 

 

   (10) 

 

This can be restated using only two coordinate variables and the third 

being a combination of the first two. Restating the requirements of a point on a 

triangle becomes: 

 (11) 

 

Thus, any cast ray, as either line of sight ray or surface reflection ray, hits 

the plane where: 

 (12) 
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3.1.6.1.   Line of Sight Rays and Shadow Rays 

These formulae are used in line of sight rays (un-occluded visibility, 

reflected rays, refracted rays) and also in calculating shadow rays. Revisiting 

figure 2.1 shows the path of two shadow rays, SR1 (shadow ray one) has a direct 

path to the light source and therefore that p1 receives light. Conversely, SR2 

(shadow ray two) is obstructed by the sphere and therefore p2 receives shadow. 

3.2. CPU Implementation 

The author written renderer for the CPU follows the work of Shirley and 

Morley (2003). It is a robust renderer with full C++ implementation.  

3.2.1. Classes 

 

Figure 3.2 – An example of shader construction using classes and inheritance 

All logical constructs of a ray tracer are created in separate classes using 

C++. The use of classes allows for cleaner code and easier editing. It allows for 

inheritance, polymorphism and makes it easier to add function overriding as 

needed. A table of classes and organization is included below. 
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Table 3.1 – Organization of class types and their classes 

Cameras 
 CamC 

 PixelPlane 

 StaereoCam 

Color 

 rgb 

I/O 

 targa 

Lights 

 LightC 

Materials 
 LambertMatC 

 PhongMatC 

 ShadingGroupC 

 ShadowMatC 
Math 

 RayC 

 RNGC 

 TransformC 

 Vect2D 

 Vect3D 

Scene 

 WorldC 

Shapes 
 readDataC 

 Shape 

 Sphere 

 Triangle 

Textures 
 MarbleTextureC 

 NoiseTextureC 

 SolidNoiseC 

 TextureC 

 

 

3.2.2. Polymorphism 

An additional feature of class inheritance is polymorphism. This 

relationship is used most often in when checking ray-object intersections using 

the hit function.  

Both Sphere and Triangle extend, or inherit from, the Shape class. 

The base class, Shape, is defined as an abstract class from which both Sphere 

and Triangle inherit their hit functions. Shape instantiates hit check functions 

for use in determining the color of the object at a point and also determining the 

shadows on the objects through shadowHit. Sphere and Triangle need to 

define their own hit functions though because each requires very different 

mathematical processes to define if a given ray does intersect with that object. 

This is the use of polymorphism. Sphere and Triangle define the substance of 

their own hit and shadowHit checks; they contain the algorithmic processes to 

determine if a hit occurs with a given ray. The Sphere class just declares that 

each shape type needs these functions. But why use polymorphism at all? 

In the WorldC.h class, all objects are added to one list. This list contains 

all the shapes that the renderer will see. To maintain this single list, the WorldC 

contains a member vector <Shapes> where both types of shapes are stored. 

The shapes and shape types can be stored in any arbitrary order. This means 
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that it would be easier if all shapes were seen as the same type of object and 

treated in the same manner. Because ShapeC.h is a base class that contains 

abstract virtual functions, all shapes – regardless of type – are interpreted by the 

renderer as the same type of object. Hence, no sorting or segmenting algorithm 

need be applied. All shapes, because of abstract virtual functions, are treated the 

same. Algorithm 3.1 shows that the hit check is performed for all shapes 

regardless of type. 

3.2.3. Recursion 

Recursion is how reflections are calculated on the CPU. The RayCast 

function is designed to call itself as many times as needed. Recursion is a 

delicate matter. If a recursive call has no escape the program falls into an infinite 

loop, memory leaks and the program eventually crashes. To avoid the disastrous 

eventuality the RayCast function has three escape checks: a rayCount 

variable, a no reflection check and a no intersection check. Only if the rayCount 

is less than MaxTraceDepth, the ray intersects an object, and the intersected 

object is reflected, then RayCast call itself again. Each time it calls itself, it 

iterates the rayCount variable by one, bringing this escape catch closer to 

finality with each recursive call. 
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Algorithm 3.2 – The RayCast function checks for reflectivity and calls itself 

 

Figure 3.3 – A CPU rendered image with reflectivity 

RayCast(inherit previous viewing ray and updated rayCount variable) 

 if (rayCount < MaxTraceDepth) 

 for (every shape) 

   check Intersection-of-Ray-To-Shape 

  if (intersection happens for any shape in pixel x,y) 

   is new surface reflective? 

   if (new surface is reflective) 

    rayCount = rayCount + 1 

    RayCast (reflected ray, new rayCount) 

  return reflected color 

  if (no intersection happens for any shape) 

   return background color 
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3.3. CUDA Implementation 

This section describes the implementation of ray tracing code on the GPU 

using CUDA and discusses key GPU programming issues: minimizing data 

transfer between host and device, no support for virtual functions, limited support 

for classes, and writing recursive functionality in a programming environment 

which does not support recursive functions. 

3.3.1. CUDA Code Overview 

Writing code in CUDA requires a different workflow as compared to coding 

in C++ on the CPU. Because CUDA leverages the parallelism of the GPU, thread 

counts, block and grid sizes must be established before any calculation can start. 

Coding for CUDA requires coding with the awareness of multiple cores and 

parallel processing over cores. Writing code in C++ for the CPU however can be 

coded without thought as to the existence of multiple CPU cores. This disparity in 

inherent parallelism coding standards requires an initial coding process to be 

determined: how to parallelize the rendering process of a single image. Once this 

is established the porting process from an unparallel, C++ based, CPU 

implementation to a massively parallel, CUDA based, GPU implementation.  

The flow of the CUDA ray trace renderer code is divided into four logical 

segments: variable and data type declaration, memory initialization, kernel 

definition and rendering.  

3.3.1.1. Parallelization and Thread Assignment 

When rays are cast into a scene their final goal is to return a single color 

value for each pixel and the color value of one pixel is not determined by the 

color value of a neighboring pixel (excepting anti-aliasing but even here the pixel 

is still the smallest, independent component). Given that the nature of ray tracing 

is that of casting rays through each pixel and calculating ray-object intersections 

over all objects in a scene against all cast rays, the smallest, independent 
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element in the algorithm is the pixel. Because of this property the parallelization 

of the rendering process runs on a per pixel basis. Therefore each pixel of the 

final output image has one GPU thread assigned to it. This thread performs all 

the lighting, shading and shadow calculations and also checks ray-object 

intersections for all objects. In effect, this means each thread has access to the 

entire scene description. This is important because when calculating multiple 

reflections, each ray can as a possibility bounce into any other section of the 

scene.  

3.3.1.2. Variable and Data Type Declaration 

In order to begin any calculations on the GPU the entire scene data, 

already initialized for the CPU renderer, must be passed to CUDA in a format it 

can support. CUDA 2.3 has limited support for classes and no support for virtual 

functions. The scene data for the CPU renderer is contained in a series of 

classes. Each class contains a series of member variables and member 

functions. Because of the limited support that CUDA 2.3 has for classes, it was 

decided that the data should be rewritten in a sparse form as a series of structs. 

A list of the complete set of typedef structs are presented in Appendix A. 

Almost all of the newly created data types contain only member variables. 

Only the curayTri (struct dataype describing triangles) contains member 

functions. These member functions are called at time of object initialization and 

define internal member variables. These are called just on initialization because 

they define variables that need be only defined once. Redefining the triangle 

normal is unnecessary regardless of where on the triangle a ray intersects. This 

is not true for spheres so this member function was not defined. 

To pass the data from CPU to GPU, a series of global pointer variables 

were declared in pairs: one for host memory, one for device memory. Appendix B 

has a list of the global variable memory pairs and their uses.  
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3.3.1.3. Memory Initialization 

Once variable pointers are declared, their sizes and contents must be 

filled. This process is performed before the GPU kernels are run. This process is 

a collection of functions that connect the main CPU renderer to the CUDA 

rendering file. There are four types of functions used in this process. 

Table 3.2 - Processes Used to Initialize GPU and Pass Data from CPU 

Sample Process Name Location Purpose 

void LightsToCUDA(WorldC 

&world) 
rayTracer.cpp Parses all member data needed to 

describe the object type into one 
linear array that holds all objects 

and all object data members 
 

extern "C" void 

defineLights(float*, int); 
rayTracer.cpp Passes linear array data from .cpp 

to .cu 
 

int = number of objects in array 
 

extern "C" void 

defineLights(float*, int); 
GPU.cu Allocates host and device memory 

in preparation of filling in data. 
 

