
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

4-30-2010

Full CUDA Implementation Of GPGPU
Recursive Ray-Tracing
Andrew D. Britton
Purdue University - Main Campus, andrew@andrewbritton.com

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Britton, Andrew D., "Full CUDA Implementation Of GPGPU Recursive Ray-Tracing" (2010). College of Technology Masters Theses.
Paper 24.
http://docs.lib.purdue.edu/techmasters/24

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Andrew Duncan Britton

FULL CUDA IMPLEMENTATION OF GPGPU RECURSIVE RAY-TRACING

Master of Science

Dr. Bedrich Benes

Dr. James Mohler

Eliot Mack

Dr. Bedrich Benes

Dr. James Mohler April 21, 2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

FULL CUDA IMPLEMENTATION OF GPGPU RECURSIVE RAY-TRACING

Master of Science

Andrew Duncan Britton

April 29, 2010

FULL CUDA IMPLEMENTATION OF GPGPU RECURSIVE RAY-TRACING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Andrew D. Britton

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

West Lafayette, Indiana

 ii

 This work is dedicated to all hearts and minds that point in multiple

directions concurrently, to everyone who, when they look at the blank canvas of

future moments, sees possibility over danger, and to anyone whose eyes are

bigger than their stomachs when planning the future.

 Our mettle is quickened in trials by fire and in leaps of faith beyond our

own comprehension. When fatigue has removed our last defenses, who we

choose to be in that moment defines who we are ever after.

 This, as it has always been, is just the beginning.

 iii

ACKNOWLEDGMENTS

This research would not be possible with the specific aid and support of

my committee members: Dr. Bedrich Benes (chair), Eliot Mack and Dr. James

Mohler. For their pioneering work in the field of the computer graphics I am

grateful for the efforts of: Jim Blinn, Pierre Bezier, ACM, Ed Catmull, OpenGL

ARB, Mark J. Kilgard, Bui Tuong Phong, Ken Perlin, Peter Shirley, Arthur Appel,

Turner Whitted. For their dedication to art I am grateful to the efforts of: Leon

Battista Alberti, John Singer Sargent, Krome Barratt, Edgar Degas, Burne

Hogarth, Piet Mondrian, Vincent Van Gogh, Alphonse Mucha, and Albrecht

Dürer. As I am a pebble standing on the backs of giants in this amazing field, I

wish to thank the educators who opened roads for me that would otherwise be all

but obscured without their presence: Donna Cox and George Francis. I am very

thankful to my friends who gave me some of their time and computer clock cycles

in the middle of their own thesis crunch: Jason Lambert and Ondrej Stava.

Without them I wouldn‟t have so much rendering timing data. My double thanks

to them for also being my unofficial programming tutors.

My special thanks goes to Norman Brzycki, Aaron Lake, Rebecca Lank

and Colleen Maguire.

iv

PREFACE

“To make clear my exposition in writing this brief commentary on painting,

I will take first from the mathematicians those things with which my subject is

concerned.

In all this discussion, I beg you to consider me not as a mathematician but

as a painter writing of these things. Mathematicians measure with their minds

alone the forms of things separated from all matter. Since we wish the object to

be seen, we will use a more sensate wisdom. We will consider our aim

accomplished if the reader can understand in any way this admittedly difficult

subject… Therefore, I beg that my words be interpreted solely as those of a

painter” (Alberti, L. B. 1435).

v

TABLE OF CONTENTS

 Page
LIST OF TABLES……………………………………………………………………… vii
LIST OF FIGURES ……………………………………………………………………viii
LIST OF ALGORITHMS... x

GLOSSARY …………………………………………………………………………......xi
ABSTRACT ………………………………………………………………………….…xiii
CHAPTER 1. INTRODUCTION ………………………………………………………..1

1.1. Research Question ………………………………………………………………3

1.2. Scope ………………………………………………………………………..……4
1.3. Significance ………………………………………………………………………4

1.4. Assumptions ……………………………………………………………………...5
1.5. Limitations ………………………………………………………………………..6
1.6. Delimitations ……………………………………………………………………...6

1.7. Chapter Summary ……………………………………………………………….6
CHAPTER 2. LITERATURE REVIEW... 7

2.1. Ray Tracing ………………………………………………………………………7

2.1.1. Ray – Object Intersections ... 9

2.1.2. Spatial Partitioning.. 9
2.1.3. Illumination ... 11
2.1.4. Direct Illumination & Shadows .. 12

2.1.5. Cameras ... 13
2.1.6. Objects ... 14

2.1.7. Texture Mapping .. 14
2.2. Speed Improvements…………………………………………………………..15

2.2.1. GPGPU with CUDA™ .. 16

2.3. Summary ………………………………………………………………………..19
CHAPTER 3. METHODOLOGY ……………………………………………………..20

3.1. Algorithms ………………………………………………………………………20

3.1.1. The Rendering Equation ... 20

3.1.2. Ray Casting .. 21
3.1.3. Cameras ... 22
3.1.4. BRDFs .. 23
3.1.5. Lighting ... 24
3.1.6. Ray-Object Intersections .. 24

3.2. CUDA Implementation …………………………………………………………30
3.2.1. CUDA Code Overview .. 30

vi

Page
3.2.2. GPGPU Programming Issues ... 35

3.3. Research Framework ………………………………………………………….40

3.3.1. Hypotheses .. 41
3.3.2. Pre-Testing Expectation of Hypotheses ... 42

3.4. Test Conditions …………………………………………………………………44
3.5. Chapter Summary ……………………………………………………………...45

CHAPTER 4. RESULTS.. 46

4.1. Author Written CPU Renderer Results ………………………………………46
4.2. Mental Ray Renderer Results ………………………………………………...47
4.3. Results: Scene 1 ……………………………………………………………….48
4.4. Results: Scenes 2 – 4 ………………………………………………………….49
4.5. Hypothesis 1 Results …………………………………………………………..52

4.5.1. Hypothesis 2 Results .. 52
CHAPTER 5. CONCLUSIONS AND FUTURE WORK.. 54

5.1. GPU Renderer Design …………………………………………………………54

5.2. Results …………………………………………………………………………..55
5.3. Future Work……………………………………………………………………..56

LIST OF REFERENCES ……………………………………………………………...58
APPENDICES

Appendix A. CUDA Struct Declarations and Data Contents ……………………65

Appendix B. CUDA Global Memory Variable Pairs ……………………………...66
Appendix C. Host and Device Memory Allocation and Assignment..................67
Appendix D. CUDA Kernels – Shape Intersection Kernel.................................69

Appendix E. CUDA Kernels – Shading Calculation ..73

Appendix F. CUDA Kernels – Calculating Reflected Viewing Rays..................75

Appendix G. CUDA Kernels – Reflection Color Mixing Kernel76
Appendix H. GPU Shape Splitting into Independent Arrays77

Appendix I. GPU.cu Rendering Function ..79
Appendix J. Scene 1 Testing Data..82
Appendix K. Classes Chart of CPU Renderer ..85

vii

LIST OF TABLES

Table Page
Table 3.1 – Organization of class types and their classes 27

Table 3.2 – Processes Used to Initialize GPU and Pass Data from CPU 32

Table 3.4 – Mental Ray BSP settings to increase render speeds for scene1 43
Table 3.5 – Attributes of test scenes from Group A and Group B 45
Table 4.1 – Comparison of rendering times for GPU, CPU and Mental Ray

renderings. Units of time are given in milliseconds. 48

Table 4.2 – Strict timing comparisons to GPU .. 48
Table 4.3 – Favorable timing comparisons to GPU .. 49
Appendix Tables
Table A.1 – Host and Device Global Memory Pairings and Their Use 65
Table B.1 – Data Contents of New Struct Data Types .. 66

Table J.1 – List of GPUs and render times ... 82
Table J.2 – List CPUs and render times for author written CPU ray tracer 83

Table J.3 – List of CPUs and render times for Mental Ray rendering 84

viii

 LIST OF FIGURES

Figure Page
Figure 1.1 – The construction of a ray .. 2

Figure 1.2 – Comparison of amount of computational cores between high-end,
consumer CPU and high-end, consumer GPU ... 5

Figure 2.1 – Illustration of rays, vectors and angles required in ray tracing 7

Figure 2.2 – Illustration of octree as spatial partitioning 10

Figure 2.3 – No spatial partitioning (left); octree partitioning (right) 11
Figure 2.4 – UV coordinates define the placement of a texture on geometry. 15

Figure 2.5 – Workflow of .cu file compilation .. 16
Figure 2.6 – Diagram of Cell BE architecture (Cox, Máximo, Bentes and Farias,

2009, pg. 9) .. 17
Figure 3.1 – Casting a ray through a pixel (top); Camera and Pixel Plane models

(bottom) .. 23
Figure 3.2 – An example of shader construction using classes and inheritance 26