Copies host memory to device 
memory once arrays are filled. 

 
void 

curayLightInit(curayLight* 

lightData, float* data, int 

numLights) 

GPU.cu Copies linear array data to array 
of struct data types. See 

Appendices A & B for description 
of curay structs and uses 

 
 

Allocation of host memory is performed with malloc and allocation of 

GPU memory is performed with cudaMalloc. Appendix C gives code examples 

of these functions. 

3.3.1.4. Kernel Definition 

Once memory is allocated, defined and moved to the GPU it is time for the 

GPU to perform the work of ray tracing. For each section of calculation a CUDA 
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kernel was written; these sections include: initial object intersection and depth 

sorting, object shading, ray reflection, color blending. See Appendices D-G for 

examples of all the CUDA kernels. 

 

The first kernel creates the base image. It renders all shapes, finds closest 

intersections and assigns appropriate color the float3* C (the color buffer). 

This kernel sets up the data stored in the curayFrameBuffer which will be 

used in the next three kernels. This data structure stores closest intersection 

distance, object id, object type, object normal, and point of intersection. This 

storage is vital because CUDA does not allow for virtual functions. The CPU 

renderer uses virtual functions numerously to calculate hit checks against 

multiple object types for shading values and shadow rays. The 

curayFrameBuffer object stores object id and type for use in later 

calculations. It stores these values on a per pixel basis. 

The second kernel creates the shaded and shadowed image. It first 

checks for shadows by casting rays from each intersection point in the previous 

image to each light and calculates areas of shadow. If a shadow is present for 

the position and light then no material shading component is rendered. 

Conversely, if there are no shadows then that point has Phong shading applied 

to it. The result is rendered to the color buffer (Appendix D) 

Point of intersection and object description are maintained in the 

FrameBuffer struct: curayFrameBuffer. These values (object type, object id, 

object normal, distance from camera) are generated in the previous kernel and 

called here (Appendix E).  

The third kernel is only called if the max trace depth is a value greater 

than 1. This kernel reads the normal vector of the object defined in the 

curayFrameBuffer and the current viewing vector and creates a new reflected 

vector using the CUDA math function, reflect. It only calculates reflection if an 

object was intersected with a viewing ray in the previous pass. If no object-ray 
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intersection occurs then the curayFrameBuffer object records ObjType to be 0 

(Appendix F). 

This final kernel blends the colors of current color and previous color, 

C2[i] and C[i] respectively. The blending value will be defined by a material 

coefficient of reflectivity (Appendix 

G).

 

3.3.1.5. Rendering 

The final step in the process is to put each of the steps together. This is where 

the series of kernels are called to action for as many times as defined by the max 

GPU Rendering Pipeline 

Kernel 1 

Object Intersection, Define curayFrameBuffers, 
Populate Color buffer with flat, object color  

Kernel 2 

Calculate Materials and Shadows 

Recursion Loop 

If (maxTraceDepth > 1) 
Do {Loop} while (rayCount < maxTraceDepth) 

Kernel 3 

Calculate new look vectors 

Kernel 1 

Kernel 2 

Kernel 4 

Blend Colors of current and previous rays 

Figure 3.4 – Kernel flow of GPU renderer 
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trace depth. Figure 3.5 expresses, in pseudo-code, the layout of the GPU 

rendering process.  

There are four main sections to the rendering function: color buffer 

initialization, rendering first ray cast, rendering multiple ray casts, and writing the 

image. 

 The ray cast is kept separate from the reflection ray casts because it is 

safe to assume there will always be at least ray cast. All subsequent ray casts 

are decided by the maxDepth variable in the C++ side of code. Before the ray 

casting process is begun for multiple iterations the reflected vectors need to be 

calculated. ReflectedViewingRays is first performed kernel in the recursive 

loop for this reason. The last step in this process is to blend the reflected color 

together with the previous color. BlendColors performs this operation. 

 

   

Algorithm 3.3 – Pseudo-code outlining flow of GPU.cu 

3.3.2. GPGPU Programming Issues 

CUDA 2.3, and earlier versions, do not support certain features found in 

C++. Two of these features required a large rewrite of the rendering code when 

porting from CPU to GPU: no support for virtual functions and no support for 

Begin GPURenderCycle 
 Kernel1 – IntersectShapes 
 Kernel2 – CalculateShadingShadows 
 If (maxDepth is greater than 1) 
  do  
  { 

Kernel3 – ReflectRays 
   Kernel1 
   Kernel2 
   Kernel4 – BlendColors 
   Add one to rayCounter 

}  
while (rayCounter is less than maxDepth) 
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recursive functionality. In addition to these limitations is the goal of reducing the 

number of data transfers between host and device.   

3.3.2.1. Minimizing Data Transfer Between Host and Device 

The original goal of this research was to use the GPU to assist in the ray 

trace rendering process. At first, the design was to use the data processing 

efficiency of the GPU to calculate all intersections, this would include all ray-

object intersection tests: viewing rays, shadow rays and reflected rays. This 

would leave the CPU to calculate all material shading and declare the necessity 

of bounce rays on a per object per pixel basis. Because the CPU renderer is 

designed to make use of only one CPU thread this would mean that any use of 

the CPU to calculate on a per object or per pixel basis the CPU becomes a 

bottleneck in the rendering process. More to the point, calculating ray-object 

intersections on a per ray cast basis would mean transferring data back from the 

GPU to the CPU a number of times as shown in the equation below (where SD 

represents the amount of data to describe the scene, VI represents the 

accumulated data for ray-object intersections of viewing rays, SI represents the 

accumulated shadow buffer of ray-object intersections for shadow rays): 

 
(13) 

 You can see that the amount of data transfers increase drastically with 

each increase in maxTraceDepth. However, with fully implemented ray tracing 

on the GPU the number of data transfers, per frame, is limited to two. Even if we 

are to put the speed lag due to large numbers of data transfers momentarily 

aside, there would be an increased cost of development time for unraveling the 

complex data coming from the GPU and interpreting the data for CPU rendering. 

Given these considerations it was decided the greatest improvements in 

speed and implementation would be gained in performing the full rendering 

process on the GPU. 



  37 

 

 

3.3.2.2. No Support for Virtual Functions 

CUDA 2.3 has limited C++ features. Specifically it lacks support for virtual 

functions. This required a major rewrite from the CPU rendering code. This 

required two main changes to code. The CPU implementation uses virtual 

functions in the Shape.h to define the hit and shadowHit functions. Both the 

Sphere.h and TriangleC.h are extended from the Shape.h class. Because 

the hit functions are virtual functions, the sphere and triangle intersection tests 

are performed in their mathematically appropriate manner while still being called 

using the same root function name as initialized in Shape.h. The benefit of 

virtual functions in this case is that a list of arbitrary, non-negative, size can be 

generated containing any amount of spheres and or triangles in an arbitrary 

order. This implementation is borrowed from Shirley and Morley (2003). 

The solution to this lay in creating two separate processes where sphere 

and triangle intersections are calculated separately and then tested for which is 

closest. This series of intersection tests is performed in the IntersectShapes 

kernel. For the complete CUDA kernel see Appendix D.  

Algorithm 3.4  – The intermediate arrays store the placement ID from the vector 
of <Shape> 

//List of Object IDs that are spheres 

IDSphere = new int[world.shapes.size()]; 

//List of Object IDs that are triangles 

IDTri = new int[world.shapes.size()]; 

  

for(unsigned int i=0; i<world.shapes.size(); i++) 

 { 

  if(world.shapes[i]->m_objType == 1)//Spheres 

  { 

   IDSphere[countSph] = i; 

   countSph++; 

  } 

  if(world.shapes[i]->m_objType == 2)//Triangles 

  { 

   IDTri[countTri] = i; 

   countTri++; 

  } 

 } 
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The first step in circumventing the lack of virtual functions is in splitting up 

the spheres and triangles into their own arrays of size defined in scene file. Once 

the shapes are split into individual arrays and their respective numbers counted, 

they are then passed to the GPU where a device array is generated and data is 

copied. Below is the main loop that separates the shapes into their respective 

arrays. 

Appendix H contains the full code for shape separation. 

3.3.2.3. Recursive Functionality and GPGPU Programming 

3.3.2.3.1. Color Mixing 

Another feature not supported by CUDA 2.3 is recursion. This change in 

coding standards creates a new challenge in writing a ray tracer. The current 

CPU renderer, coded with recursive functionality, traces reflected light paths to a 

terminating condition and then starts mixing the color from the back moving 

forward, always linear interpolating by the reflectivity coefficient. This means that 

the last two colors to mix are the first two ray casts. The CUDA ray trace 

algorithm is coded in a forward collective approach. This means that the first two 

colors to mix are the results of the first two ray casts.  

The change in color mixing directions causes a problem. In a forward color 

mixing approach the first ray cast has the least effect in the final image where 

ideally and naturally it should have an effect as defined by: 

 
(14) 

 

There are two easily identifiable methods to solve this approach. The first 

would be to create a large data storage structure that can hold as many color 

buffers as there are numbers of ray casts. This would be an unwise usage of 

memory and generally difficult to code for. The second method is to consider a 

summation series based on the number of expected ray casts (also equal to the 
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maxTraceDepth value). The second method takes no more memory and only a 

few more divisions or multiplications. 

Consider the algorithm in figure 3.4, notice how in the original color mixing 

paradigm, via a series of linear interpolations where maxTraceDepth equals six, 

the first color to mix at 50% in the first linear interpolation ends up only 

contributing 3.125% to the overall image. 

 

Figure 3.5 – A series of linear interpolations decreases a color‟s final effect; note 

color1. 

 In the CUDA implementation of forward ray color mixing, this means that 

the result of the first ray cast, where maxTraceDepth equals six, will have an 

overall influence of 3.125% on the final image. This is backwards. We need a 

predictive summation series that will properly calculate the interpolation values 

for all colors without having to change ray color mixing directions. Through the 

equation below a solid formula can be pieced together that describes how much 

a color should mix into the final image, where x is the coefficient of reflection. 
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(15) 

 Notice particularly the power coefficients in each color mixing value. 

These values are equal to 1 – current reflection depth; there is a value 

already defined as such in the main rendering function. Notice the rayCount 

value defined on the first page of Appendix I and iterated in the second page of 

Appendix I. The final check will be when rayCount = 1 – maxDepth, then 

power coefficient is equal to 1 – rayCount. 

 

3.3.2.3.2. Do While Loop 

As used in the work of Allgyer (2008), one method of recreating the effect 

of recursive functionality, without using recursive functions, is to use the DO 

WHILE loop. Appendix I gives the code usage of the DO WHILE loop. Each cycle 

of the loop iterates a counter value and goes through the render loop again, until 

the counter value reaches the max limit as defined by the maxTraceDepth 

value. 

3.4. Research Framework 

This research on ray-tracing will present three different renderers and test 

their respective render times in four main categories. The purpose of these tests 

is to determine which renderer completes different tests faster.  It is the 

hypothesis of this research that the GPU assisted renderer will out-perform the 

two CPU renderers. The three renderers that will be tested are: 

 Mental Ray 

 CPU Ray-Tracer written by Author 

 GPU Ray-Tracer written by Author 
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Each Renderer will be tested for time to complete a render. Each renderer 

generated 25 frames and the average time was computed. The averaged times 

for each renderer were compared. 

 

The variable in this study that will be tested for is time to complete each task. 

All three renderers will be tested. The following figure represents the nature of 

the study: 
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Figure 3.6 – Diagram of Testable Rendering Tests 

 All tests will take place on one computer with all software installed on it. 

The purpose of this is to limit the introduction of confounding variables through 

different hardware configurations. 

3.4.1. Hypotheses 

The testing of GPU rendering speed timing was tested using two 

hypotheses. For each hypothesis there exist a default and an alternate 

hypothesis. The purpose of this testing is to prove both alternate hypotheses. 
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The first hypothesis tests if the author written GPU renderer out-performs 

the author written CPU renderer. This is designed as a litmus test. This is the test 

that should be passed very early in the implementation stages of the GPU 

renderer. If this test cannot be passed, there is no reasonable expectation that 

the second hypothesis would be passed. 

That makes the second hypothesis a strict test of increases in rendering 

speed. Proving the alternate for hypothesis two is the main goal of this research 

and will provide statistically significant results for the validity of rendering with 

massively parallel systems. 

Table 3.3 – Table of testing hypotheses 

 Hypothesis 1 Hypothesis 2 

Default 

Hypothesis 

Ho1 – There is no noticeable 

increased speed of rendering with 

GPU rendering versus CPU 

rendering 

Ho2 – There is no noticeable 

increase in rendering speed when 

rendering with GPU versus 

rendering on CPU with a 

production quality renderer 

Alternate 

Hypothesis 

Hα1 – There exists a statistically 

significant increase in rendering 

speed when rendering with GPU 

versus rendering on the CPU 

Hα2 – There exists a statistically 

significant increase in rendering 

speed when rendering with GPU 

versus rendering on the CPU with 

a production quality renderer 

 

The testing method used to analyze the data will be a comparison of 

comparison of render times. 

3.4.2. Pre-Testing Expectation of Hypotheses 

To gauge a level of success or failure, criteria for success will be 

established for each hypothesis. 
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3.4.2.1. Proving the Alternative Hypothesis 1 

With respect to the cost of rendering as measured in time, any increase in 

speed is of great benefit, even when the increase in speed is measured 10‟s of 

percentage points. So a renderer that measures 50% faster than previous 

renderers is considered a marked improvement and worthy of financial 

investment. A renderer that can improve render times by whole multiples would 

be welcome in the computer graphics industry. 

A success would be an increase of rendering speed where the new 

renderer is two to four times faster. Therefore, to establish the alternative 

hypothesis 1 as accurate, the author written GPU will have to measure 4 times 

faster than the author written CPU renderer. 

3.4.2.2. Proving the Alternative Hypothesis 2 

Gaining rendering speed against a highly respected, professionally 

developed and professionally used, renderer is the more stringent test of speed 

improvements for the author written GPU renderer. The Mental Ray renderer 

supports many features that both author written renderers do not support. The 

largest advantage the Mental Ray renderer has over the author written renderers  

is an implemented spatial partitioning system. Mental Ray uses BSPs to divide 

the space to decrease render times. The BSP settings are as follows: 

Table 3.4 - Mental Ray BSP settings to increase render speeds for scene1 

BSP Type Regular BSP 

BSP Size 10 

BSP Depth 60 

 

Changing the BSP Depth value, from default, reduced the final render to 

3/4th the original render time. The fastest computer to render the Mental Ray 

scene dropped the render time from four seconds to three seconds. In addition to 
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the BSP algorithms, Mental Ray also supports multi-threaded rendering on the 

CPU. 

When weighed against these advanced spatial partitioning features and 

any number of subtle tricks of logic, math or algorithm, I was unsure how much 

improvement the GPU renderer would have. In order to prove the speed 

effectiveness of the GPU renderer, a success in the second hypothesis will be 

measured to be at least 20% faster than the Mental Ray renderer. This percent 

increase was chosen because any amount less would not be enough of an 

increase to warrant a financial investment in new software. From the author‟s 

experience in industry, this is believed to be a minimal threshold. 

3.5. Test Conditions 

Four 3D scenes were created using to test the two hypotheses. These two 

scenes are divided into two groups: (A) high reflection with low object count, (B) 

no reflection with hi object count.  

The scene in group A was rendered with these settings: 

 48 spheres 

 10 triangles for scene extent 

 Phong shader 

 Two point lights 

 Ray trace shadows for each light 

 Max Trace Depth of 10 

There are three scenes in group B. These scenes were generated through 

the creation of a set number of shapes with random locations in the scene. 

Group B was rendered with these settings: 

 900, 10000, or 30000 objects 

 10 triangles for scene extent 

 Phong Shader 

 Two point lights 
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 Ray trace shadows for each light 

 Max Trace Depth of 1 

The number of objects for scene in the group B category was decided on 

by a Windows operating system feature. This feature times out any GPU process 

that takes longer than 2 – 3 seconds to complete.  

Table 3.5 – Attributes of test scenes from Group A and Group B 

 Group A Group B 

Object Count 58 910 10,010 30,010 

Max Trace 
Depth 

10 1 1 1 

 

Each renderer will be time tested using the same scene data.  

3.6. Chapter Summary 

The testing methodologies described in this chapter are four tests of time. 

Each timed test will test four renderers. The four renderers are divided into two 

categories: CPU and GPU Assisted. The CPU category of renderers is further 

subdivided into two more categories: Production and Author Written. The 

MentalRay renderer is of the production category. The second main category is 

the GPU Assisted category. This is also an author written renderer. The GPU 

Assisted renderer will be tested, for time efficiency, against the two CPU 

renderers. The tests are three in count and test each renderers speed in 

rendering the similar data. 
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CHAPTER 4. RESULTS 

This chapter will discuss the timed results of the three renderers and their 

outcomes with respect to the two hypotheses: GPU rendering times compared 

against author written CPU renderer and production quality Mental Ray renderer. 