Figure 3.3 – A CPU rendered image with reflectivity .. 29

Figure 3.4 – Kernel flow of GPU renderer .. 34
Algorithm 3.4 – The intermediate arrays store the placement ID from the vector

of <Shape> ... 37

Figure 3.5 – A series of linear interpolations decreases a color‟s final effect; note

color1... 39

Figure 3.6 – Diagram of Testable Rendering Tests .. 41

Figure 4.1 – Rendered Image from author written CPU renderer 46
Figure 4.2 – Render results from Mental Ray ... 47
Figure 4.4 – The GPU renders 30,000 randomly placed spheres....................... 50
Figure 4.5 – GPU render times versus Mental Ray (CPU) render times for scenes

with increasing object counts .. 51
Figure 4.6 – Chart of declining GPU renderer performance with increasing object

counts ... 51
Figure 4.7 – Averaged timing comparison of GPU v. CPU 52
Figure 4.8 – Averaged timing Comparison of GPU v. Mental Ray 52
Figure 5.1 – Comparison of render times between two CPU renderers. One is a

brute force renderer and the Mental Ray renderer has added efficiency
algorithms ... 56

ix

Appendix Figures Page
Figure C.1 – GPU.cu host and device memory allocation code 67
Figure C.2 – GPU.cu curayLight array data assignment, per light 68
Figure K.1 – Close-up of flowchart planning for CPU renderer 85
Figure K.2 – Close-up of flowchart planning for CPU renderer 86

x

LIST OF ALGORITHMS

Algorithm Page
Algorithm 2.1 – ray tracing pseudo-code .. 8

Algorithm 3.1 – detailed ray tracing algorithm... 21

Algorithm 3.2 – the raycast function checks for reflectivity and calls itself 29

Algorithm 3.3 – pseudo-code outlining flow of gpu.cu .. 35

Algorithm 3.4 – the intermediate arrays store the placement id from the vector of
<shape> ... 37

xi

GLOSSARY

Rendering – “The main function of the [graphics rendering] pipeline is to
generate, or render, a two-dimensional image, given a virtual camera,
three-dimensional objects, light sources, shading equations, textures, and
more” (Akenine-Möller & Haines, 2008, pg 11).

Virtual Pinhole Projection Camera – is a construct through which scene data is
recorded to a two-dimensional pixel plane. Virtual describes the camera
as existing and operating in computer code. Pinhole Projection defines
that the “incoming light” passes through a single point; this is the camera‟s
position. (Shirley & Morley, 2003, pg 63-67).

Ray – a geometric construct defined by a vector and a point. The vector
originates from the point. Both vector and point are defined using three or
four-dimensional coordinate space.

Ray Casting - The first ray originates from the camera center and is cast in the
direction from the camera through the pixel plane. Rays are calculated for
intersection with geometric objects. This is how the renderer calculates if
and where and object is “seen” in the final image.

Ray Tracing – To calculate reflections and refractions a ray-trace renderer
creates new rays that bounce into the scene or through objects to
calculate new colors per pixel.

BRDF – the Bi-directional Reflectance Distribution Function. The BRDF
describes the quality of reflected energy, given a set of input energy given
over a set of various incident angles, off a measured surface. Every
surface has its own BRDF. The BRDF describes the sizes and qualities of
reflected light over a surface. This is seen as the soft (diffuse) and crisp
(specular) highlights on surfaces (Dutré, Bala & Bekaert, 2006).

Ambient Lighting Component – is a description and approximation of the light
that fills a scene. It describes the amount of background light in a scene. It
is a color additive component to shaders. This component is described by
color.

Diffuse Lighting Component – describes light reflected off of rough surfaces. The
presence of the diffuse lighting component on a shader allows for the
presence of self-shading where there is a light and dark side of an object
based on the object‟s surface direction. Where the surface points more
toward the light the surface will receive more light; the converse is true as
well. This component is described by color.

xii

Specular Lighting Component – is a shading approximation used to describe the
highlights on the surface of an object. The specular component is useful in
showing where a surface fits on the continuum of rough to smooth. For
very smooth objects the highlight generated is very sharp and usually very
small. For more course surfaces the highlight generated is usually softer
and larger. This component is described by color and shape of highlight.

GPU – is the graphics processing unit located on the video card. Current GPUs
contain multiple cores per processing unit. In current gaming and
development video cards, the processing units are unified architecture that
supports vertex, geometry and pixel processing.

Hardware Profiles – Each graphics card has a set profile describing what it can
do. The profiles are defined by two factors: graphics API and GPU
architecture. All GPGPU programs must be written to the standard set by
the local hardware profile. Newer graphics cards have modern hardware
profiles and therefore support greater functionality.