4.1. Author Written CPU Renderer Results 

 

Figure 4.1 - Rendered Image from author written CPU renderer 
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 The CPU renderer written by the author creates images with high visual 

quality. As is expected, the render times for the author written CPU renderer are 

slower than the Mental ray renderer. The fastest CPU render times came from a 

Core2 Duo 3GHz, 4GB RAM with the slowest render times coming from a Dual 

Xeon 3GHz processors. 

4.2. Mental Ray Renderer Results 

 

Figure 4.2 – Render results from Mental Ray 

 The rendering results from Mental Ray proved to be much faster than the 

author written CPU renderer.  
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4.3. Results: Scene 1 

The results of this study have surpassed the expectations greatly. Both 

alternative hypothesis were proven true by larger percentages than originally 

expected. These results apply to the scene defined in Group A: high reflection 

with low object count. This table breaks down the comparison: 

Table 4.1 – Comparison of rendering times for GPU, CPU and Mental Ray 
renderings. Units of time are given in milliseconds. 

 

Scene 1 Render Times 

 
GPU CPU CPU/GPU Mental Ray Mental Ray /GPU 

Average 988.94 75246.33 76.08786 6007.067 6.074248 

Fastest Times 244.84 28773.92 117.5213 2423.2 9.897076 
Slowest Times 1900.76 158151.8 83.20453 11256.8 5.922263 

 

The results of the data show significant increases in rendering speed with 

respect to the GPU over both the author written CPU renderer and even the 

Mental Ray renderer. The complete timing data is presented in Appendix J. 

4.3.1. Strict and Favorable Timing Comparisons 

Tables 4.2 and 4.3 demonstrate the clear advantage in rendering speed 

the GPU has over both the author written CPU renderer and the production ready 

Mental Ray renderer. In the strictest comparison of times, Table 4.2, the GPU 

renderer is 27% faster than Mental Ray and 1400% faster than the author written 

CPU renderer. 

Table 4.2 – Strict timing comparisons to GPU 

Slowest GPU to Fastest CPU and Fastest Mental Ray 
*time measured in milliseconds 

GPU CPU CPU/GPU MR MR / GPU 

1900.76 28773.92 15.13811 2423.2 1.274858 

 

 In a more favorable comparison of times, the fastest GPU times are 

compared to the slowest CPU and Mental Ray renders. Here, the advantages in 
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speed of GPU rendering are more prevalent. The GPU is 64,493% faster than 

the CPU and 4,497% faster than the slowest Mental Ray renderer. Table 4.3 

shows the data. 

Table 4.3 – Favorable timing comparisons to GPU 

Fastest GPU to Slowest CPU and Slowest Mental Ray 
*time measured in milliseconds 

GPU CPU CPU/GPU MR MR / GPU 

244.84 158151.8 645.9394 11256.8 45.97615 

4.4. Results: Scenes 2 – 4 

Scenes 2 through 4 create a series of scenes with ever increasing object 

counts. These 3D scenes are members of Group B: no reflection with high object 

count. Figure 4.3 illustrates the render times for the three comparable scenes. 

The chart shows the times for three CPUs and two GPUs. The CPUs are two I7 

processors and one Core2Quad. The two GPUs timed are a GTX 275 and a GTS 

250. Each hardware device rendered the 900, 10,000 and 30,000 object scenes.  

 

Figure 4.3 – Mental Ray render 900 Triangles, each as a separate pbject 
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Figure 4.4 – The GPU renders 30,000 randomly placed spheres 

The comparison of GPU speed to Mental Ray spatial partitioning is 

presented in figures 4.5 and 4.6. The first figure shows the render times of the 

GTX 275 out-performing all Mental Ray renders of similar scenes with the same 

object counts. 

Upon inspection of figure 4.6, a new phenomenon is illustrated. For the 

same rendered scenes and the same render timing, as seen in figure 4.5, the 

speed efficiency of the GPU decreases as the object count increases. The data 

is calculated by dividing the Mental Ray render time by the GPU render time. 

This shows how many times the GPU can render the same frame by the time 

Mental Ray can render one complete frame. In the first scene, of 900 objects, the 

GPU can render one frame almost 14 times before Mental Ray can render one 

frame. As the number of objects in the scene increases, the comparative GPU 

rendering performance decreases. 
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Figure 4.5 – GPU render times versus Mental Ray (CPU) render times for scenes 
with increasing object counts 

 

Figure 4.6 – Chart of declining GPU renderer performance with increasing object 
counts 
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4.5. Hypothesis 1 Results 

 

Figure 4.7 - Averaged timing comparison of GPU v. CPU 

 It is not a surprise that the GPU renderer would be faster than the CPU 

renderer. What was surprising was the level of speed increase. Looking back at 

Table 4.1, when comparing the slowest and fastest rendering times for both 

renderers, the GPU outperforms drastically. The average GPU render time is 75 

times faster than the average CPU render time. The fastest GPU rendering time 

is 116 time faster than the fastest CPU render time. 

4.6. Hypothesis 2 Results 

 

Figure 4.8 - Averaged timing Comparison of GPU v. Mental Ray 
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 The alternative hypothesis two is proven based on the data shown Tables 

4.1 and 4.2. The slowest GPU average render time is 27% faster than the fastest 

Mental Ray rendering speed. Of the time it takes to render both the average 

render times of GPU and Mental Ray, the GPU takes 14% of the overall render 

time; see Figure 4.8. Figure 4.6 shows that the GPU renderer, even at 30,000 

objects, is more than 2x faster than Mental Ray. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1. GPU Renderer Design 

The original research plan was to leverage the power of GPU paralleled 

architecture to calculate the most mathematically intense functions. These 

functions are the intersection check for both viewing rays and shadow rays. They 

are calculated in a brute force method with no spatial partitioning or scene 

hierarchy, nor a predictive intersection algorithm for shadow checking. 

There are two conditions that slow down GPU efficiency: conditional 

statements and host to device memory transfers. The first condition is not being 

dealt with at this time. With respect to solving the second condition, finding a 

stream-lined method to limit the number of data transfers between the host and 

device created a major shift in the development plan for the GPU renderer. The 

easiest way to limit the number of data transfers is to send data only once, to the 

device, to describe the scene, and then to send the image back to the host when 

rendering is ended. On a per frame basis, this generates only two mass data 

transfers. Were the GPU used only for ray – object intersection checks, there 

would exist at least two intersection tests (one viewing and one shadow 

intersection) therefore requiring 4 data transfers. However, a scene with multiple 

lights and setting a max trace depth above 4 or more would create numerous 

data transfers per frame. This would slow the rendering process down 

significantly. 

The best method, to limit unnecessary data transfer, was to perform all 

shading and rendering calculations on the GPU. Now data transfer is a constant 

amount per frame, regardless of the number of lights or reflection bounces. 
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5.2. Results 

The data presented in the timed results of GPU, CPU and Mental Ray 

renderers shows, without a doubt, that rendering on the GPU increases 

rendering speeds dramatically. The highly paralleled nature of current GPUs 

allows for extraordinary increases in rendering speed. This is true even when 

compared to the added algorithms for rendering efficiency apparent in Mental 

Ray.  

5.2.1. Massive Parallelism versus Spatial Partitioning 

Figure 4.4 shows an interesting trend in GPU vs. Mental Ray rendering 

performance. While the GPU outperforms Mental Ray in all three scenes (900 – 

10,000 – 30,000), the degree by which the GPU outperforms decreases as the 

number of objects increases. This trend shows that, at some point of increased 

object count, the Mental Ray rendering speed will converge with the GPU render 

speeds. At some point further in the graph, Mental Ray may even outperform the 

GPU renderer. These results show that while a massively parallel renderer has 

definite timing advantages, at some point the efficiency of spatial partitioning 

approaches similar timing results. This finding illustrates the need to implement 

spatial partitioning on the GPU renderer. 