NVidia CUDA™ – is a “general purpose parallel computing architecture – with a
new parallel programming model and instruction set architecture…” (pg.
3). Advantages to CUDA are its scalable programming model, parallelism,
ability to be programmed with C-style native language, and direct
connection to GPU.

CUDA Kernel – Kernels are c-style functions which run on all threads of the GPU
during calculation

NVCC – is the complier that separates host code from device code and compiles
device code to PTX format.

PTX – CUDA assembly style device code.

xiii

ABSTRACT

Britton, Andrew D. M.S., Purdue University, May 2010. Full CUDA
Implementation of GPGPU Recursive Ray-Tracing. Major Professor: Dr. Bedrich
Benes.

Pioneered by the works of Whitted and Appel, ray tracing has become a

standard format for image rendering. Ray tracing is a very accurate mathematical

calculation of light and color, but is a very slow process. The question becomes

how can researchers combine the speed of GPU calculations with the rendering

quality of ray-tracing? The focus of this research is to solve this question. Our

research will test the effectiveness of decreasing render times by implementing a

full GPGPU ray trace renderer with recursive ray casting.

 The purpose of this study is to test the speed of brute force ray tracing

calculation on the GPU versus the optimized ray tracing capabilities of a

production quality renderer. Specifically, how much faster, if at all, can the GPU

speed up rendering.

 For this study the author created two renderers, a CPU renderer and a

GPU renderer, written in C++ and CUDA respectively. The author written

renderers are implemented without spatial partitioning or ray-object prediction

algorithms. The rendering speed of the CPU, GPU and Mental Ray renderers

were tested in two scene groups with the first group containing one scene and

the second group containing three scenes. The first test scene contains a 5 sided

box of 10 triangles and 48 spheres. The second group of scenes contains the

same box of 10 triangles with an expanding set of objects. The first, second and

third scenes contain 900, 10000 and 30000 objects, respectively. All renderers

xiv

generated 25 frames per scene. The average time for renders was compared for

each test. Each renderer was tested on multiple hardware devices.

 The GPU renderer outperformed both the author written CPU renderer

and the Mental Ray renderer in both tests. In the first test scene, the average

render times for the GPU, CPU and Mental Ray renderers were 988.94, 75246.3,

and 6007.067 milliseconds, respectively. For the second group of test scenes of

900, 10000 and 30000 objects the author written GPU renderer outperformed

Mental Ray in speed of rendering. Due to the spatial partitioning algorithm in

Mental Ray, the GPU renderer out performed by smaller amounts as the number

of rendered objects increased. It is believed that at a large enough number of

rendered objects the parallel nature of the GPU will fail in comparison to the

spatial partitioning algorithms in Mental Ray.

1

CHAPTER 1. INTRODUCTION

Computer graphics requires clear, detailed, visually rich images to

successfully communicate intended topics with a desired audience. Of the

existing rendering schemes, ray-tracing is at the heart of most rendering models

of generating high visual fidelity imagery. The core of this research stems from

an artist seeking to understand photorealistic rendering algorithms and how to

increase rendering speed. Once the material is understood artists will be able to

bring their artistic visions and visual vocabularies to computer graphics. It is the

aim of this education of an artist in computer graphics programming that artists

will learn another tool to create more artistry. The arena of ray-tracing is chosen

because the technologies sit at the nexus of multiple computer graphics

disciplines. Implementing a renderer requires the artist learn about linear algebra,

shader descriptions, the science of electromagnetic transport over multiple

surfaces, programming, geometric descriptions, and rational, versus intuitive,

logic. The lessons learned herein should also provide the technology artist with

the concept that the computer, with its 0‟s and 1‟s, is a tool, just as paintbrushes,

chalk-sticks or pencils are tools. This research should help the reader better

understand ray-tracing applications.

A solid understanding of ray-tracing and its additional functionality is no small

task for the artist converting to technology. Whereas the artist in classical

training contexts will learn about light, shape, shadow, form and line, these

lessons are taught in an experiential environment. Artists are taught to see light,

color, form, line and shape and then trained to recreate their vision in a variety of

materials: paper and pencil, pen and ink, etching, printmaking, sculpture, or

2

watercolor. The artist must understand, as Alberti mentioned, the mathematics of

line of sight.

Ray tracing is a well understood process in computer graphics. This

understanding starts with the work of Appel (1968) and Whitted (1980) through

their introductions of ray-casting and ray-tracing, respectively. With the advent of

the latest GPUs that out-perform CPUs in graphical data calculation, a rising

question becomes how can the GPU be used to increase the efficiency of a ray-

trace renderer.

The field of mathematics Alberti references in his text is the study of linear

algebra. Linear algebra covers matrices, vectors and points, or directions,

orientations and locations. A mathematical object that contains both a point and a

vector is a ray.

Figure 1.1 - The construction of a ray

Rays are the backbone of ray-tracing. It is these rays that are cast from

the „eye‟ into the world. These rays are then calculated to check intersections

with objects. Where an intersection exists, the ray returns color information. This

color information is based on two inputs: lighting and materials. Materials are

defined through a set of specular, ambient and diffuse parameters. Lighting can

be defined through two methodologies: direct lighting and indirect lighting. Direct

lighting calculations use linear algebra to define light positions and lighting

directions. These calculations define lighting on an object where light is received

directly from the light source, and not from multiple bounces. Indirect Lighting

simulations calculate the light that bounces over multiple diffuse surfaces. These

lighting calculations are more complex and require Monte Carlo integration to

3

approximate light paths over multiple diffuse reflections. The work of Dunn and

Parberry (2002), 3D Math Primer for Graphics and Game Development, outlines

all necessary concepts including: vectors, points, matrices, transformations,

orientations, coordinate systems and three dimensional math. In addition to the

study of linear algebra, the new technology artist must learn to implement the

formulas and logic required to construct a ray-tracer. This construction requires a

computer and a programming language to support all the ray-tracing functionality

required to generate hi-quality images. The programming language of choice is

C++. The texts used to study C++ are the works of Gaddis, Walters and

Muganda (2007) and two texts by Meyers (2001 & 2005).

Programming on the GPU will be performed with CUDA 2.3. The use of

the CUDA programming interface requires the use of NVidia graphics cards.

Programming with CUDA applies certain limitations: no support for

polymorphism, recursion, or double data types (when using CUDA compute

architecture 1.1 or less). In addition to these limitations exists a best practices

limitation of reducing the amount of data transferred between the GPU and the

CPU. Modern prosumer CPUs have anywhere from two through eight logical

cores, whereas modern, prosumer graphics cards contain anywhere from 96 to

192 cores. In addition to the greater amount of processing cores, the GPU

architecture makes the graphics card operate as a stream processor. The GPU

cores are programmable and can process large amounts of data. Because of the

highly paralleled nature and stream processing of GPU architecture, rendering on

the GPU represents the possibility of a large gain in rendering speed.

1.1. Research Question

What is the speed increase of performing ray tracing on the GPU versus

on the CPU?

4

1.2. Scope

To execute the rendering research the author has created two different

renderer implementations: one on the CPU and the other on the GPU. The CPU

software will be written using C++, object-oriented coding practices, and

recursion. The GPU renderer is written in CUDA replacing recursion with loops.

The scope of this project is limited to the creation of a functional software

renderer and one functional hardware renderer. Hardware implementation will be

written and tested on NVidia graphics cards in the 8800 series or later. Testing

on the NVidia cards will ensure that the GPU supports the CUDA language and

architecture. Creating cross-platform ports, support for multiple graphics card

vendors, and extending the code to multiple languages is outside the scope of

this research. The rendering tests will be performed using multiple GPUs and

CPUs. Each test will render pre-defined 3D scenes containing a series of implicit

spheres and triangles, multiple lights, reflections, shadows and material

descriptions.

1.3. Significance

The significance of this research fills a professional void for the author.

With an established background in 3D art, 2D art, and 3D animation for

production and education, the author is conversant in applying 3D practices and

systems to create imagery. This level of understanding reaches a limit as the

knowledge base approaches the mathematical and technical realms of 3D

computer graphics. Extending the researcher‟s understanding of 3D technical

and mathematical concepts will enable to researcher to accomplish and

understand a wider array of tasks and goals. These goals are achieved through

the study of ray-trace rendering because the methods required to create a ray-

tracer include: shaders, lights, shadows, rays, geometry. In addition to the base

rendering concepts enhancing rendering performance via the GPU is a crucial

step because of the architecture of modern GPUs and their abilities to

simultaneously calculate large data-sets. The power in performing functions on

5

the GPU is the massively parallel nature of the GPU‟s architecture. Modern

CPUs contain two to four cores. Modern graphics card for the high-end consumer

contain as many as 480 cores (figure 1). Each core works in parallel. This

massive parallelism is designed to calculate large data sets in real time (60

frames per second).