5.2.2. General Discussion of Results 

The Mental Ray renderer has added functionality for spatial partitioning 

through the use of BSP trees, multi-threading on the CPU, and any number of 

subtle or hidden checks for rendering efficiency. In addition to these efficiencies, 

the Mental Ray renderer also leverages the strong logic capabilities of CPUs 

With respect to GPUs, the architecture favors brute force, stream 

calculation over logic operations. Conditional statements and operations slow 

down GPU performance significantly. Another obstacle GPUs face is transmitting 

scene and image data from the CPU to the GPU and data flow in reverse. 
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Despite the time to pass data over the bus,  to and from host and device, and the 

lack of spatial partitioning and intersection prediction, the amount of processors 

and the streaming nature of current GPUs cause them to out-perform a 

production ready and highly modified renderer. 

5.3. Future Work 

Future work on the GPU renderer should first be aimed at increasing 

rendering speed with large data sets. This would require the addition of a scene 

partitioning system and would therefore limit the practice of brute force rendering 

via ray – object intersections. Using BVHs will greatly increase rendering speed. 

To get a sense of the gain in rendering speeds, compare the speed of the Mental 

Ray renderer versus the author written CPU renderer.  

 

Figure 5.1 – Comparison of render times between two CPU renderers. One is a 
brute force renderer and the Mental Ray renderer has added efficiency 
algorithms 

 In addition to BVHs, creating a CUDA struct or class that supports a hash 

table type of object storage, per pixel, of intersection data would allow for easier 
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sorting while maintaining low access speeds – similar to the STL::map container. 

This would be an important step in calculating objects with various levels of semi-

transparency. 
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Appendix A. CUDA Struct Declarations and Data Contents 

Table A.1 – Host and Device Global Memory Pairings and Their Use 

Struct Name Data Contents Array Size 
N = number of pixels 

M = number of objects 

curayCam float3 pos 1 
float3 dir 

float3 up 

curayLight float m_intensity 1 – n 
float3 m_diffuse 

float3 m_specular 

float3 m_pos 

curaySphere float radius 0 – n 
float3 m_pos 

float3 m_color 

int matID 

curayTri float3 p0, p1, p2 0 – n 
float3 m_normal 

float3 m_color 

float3 ABC, DEF 

int matID 

DefineABCDEF() 

DefineNormal() 

curayFog  float3 m_color 0 - 1 
float3 m_IntMinMax 

curayRay float3 m_dir, m_pos 1, Defined in Kernel 

curayRec float t 1 
int id 

curayFrameBuffer int id, ObjType N 
float t 

float3 normal, point 

curayMat float3 color, spec 0 – N 
or 

0 – M 

float reflectivity, shininess 
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Appendix B. CUDA Global Memory Variable Pairs 

Table B.1 – Data Contents of New Struct Data Types 
Host Variables Device Variables Use 

curaySphere* 

h_Spheres=NULL; 

curaySphere* 

d_Spheres=NULL; 

 

Stores n amount of spheres 
where n is defined by CPU 

curayTri* 

h_Tris=NULL; 

 

curayTri* 

d_Tris=NULL; 
Stores n amount of triangles 
where n is defined by CPU 

curayLight* 

h_Lights=NULL; 

 

curayLight* 

d_Lights=NULL; 
Stores n amount of lights where 
n is defined by CPU 

curayCam* 

h_Camera=NULL; 

 

curayCam* 

d_Camera=NULL; 
Stores camera data 

curayFog* h_Fog=NULL; 

 

curayFog* 

d_Fog=NULL; 
Stores fog data 

curayFrameBuffer* 

h_FB=NULL; 

 

curayFrameBuffer* 

d_FB=NULL; 
FrameBuffer stores data for the 
closest object id and ObjType, 
distance to nearest intersection, 
normal and position of object of 
nearest intersection 
 

curayMat* h_Mat=NULL; 

 

curayMat* 

d_Mat=NULL; 
Material description.  
 
Note: Because of the thread per 
pixel nature of the GPU 
renderer, material definitions 
can be defined per pixel and/or 
per object. 
 

float3* 

h_Vectors=NULL; 

 

float3* 

d_Vectors=NULL; 
Stores ray cast and reflection 
vectors 

float3* h_C=NULL; 

 
float3* d_C=NULL; 

float3* d_C2=NULL; 

 

Stores color data 
 
d_C2 is defined as the 
intermediate color value during 
recursive ray casting steps. 
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Appendix C. Host and Device Memory Allocation and Assignment 

extern "C" void defineLights(float* data, int numLights) 

{ 

 // data in is defined in strips of number numLights: 1 x  

// float(intensity), 3 x float(colDiff), 3 x float(colSpec), 

// 3 x float(pos) 

  

 cudaError_t error; //Define cudaError to bug check memory 

//allocation!! Really Important for debugging!! 

  

 //allocate Host memory  

 h_Lights = (curayLight*)malloc(sizeof(curayLight)*numLights); 

 if(h_Lights==0) Cleanup(false); 

  

 //allocate Device Memory 

 error = cudaMalloc((void**)&d_Lights, 

sizeof(curayLight)*numLights); 

 if (error!= cudaSuccess) Cleanup(false); 

 

 //Init Lights in CUDA 

 curayLightInit(h_Lights, data, numLights); 

  

 //copy Lights memory to GPU memory 

 error = cudaMemcpy(d_Lights, h_Lights, 

sizeof(curayLight)*numLights, cudaMemcpyHostToDevice); 

 if (error != cudaSuccess) Cleanup(false); 

 

 NumLight = numLights; 

}; 

 

Figure C.1 – GPU.cu host and device memory allocation code 
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//Defines the lights (h_Lights) with pos, m_diffuse, m_specular, 

m_intensity 

void curayLightInit(curayLight* lightData, float* data, int numLights) 

{ 

 for (int i=0; i<numLights; i++) 

 { 

  lightData[i].m_intensity = data[i*10+0]; 

  lightData[i].m_diffuse.x = data[i*10+1]; 

  lightData[i].m_diffuse.y = data[i*10+2]; 

  lightData[i].m_diffuse.z = data[i*10+3]; 

  lightData[i].m_specular.x = data[i*10+4]; 

  lightData[i].m_specular.y = data[i*10+5]; 

  lightData[i].m_specular.z = data[i*10+6]; 

  lightData[i].m_pos.x = data[i*10+7]; 

  lightData[i].m_pos.y = data[i*10+8]; 

  lightData[i].m_pos.z = data[i*10+9]; 

   

 } 

 // Lights data is defined and assigned to curayLight data type 

and array 

}  

Figure C.2 – GPU.cu curayLight array data assignment, per light 

 

void LightsToCUDA(WorldC &world) 

{ 

  float *data; 

  int floatCount = 10; //number of floats needed to represent one Light 

  data = new float[world.phong1.m_numLights*floatCount]; 

  for(int i=0; i<world.phong1.m_numLights; i++) 

    { 

 data[i*floatCount+0] = world.phong1.m_lights[i]->m_intensity; 

 data[i*floatCount+1] = world.phong1.m_lights[i]->m_diffuse.r(); 

 data[i*floatCount+2] = world.phong1.m_lights[i]->m_diffuse.g(); 

 data[i*floatCount+3] = world.phong1.m_lights[i]->m_diffuse.b(); 

 data[i*floatCount+4] = world.phong1.m_lights[i]->m_specular.r(); 

 data[i*floatCount+5] = world.phong1.m_lights[i]->m_specular.g(); 

 data[i*floatCount+6] = world.phong1.m_lights[i]->m_specular.b(); 

 data[i*floatCount+7] = world.phong1.m_lights[i]->m_translate.x(); 

 data[i*floatCount+8] = world.phong1.m_lights[i]->m_translate.y(); 

 data[i*floatCount+9] = world.phong1.m_lights[i]->m_translate.z(); 

    } 

  defineLights(data,world.phong1.m_numLights); 

  delete [] data; 

  data = NULL; 

} 

Figure C.3 – RayTrace.cpp assignment of light data to linear array and passing 
to GPU.cu 
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Appendix D. CUDA Kernels – Shape Intersection Kernel 

The first kernel creates the base image. It renders all shapes, finds closest 

intersections and assigns appropriate color the float3* C (the color buffer). 

 

__global__ void IntersectShapes(float3* C, curayFrameBuffer* C_FB, int 

N, curaySphere* gpuSpheres, int SphereCount, curayTri* gpuTris, int 

TriCount, float3* Vectors, curayCam* d_Cam, float _tmin, float _tmax) 

 

{ 

 __shared__ curayCam gpuCamera; 

 gpuCamera = d_Cam[0]; 

    int i = blockDim.x * blockIdx.x + threadIdx.x; 

 float3 colorBG = {0.1f,0.1f,0.5f}; 

 if (i<N) 

    { 

  curayRec recordSph, recordTri; 

  recordSph.t = _tmax; 

  recordTri.t = _tmax; 

  int tickSph=0; 

  int tickTri=0; 

  bool chk1, chk2; 

  chk1 = chk2 = false; 

 

 

 ///////////////////////////////////////////////////////////////// 

  ////  Calculate Sphere Intersections 

 

 ///////////////////////////////////////////////////////////////// 

  if(SphereCount>0) 

  for (int j=0; j<SphereCount; j++) 

  { 

   float3 temp = gpuCamera/*[0]*/.pos-

gpuSpheres[j].m_pos; 

   float3 temp2; 

   temp2 = Vectors[i]; 

 

   float a = dot(temp2,Vectors[i]); 

   float b = 2 * dot(temp2,temp); 

   float c = dot(temp,temp) - gpuSpheres[j].m_radius * 

gpuSpheres[j].m_radius; 

 

   float discriminant = b*b - 4*a*c; 

   if (discriminant > 0) 

   { 

    //cout << "Discriminant Check if > 0" << endl; 

    discriminant=sqrt(discriminant); 

    float t = (-b - discriminant) / (2*a); 

 

    //now check for valid interval ??? 

    if (t < _tmin) 

     t = (-b + discriminant) / (2*a); 
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    if (t < _tmin || t > _tmax) 

     break; 

    // we have a valid hit!!!! 

    tickSph++; 

    if (t<recordSph.t) { recordSph.t=t; 

recordSph.id = j; } 

   } 

  } 

   

 

 ///////////////////////////////////////////////////////////////// 

  ////  Calculate Triangle Intersections 

 

 ///////////////////////////////////////////////////////////////// 

  if(TriCount>0) 

  for (int j=0; j<TriCount; j++) 

  { 

   float3 temp = gpuCamera/*[0]*/.pos; 

   float3 temp2 = Vectors[i]; 

 

   float tval; 

 

   float A = gpuTris[j].ABC.x; 

   float B = gpuTris[j].ABC.y; 

   float C = gpuTris[j].ABC.z; 

   float D = gpuTris[j].DEF.x; 

   float E = gpuTris[j].DEF.y; 

   float F = gpuTris[j].DEF.z; 

   float G = temp2.x; 

   float H = temp2.y; 

   float I = temp2.z; 

 

   float J = gpuTris[j].p0.x - temp.x; 

   float K = gpuTris[j].p0.y - temp.y; 

   float L = gpuTris[j].p0.z - temp.z; 

 

   float EIHF = E*I - H*F; 

   float GFDI = G*F- D*I; 

   float DHEG = D*H - E*G; 

 

   float denom = (A*EIHF + B*GFDI + C*DHEG); 

   float beta = (J*EIHF + K*GFDI + L*DHEG) / denom; 

 

   if(beta <= 0.f || beta >= 1.f) { chk1=true;} 

   float AKJB = A*K - J*B; 

   float JCAL = J*C - A*L; 

   float BLKC = B*L - K*C; 

 

 

   float gamma = (I*AKJB + H*JCAL + G*BLKC)/denom; 

   if (gamma <= 0.f || beta + gamma >= 1.f) { 

chk2=true;} 

 

   tval = -(F*AKJB + E*JCAL + D*BLKC) / denom; 

   if (tval >= _tmin && tval <= _tmax) 
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   { 

    if(chk1==false && chk2==false) 

    { 

     tickTri++; 

     if(tval<recordTri.t) { recordTri.t = 

tval; recordTri.id = j; } 

    } 

   } 

   chk1 = chk2 = false; 

  } 

 

  if(tickSph>0 && tickTri>0) 

  { 

   //sort by t 

   if(recordTri.t<recordSph.t) 

   { 

    C[i]= gpuTris[recordTri.id].m_color; 

    C_FB[i].id = recordTri.id; 

    C_FB[i].ObjType = 2; 

    C_FB[i].t = recordTri.t; 

    C_FB[i].normal = 

gpuTris[recordTri.id].m_normal; 

   } 

   else  

   { 

    C[i] = gpuSpheres[recordSph.id].m_color; 

    C_FB[i].id = recordSph.id; 

    C_FB[i].ObjType = 1; 

    C_FB[i].t = recordSph.t; 

    C_FB[i].normal = normalize((C_FB[i].t * 

Vectors[i] + gpuCamera/*[0]*/.pos) - gpuSpheres[recordSph.id].m_pos); 

   } 

   C_FB[i].point = C_FB[i].t * Vectors[i] + 

gpuCamera/*[0]*/.pos; 

  } 

  else if(tickSph>0 && tickTri==0) 

  { 

   //draw Sph 

   C[i] = gpuSpheres[recordSph.id].m_color; 

   C_FB[i].id = recordSph.id; 

   C_FB[i].ObjType = 1; 

   C_FB[i].t = recordSph.t; 

   C_FB[i].normal = normalize((C_FB[i].t * Vectors[i] + 

gpuCamera/*[0]*/.pos) - gpuSpheres[recordSph.id].m_pos); 

   C_FB[i].point = C_FB[i].t * Vectors[i] + 

gpuCamera/*[0]*/.pos; 

  } 

  else if(tickSph==0 && tickTri>0) 

  { 

   //draw Tri  

   C[i] = gpuTris[recordTri.id].m_color; 

   C_FB[i].id = recordTri.id; 

   C_FB[i].ObjType = 2; 

   C_FB[i].t = recordTri.t; 

   C_FB[i].normal = gpuTris[recordTri.id].m_normal; 
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   C_FB[i].point = C_FB[i].t * Vectors[i] + 

gpuCamera/*[0]*/.pos; 

  } 

  else 

  { 

   //draw BG 

   C[i] = colorBG; 

   C_FB[i].ObjType = 0; //no object present 

   C_FB[i].normal = make_float3(0.f); 

  } 

    } 

} 
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Appendix E. CUDA Kernels – Shading Calculation 

The second kernel creates the shaded and shadowed image. It first 

checks for shadows by casting rays from each intersection point in the previous 

image to each light and calculates areas of shadow. If a shadow is present for 

the position and light then no material shading component is rendered. 

Conversely, if there are no shadows then that point has Phong shading applied 

to it. The result is rendered to the color buffer.  

Point of intersection and object description are maintained in the 

FrameBuffer struct: curayFrameBuffer. These values (object type, object id, 

object normal, distance from camera) are generated in the previous kernel 

(Appendix D) and called here.  

 

__global__ void CalculateShading(float3* C, curayFrameBuffer* FB, int 

N, curayLight* d_Lights, int countLight, curayCam* d_Camera, float3* 

d_Vectors, curaySphere* gpuSpheres, int SphereCount, curayTri* d_Tris, 

int TriCount, float _tmin, float _tmax) 

 

{ 

 /*__shared__ curayCam gpuCamera; 

 gpuCamera = d_Camera[0];*/ 

 __shared__ curayLight gpuLights[2]; 

 gpuLights[0] = d_Lights[0]; 

 gpuLights[1] = d_Lights[1]; 

 int i = blockDim.x * blockIdx.x + threadIdx.x; 

 if (i<N) 

 { 

  //Diffuse = clamp(dot(lightV, 

lookV),0,1)*light[j].m_diffuse*light[j].m_intensity*object.color 

  float3 lightV, reflV; 

  float3 lookV = normalize(FB[i].point - d_Camera[0].pos); 

  float3 color = {0.f, 0.f, 0.f}; 

  float3 Diff, Spec; 

  Diff = Spec = color; 

  float3 colorInit = C[i]; 

  float dotProd; 

  for(int h=0; h<countLight; h++) 

  { 

   bool isShadow = false; 

  

 ///////////////////////////////////////////////////////////// 

   //// Calculate Shadows of Spheres    

  //// 

  

 ///////////////////////////////////////////////////////////// 



  74 

 

 

 

   if(SphereCount>0) 

   for (int j=0; j<SphereCount; j++) 

   { 

    float3 temp = FB[i].point - 

gpuSpheres[j].m_pos;//the currentPoint - all shapes 

    float3 temp2 = gpuLights[h].m_pos - 

FB[i].point; //light minus the point 

 

    float a = dot(temp2,temp2); 

    float b = 2 * dot(temp2,temp); 

    float c = dot(temp,temp) - 

gpuSpheres[j].m_radius * gpuSpheres[j].m_radius; 

 

    float discriminant = b*b - 4*a*c; 

    if (discriminant > 0) 

    { 

     //cout << "Discriminant Check if > 0" << 

endl; 

     discriminant = sqrt(discriminant); 

     float t = (-b - discriminant) / (2*a); 