Figure 1.2 - Comparison of amount of computational cores between high-end,
consumer CPU and high-end, consumer GPU

1.4. Assumptions

This study assumes the following to be true or in place in for this study:

 All tests will be performed on computers with NVidia graphics cards with

8800 GTX technology, or later.

 The GPU renderer code will be compliled using CUDA 2.3.

 The tested video cards will support at least the lowest level CUDA

compute architecture with some capable of running the latest compute

capability of 1.3.

 All rendering code is precompiled and loaded for the testing machine.

6

1.5. Limitations

This research draws on the following limitations:

 In order to prove effectiveness this study is only recording timed data of

rendering tests.

 All testing GPUs must be CUDA™ enabled, loaded with Windows XP or

higher and have software to compile C++ and CUDA code.

1.6. Delimitations

This research draws the following delimitations to reinforce scope of study:

 GPU functionality will not be tested on video cards made by vendors other

than NVidia.

 Research will not study qualitative data from a sampling of users and their

impressions of quality or effectiveness of tested renderers

1.7. Chapter Summary

This research focuses on applying the calculation efficiency of the GPU to

the rendering processes of ray tracing. The purpose in marrying these two

technologies together is gaining the speed increases of the GPU.

 7

CHAPTER 2. LITERATURE REVIEW

Figure 2.1 - Illustration of rays, vectors and angles required in ray tracing

2.1. Ray Tracing

Ray-tracing finds its roots in the works of artists and mathematicians from

centuries earlier. In Alberti‟s desire to understand the mathematics behind art

and vision, he described sight and vision in a matter aligned perfectly with

computer graphics, and especially ray-tracing. Alberti states: “Let us imagine the

rays, like extended very fine threads gathered… going back together inside the

eye where lies the sense of sight. They are like a trunk of rays from which, like

straight shoots, the rays are released and go out towards the surface in front of

them” (Alberti, 1435, p. 40).

 8

According to Shirley and Morley (2003), ray-trace renderers are built upon

a series of simple algorithms that are used, in turn, to generate digital images. In

contrast to a rendering method like scan-line rendering, ray-trace rendering is

becoming more-popular because of increased computing power and the

renderers ability to cleanly solve problematic topics such as realistic material

transparencies and object shadows.

Algorithm 2.1 – Ray tracing pseudo-code

The algorithmic process of ray-tracing is simple to understand. There exist

objects to create and methods for describing their connections. The base list of

required objects to create are: camera, ray (a position and direction), two-

dimensional array of pixels (an empty image), light(s), and shape(s). All objects

in the scene are connected via independently calculated rays. In order for the

renderer to „see‟ objects and render them, those objects must be in the line of

sight of the camera. The line of sight is calculated as a ray, whose originating

position is the camera and whose direction is determined by the location of the

empty image. Rays are cast into the scene and wherever these line of sight rays

intersect with various shapes, the renderer calculates which object is hit first and

what color that object is. The color is calculated by casting rays, from a point on

the surface, into the scene to “see how the world „looks‟ to that point” (Shirley &

for (current pixel width: x)

 for (current pixel height: y)

 for (every shape)

 find all shapes visible to this pixel

 if (pixel x,y sees shape)

 draw closest shape at pixel x,y

 if (pixel x,y does not see shape)

 draw background color at pixel x,y

Draw all pixels to image

 9

Morley 2003). Each surface point is checked for facing direction toward or away

from the light sources. Any surface section facing toward a light whose view of

the light is unobstructed will receive a lighting contribution. This contribution is

based also on the amount to which the surface section points toward the light.

2.1.1. Ray – Object Intersections

All ray-trace rendering is computed through collision detection of objects

and rays. Rays are cast from the camera, through each pixel of the image, and

tested for ray-object intersection. In order for the viewer to see an object in

space, it must be in the viewer‟s direct line of sight, or in the reflected and

refracted lines of sight. The computer must test line of site properties by shooting

a ray from the camera into the scene and checking to see if the ray intersects

with objects. This functions used for checking differ for various objects, though

the principles are the same. Without optimization, default ray-casting techniques

require a high degree of calculations dependent on the resolution x & y and

number of objects in the scene description. This generates ray-intersection

calculations in the amount of per pixel width, height and per object in scene

description (Shirley & Morley, 2003). It can be described by the following

equation:

 (1)

2.1.2. Spatial Partitioning

In order to speed up the rendering of a scene, an optimized algorithm of

ray-casting is required. By grouping multiple objects together into Bounding

Volume Hierarchies (BVH), ray-to-object intersection tests can be avoided on a

strict per-pixel-per-object basis. With collected hierarchies, if a cast ray does not

intersect a BVH, then it does not intersect any members of the BVH (Akenine-

Möller & Haines, 2002). The search complexity now becomes a logn. Both

 10

Akenine-Möller & Haines (2002) and Shirley & Morley (2003) describe variations

on well tested implementations of BVHs: axis-aligned bounding-boxes (AABBs)

and oriented bounding-boxes (OBBs).