 

     //now check for valid interval ??? 

     if (t < _tmin) 

      t = (-b + discriminant) / (2*a); 

     if (t < _tmin || t > _tmax) 

      break; 

     isShadow=true; 

    } 

    //if (shadowChk>0)break; 

   } 

 

   if(!isShadow) 

   { 

    lightV = normalize(gpuLights[h].m_pos - 

FB[i].point); 

    reflV = reflect(lightV, FB[i].normal); 

    dotProd = clamp(dot(FB[i].normal, 

lightV),0.f,1.f); 

    Diff = dotProd * gpuLights[h].m_diffuse * 

gpuLights[h].m_intensity * colorInit + color; 

    dotProd = clamp(dot(reflV, lookV), 0.f, 1.f); 

    Spec = gpuLights[h].m_specular * 

gpuLights[h].m_intensity * pow(dotProd,20.f); 

    color = Diff + Spec; 

    color = clamp(color, 0.f, 1.f); 

   } 

  } 

  C[i] = color; 

 } 

} 
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Appendix F. CUDA Kernels – Calculating Reflected Viewing Rays 

The third kernel is only called if the max trace depth is a value greater 

than 1. This kernel reads the normal vector of the object defined in the 

curayFrameBuffer and the current viewing vector and creates a new reflected 

vector using the CUDA math function, reflect. It only calculates reflection if an 

object was intersected with a viewing ray in the previous pass. If no object-ray 

intersection exists then the curayFrameBuffer object records ObjType to be 0. 

 

__global__ void ReflectViewingRays(curayFrameBuffer* FB, float3* 

Vectors, int N) 

{ 

 int i = blockDim.x * blockIdx.x + threadIdx.x; 

 float3 tmp; 

 if (i<N) 

 { 

  if(FB[i].ObjType != 0) 

  { 

   tmp = reflect(Vectors[i],FB[i].normal); 

   Vectors[i] = tmp; 

  } 

 } 

} 
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Appendix G. CUDA Kernels – Reflection Color Mixing Kernel 

This final kernel blends the colors of current color and previous color, 

C2[i] and C[i] respectively. The blending value will be defined by a material 

coefficient of reflectivity. 

 

__global__ void BlendColors(float3* C, float3* C2, int N) 

{ 

 int i = blockDim.x * blockIdx.x + threadIdx.x; 

 if (i<N) 

 { 

  C[i] = lerp(C[i],C2[i],0.5f /*material reflectivity 

coefficient*/); 

 } 

} 
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Appendix H. GPU Shape Splitting into Independent Arrays 

 

void ShapesToCUDA(WorldC &world) 

{ 

 //search list of shapes and count number of spheres and tris 

 int countSph, countTri; 

 countSph = countTri = 0; 

 int *IDSphere, *IDTri; 

 IDSphere = new int[world.shapes.size()]; //List of Object IDs 

that are spheres 

 IDTri = new int[world.shapes.size()]; //List of Object IDs that 

are triangles 

 for(unsigned int i=0; i<world.shapes.size(); i++) 

 { 

  if(world.shapes[i]->m_objType == 1)//Spheres 

  { 

   IDSphere[countSph] = i; 

   countSph++; 

  } 

  if(world.shapes[i]->m_objType == 2)//Triangles 

  { 

   IDTri[countTri] = i; 

   countTri++; 

  } 

 } 

 float *dataSphere; 

 float *dataTri; 

 int sphereFloatSize = 7; //Number of floats to represent a sphere 

 int triFloatSize = 12; //Number of floats to represent a triangle 

 dataSphere = new float[countSph * sphereFloatSize]; 

 dataTri = new float[countTri * triFloatSize]; 

 Vect3d p0, p1, p2; 

 rgb color; 

 for(int i=0; i<countSph; i++) 

 { 

   

  p0 = world.shapes[IDSphere[i]]->getSphereCenter(); 

  color = world.shapes[IDSphere[i]]->m_color; 

  color.UINTtoRGBcheck(); 

  dataSphere[i*sphereFloatSize+0] = 

world.shapes[IDSphere[i]]->getSphereRadius();//get sphere radius data 

  dataSphere[i*sphereFloatSize+1] = p0.x(); 

  dataSphere[i*sphereFloatSize+2] = p0.y(); 

  dataSphere[i*sphereFloatSize+3] = p0.z(); 

  dataSphere[i*sphereFloatSize+4] = color.r(); 

  dataSphere[i*sphereFloatSize+5] = color.g(); 

  dataSphere[i*sphereFloatSize+6] = color.b(); 

 } 

 for(int i=0; i<countTri; i++) 

 { 

  p0 = world.shapes[IDTri[i]]->getTriangleP0(); 

  p1 = world.shapes[IDTri[i]]->getTriangleP1(); 

  p2 = world.shapes[IDTri[i]]->getTriangleP2(); 
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  color = world.shapes[IDTri[i]]->m_color; 

  color.UINTtoRGBcheck();//convert color from 0-255 to 0-1 

  dataTri[i*triFloatSize+0] = p0.x(); 

  dataTri[i*triFloatSize+1] = p0.y(); 

  dataTri[i*triFloatSize+2] = p0.z(); 

  dataTri[i*triFloatSize+3] = p1.x(); 

  dataTri[i*triFloatSize+4] = p1.y(); 

  dataTri[i*triFloatSize+5] = p1.z(); 

  dataTri[i*triFloatSize+6] = p2.x(); 

  dataTri[i*triFloatSize+7] = p2.y(); 

  dataTri[i*triFloatSize+8] = p2.z(); 

  dataTri[i*triFloatSize+9] = color.r(); 

  dataTri[i*triFloatSize+10] = color.g(); 

  dataTri[i*triFloatSize+11] = color.b(); 

 } 

 

 if(countSph>0) defineSpheres(dataSphere,countSph); 

 if(countTri>0) defineTris(dataTri,countTri); 

 

 delete [] dataSphere; 

 delete [] IDSphere; 

 delete [] dataTri; 

 delete [] IDTri; 

 dataSphere = NULL; 

 IDSphere = NULL; 

 dataTri = NULL; 

 IDTri = NULL; 

 color.~rgb(); 

 p0.~Vect3d(); 

 p1.~Vect3d(); 

 p2.~Vect3d(); 

 

} 
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Appendix I. GPU.cu Rendering Function 

 

extern "C" void startKernel(int frame, int threadsPerBlock) 

{ 

 //int Loop; 

 int I=500,J=500; 

 int N=I*J; 

 int rayCount = 1; 

 float tMin, tMax; 

 tMin = 0.00001f; 

 tMax = 100000.f; 

 clock_t start_t, end_t; 

    printf("Vector addition\n"); 

    size_t size = N * sizeof(float3); 

    cudaError_t error; 

    //Generate Materials 

 //curayMatInit(h_Mat); 

 

 cudaDeviceProp prop; 

 int dev; 

  

    // Allocate input vectors h_A and h_B in host memory 

    h_C = (float3*)malloc(size); 

    if (h_C == 0) Cleanup(false); 

 defineFrameBuffer(N); 

     

    // Initialize input vectors 

 

    // Allocate vectors in device memory 

    error = cudaMalloc((void**)&d_C, size); 

    if (error != cudaSuccess) Cleanup(false); 

 error = cudaMalloc((void**)&d_C2, size); 

    if (error != cudaSuccess) Cleanup(false); 

 

 error = cudaGetDevice( &dev ); 

 error = cudaGetDeviceProperties(&prop, dev ); 

 printf("Major, minor of GPU is: %i.%i\n", prop.major, 

prop.minor); 

    // Invoke kernel 

    int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock; 

         

    int f, g; 

 /*VecAdd<<<blocksPerGrid,threadsPerBlock>>>(d_C,N, d_Camera, 

d_Lights,  

           

 d_Spheres, d_Tris, MaxDepth, 

           

 d_Fog, d_Vectors 

           

 );*/ 

 //getchar(); 

    error = cudaGetLastError(); 

    if (error != cudaSuccess) Cleanup(false); 
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#ifdef _DEBUG 

    error = cudaThreadSynchronize(); 

    if (error != cudaSuccess) Cleanup(false); 

#endif 

 

 

  start_t = clock(); // Start Timer 

////////////////////////////////////-----

///////////////////////////////////// 

////   First Ray Cast 

//./..//./..//./..//./..//./..//./..-----

//./..//./..//./..//./..//./..//./../ 

/////////////////////-----Intersection Calculation-----

/////////////////////// 

    IntersectShapes<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_FB, N, 

d_Spheres, NumSphere, d_Tris, NumTri, d_Vectors, d_Camera, tMin, tMax); 

 error = cudaGetLastError(); 

/////////////////////-----Material Shading Calculation-----

/////////////////////// 

 CalculateShading<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_FB, N, 

d_Lights, NumLight, d_Camera, d_Vectors, d_Spheres, NumSphere, d_Tris, 

NumTri, tMin, tMax); 

 

//./..//./..//./..//./..//./..//./..// 

//   Begin Ray Tracing  // 

//./..//./..//./..//./..//./..//./..// 

 

 if(MaxDepth>1) 

 do 

 { 

  //recalculate rays 

  ReflectViewingRays<<<blocksPerGrid,threadsPerBlock>>>(d_FB, 

d_Vectors, N); 

 

  //Intersect Shapes 

  IntersectShapes<<<blocksPerGrid,threadsPerBlock>>>(d_C2, 

d_FB, N, d_Spheres, NumSphere, d_Tris, NumTri, d_Vectors, d_Camera, 

tMin, tMax); 

 

  //Calculate Shading 

  CalculateShading<<<blocksPerGrid,threadsPerBlock>>>(d_C2, 

d_FB, N, d_Lights, NumLight, d_Camera, d_Vectors, d_Spheres, NumSphere, 

d_Tris, NumTri, tMin, tMax); 

 

  //Blend Colors based on reflectivity 

  BlendColors<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_C2, 

N); 

 

  //increase Ray count by one 

  rayCount++; 

  printf("do-while loop iter: %i\n",rayCount); 

 } while (rayCount<MaxDepth); 

 

 

 end_t = clock() - start_t; // End GPU Timer 
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 printf("finished CUDA render in %d milliseconds.\n\n", end_t); 

    // Copy result from device memory to host memory 

    // h_C contains the result in host memory 

    error = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); 

    if (error != cudaSuccess) Cleanup(false); 

     

 

    printf("Resorting\n"); 

    // Convert h_C to fractalOut[f][g][h] 

    for (int i=0; i<N; i++) 

    { 

  //N=k+(j*3)+(i*3*J); 

  //h=(int)i%3; 

  g=(int)i%I; 

  f=(int)((i-g)/J)%I; 

  fractalOut[f][g][0] = (unsigned char)(h_C[i].x*(unsigned 

char)255); 

  fractalOut[f][g][1] = (unsigned char)(h_C[i].y*(unsigned 

char)255); 

  fractalOut[f][g][2] = (unsigned char)(h_C[i].z*(unsigned 

char)255); 

  //if(i%150==0)printf("Value in image at index %d, with x%d 

y%d ,  is: %f.\n",i,f,g,h_C[i]); 

 } 

  

     

    //Write Image 

    sprintf(ImageName, "CUDA_Render.%i.tga",frame); 

    SaveTGA(ImageName,(unsigned char*)fractalOut,I,J,24); 

    printf("Print after writing image\n"); 

    //getchar(); 

    

    Cleanup(true); 

} 
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Appendix J. Scene 1 Testing Data 

This first table represents to the timed data for different GPUs. All units of 

time are measured in milliseconds. 

Table J.1 – List of GPUs and render times 
CUDA 
compute 
Architecture 1.3 1.3 1.1 1.0 1.1 

Graphics 
Card GTX-260 GTX 275 GTS 250 

GeForce 
8800GTX 

9800GTM 
512M RAM 

 
GPU GPU GPU GPU GPU 

Frame 1 303 280 2043 1781 

O
u

t 
o

f 
M

em
o

ry
   

   
   

   
  O

u
t 

o
f 

M
em

o
ry

   
   

   
   

 O
u

t 
o

f 
M

em
o

ry
 

Frame 2 295 244 1887 1500 

Frame 3 289 243 1887 1468 

Frame 4 284 245 1888 1515 

Frame 5 278 242 1903 1500 

Frame 6 282 242 1903 1468 

Frame 7 285 239 1888 1500 

Frame 8 284 241 1904 1531 

Frame 9 277 240 1903 1484 

Frame 10 288 241 1903 1485 

Frame 11 290 247 1904 1547 

Frame 12 284 245 1919 1484 

Frame 13 289 247 1888 1563 

Frame 14 296 241 1888 1500 

Frame 15 304 240 1903 1515 

Frame 16 287 242 1888 1500 

Frame 17 300 244 1888 1546 

Frame 18 292 243 1888 1500 

Frame 19 291 245 1903 1516 

Frame 20 285 246 1888 1516 

Frame 21 281 246 1903 1531 

Frame 22 278 243 1872 1547 

Frame 23 295 246 1888 1516 

Frame 24 292 245 1903 1516 

Frame 25 295 244 1887 1501 

Average 288.96 244.84 1900.76 1521.2 
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This second table represents the CPU render times.  

Table J.2 – List CPUs and render times for author written CPU ray tracer 

Processor 

Core2 
Duo 
3GHz, 
4GB 
RAM 

I7 (920) 
@ 
2.67GHz 
6GB 
RAM 

Core2 
Quad 
Q9400 
@ 
2.66GHz 

Intel Core2 
Quad CPU 
Q7600 @2.66 
(4 CPUs) 

Dual 
Xeon 
3GHz 

 
CPU CPU CPU CPU CPU 

Frame 1 30723 66129 92586 123092 248578 

Frame 2 30718 44041 78374 62296 155406 

Frame 3 30696 45304 77907 62859 158157 

Frame 4 29398 46041 77906 63202 154671 

Frame 5 28173 45680 77876 62093 153719 

Frame 6 28621 45588 78203 62280 154625 

Frame 7 28341 44094 78577 62687 156516 

Frame 8 28334 45521 77610 62234 154219 

Frame 9 28253 44422 78843 62358 152875 

Frame 10 28272 45658 77844 62531 156390 

Frame 11 28414 45894 78296 62186 154765 

Frame 12 28402 45780 79872 62187 151563 

Frame 13 28270 45828 78905 59234 152109 

Frame 14 29290 45820 77735 62015 152469 

Frame 15 28487 45800 74444 61608 153281 

Frame 16 28681 45703 78639 62281 150781 

Frame 17 28921 44821 79280 62046 152375 

Frame 18 28933 45537 78780 62093 152250 

Frame 19 28820 44405 79092 62030 153344 

Frame 20 28256 40861 78499 62296 151234 

Frame 21 28294 42625 79233 62016 155157 

Frame 22 28347 42755 79388 62288 153843 

Frame 23 28212 42761 79295 62414 155985 

Frame 24 28204 41882 79841 62194 160468 

Frame 25 28288 48131 79529 62492 159016 

Average 28774 45643 79062 64600.48 158152 
 



  84 

 

 

This last table represents timing data for rendering scene1 in Mental Ray. 

Table J.3 – List of CPUs and render times for Mental Ray rendering 

Processor 

Intel Core2 
Quad CPU 
Q7600 @2.66 
(4 CPUs) 

Dual 
Xeon 
3GHz 

2.53GHz 
Core2 
Duo 

 
MR 

Mental 
Ray 

Mental 
Ray 

Frame 1 670 920 580.00 

Frame 2 2530 10690 4540.00 

Frame 3 2500 10330 4520.00 

Frame 4 2410 10620 4500.00 

Frame 5 2410 10740 4410.00 

Frame 6 2450 11060 4480.00 

Frame 7 2390 11140 4430.00 

Frame 8 2560 11440 4460.00 

Frame 9 2410 11440 4550.00 

Frame 10 2480 11430 4480.00 

Frame 11 2420 11660 4490.00 

Frame 12 2540 11750 4470.00 

Frame 13 2450 11660 4430.00 

Frame 14 2590 11850 4460.00 

Frame 15 2320 11960 4510.00 

Frame 16 3150 12110 4720.00 

Frame 17 2200 12040 4470.00 

Frame 18 2570 12130 4440.00 

Frame 19 2420 12110 4730.00 

Frame 20 2420 12200 4490.00 

Frame 21 2390 12280 4460.00 

Frame 22 2490 12440 4450.00 

Frame 23 2610 12520 4460.00 

Frame 24 2560 12370 4510.00 

Frame 25 2640 12530 4490.00 

Average 2423.2 11257 4341.20 
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Appendix K. Classes Chart of CPU Renderer 

 

Figure K.1 – Close-up of flowchart planning for CPU renderer 
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Figure K.2 – Close-up of flowchart planning for CPU renderer 
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