Figure 2.2 – Illustration of octree as spatial partitioning

 An octree is a spatial subdivision method for dividing the scene objects

into smaller partitions. Referring back to equation 1, that algorithm is of type O(n)

per pixel. This is a clumsy searching method to check for ray-object intersections.

Most rays will intersect a handful of objects.

Figure 2.2 illustrates the nature of spatial subdividing in octrees. Both

Ericson (2005) and Akenine-Möller, Haines and Hoffman (2008) describe the

symmetrical subdividing process of the octree. Each node, in order to make child

nodes, is subdivided in half along each axis yielding 8 smaller nodes. Ericson

presents a linear octree array solution for hierarchy traversal (pg. 314). His

research further explains the implementation of a binary key for the hierarchy

traversal called the Morton key. This binary key positioning simplifies the

 11

hierarchy traversal to O(1) access. This is preferred over a pointer-based

hierarchy because this is O(log n) complexity.

Consider the following scene (Figure 2.3). This render contains 48 objects.

The largest amount of objects a single ray will intersect is either three or four.

The left-side image will calculate if all rays intersect all objects. However, if the

scene is partitioned two levels deep then twelve sub-cubes will only be tested

once for intersections. This leaves 75% of the cast pixels to calculate a single

intersection each. The remaining 25% of the rays will only perform intersection

checks on at most 12 objects.

 Figure 2.3 – No spatial partitioning (left); octree partitioning (right)

2.1.3. Illumination

Shaders are material descriptions on objects. Shaders describe if an

object‟s look is reflective, refractive, soft, spongy, etc. Most shaders require the

presence of lights in order to properly calculate their effects. In order to increase

rendering time and render efficiency, shaders have broken natural reflectance

functions into two main categories: diffuse reflections and specular reflections.

The Blinn (Blinn, 1977) and Phong (Phong, 1975) shaders are examples of this.

Diffuse reflections are soft reflections as seen on matte surfaces, while specular

reflections are the shiny highlights found on smooth surfaces like mirrors and

 12

chrome. Beyond this description there are other factors of materials that must be

described: transparency, bump-mapping, normal-mapping, ambient-occlusion,

surface color, specular high-light color, etc. The real world presents a large array

of reflection and surface types, and there are many shader technologies to

encompass the description of each one.

As ray-tracing algorithms were being “popularized and developed” in the

late 70‟s and early 80‟s (Shirley & Morley, 2003), material descriptions were

being generated to meet surface description demands of ray-tracers. The work of

material description pioneers such as Blinn (1977), Phong (1975), Cook and

Torrance (1981) appears in publications around this time frame as well. Akenine-

Möller & Haines (2002) outline some of the canonical material functions to come

of this early work, specifically dealing with the specular, diffuse and ambient

components of material descriptions.

The work of He, Torrance, Sillion and Greenburg (1991) defines the need

for a comprehensive model for reflected light that encompasses multiple

reflectance situations: specular, directional diffuse and uniform diffuse. Because

the model uses wavelength calculations for light, and incidence angle and

surface roughness calculations for the surface descriptions it can describe a

smooth transition between the three different reflectance types. Their reflectance

model adds further features of describing the role polarized light on material

appearance, including polarized light into the shader algorithm library, and

provides for listed above. Their model is also analytic. This shader is based on

the bi-directional reflectance distribution function (BRDF) algorithm. Their results

map very closely to experimentally tested reflectance on physical surfaces.

2.1.4. Direct Illumination & Shadows

“There is also a third condition in which surfaces present themselves to

the observer as different or of diverse form. This is the reception of light” (Alberti,

1970, p. 44). Pharr and Humphreys (2004, pg 35) describe direct lighting as “light

 13

that arrives at the surface directly from emissive objects.” They continue to define

this type of light by differentiating it from indirect lighting, saying that direct

lighting does not consider the light that bounces through a scene before

contributing to the light at a given point. Further reading of Akenine-Möller &

Haines (2002) lists multiple iterations of the rendering equation for the local

lighting model. The simplest form of the local lighting model is defined as the total

intensity for a surface point being equal to the summation of ambient, diffuse and

specular components.

As described by Shirley, Ashikhmin, Gleicher, Marschner, Reinhard, Sung,

et al. (2005), one of ray-tracing‟s strengths is its straightforward approach to

calculating shadows and reflections. Their work goes on to say that once a basic

ray-tracer program is generated, the addition of shadows is an easy matter.

2.1.5. Cameras

The work of Edward Angel (2008) outlines a variety of camera types and

camera declaration scenarios. The cameras used in computer graphics can be

divided into two groups: parallel projection and perspective projection cameras.

Parallel projection cameras treat all lines of sight originating from the camera as

being parallel. This generates images that yield no natural distance-based

foreshortening. The objects in these images are consistently sized in relation to

other objects regardless of distances from each other. Perspective projection

cameras are physically accurate. Cameras of this nature automatically support

foreshortening effects. In these cameras, line-of-sight rays, cast from the

cameras, are not parallel thereby necessarily causing foreshortening. Angel

specifically mentions (see page 241) that the major use of perspective cameras

is in applications where it is important to generate realistic imagery, as in

animation. Shirley and Morley (2003) discuss a specific version of the

perspective projection camera: the thin-lens camera. The thin-lens camera

 14

supports automatic depth-of-field focusing or blurring. It achieves this by

incorporating the physical camera attribute known as focal length.

2.1.6. Objects

Shirley and Morley (2003) give detailed descriptions on basic primitive

object implementation. Specifically their work in this chapter relates to the

drawing triangles and spheres by defining the intersection of a ray and the

triangle, or sphere, primitive object. Using the position and direction of the

viewing ray, those parameters can be input in the mathematical descriptions of

spheres and triangles with the resultant solved values defining if ray-object

intersection has occurred, twice, once or not at all.

Beyond the tasks of drawing a simple triangle primitive, a large section of

computer graphics rendering requires the use of triangle meshes. Hill (2000)

outlines the process of reading and drawing a complex list of polygons as a

series of individually defined faces. These faces are then rendered as triangles

(as mentioned above).

2.1.7. Texture Mapping

In his section on texture mapping, Edward Angel (2008) describes multiple

uses and generation processes for creating texture maps. Texture mapping is the

process of applying color patterns to geometry or fragments. The texture can be

generated by procedural means or image digitization. Once the texture is

generated it can now be applied to multiple uses as a color map, a bump map, a

specular map, normal map, environment map or transparency map (Birn, 2000,

pg 204-213). Textures can be defined in a variety of dimensional spaces: 1D,

2D, 3D or 4D textures. Procedural textures can be of type 2D or 3D, by defining

texels in a two-dimensional array or a three-dimensional array. Pages 79 – 84 of

Shirley and Morley (2003) describe pseudo-code that outlines the processes of

generating various procedural textures: stripes, noise and turbulence. As Shirley

 15

and Morley outline, these procedural texturing functions are implemented via

periodic functions of sine and cosine.

Once textures are created, there exists the problem of assigning textures

to the surface of the geometry. This requires multiple coordinate systems: one for

the geometric surface, and one for the texture space. Polar coordinates are

required for generating surface UV coordinates. Generating the same UV

(texture) coordinates for triangles requires separate functions.

Figure 2.4 - UV coordinates define the placement of a texture on geometry.

2.2. Speed Improvements

Central to the core of this research is decreasing render times.

Specifically, this research will decrease render times through the implementation

of GPGPU programming.

 16

2.2.1. GPGPU with CUDA™

GPUs are massively parallel processors. As illustrated in Figure 1.1,

modern GPUs contain more processing cores than the latest consumer CPUs.

The NVidia GTX 260 contains a power of 3.792 more cores than a quad-core

CPU. With so many processors ready to be used the GPU needs an effective

method of communicating with and managing the system resources to work in

sync and not perform redundant work. As defined by NVidia Corporation (2009),

CUDA is a “general purpose parallel computing architecture – with a new parallel

programming model and instruction set architecture…” (pg. 3). Advantages to

CUDA are its scalable programming model, parallelism, ability to be programmed

with C-style native language, and direct connection to GPU.

Using CUDA requires writing code for the host and the device. Herein, the

.cu file contains commands that perform operations on the CPU and that launch

operations on the GPU. These device operations are CUDA kernels. Code for

each compute hardware must be compiled separately. C for CUDA code is

written with C/C++ style implementations for host code and C style

implementation for device code. Compiling a .cu file has two stages. The first

stage is interpreted by the NVCC. A .cu file can contain a mix of host and device

code. The NVCC separates the host code and the device code into: C code to

run on the host, PTX code to run on the device.

.cu file
Contains host and device code.

NVCC
Splits host and device code for

separate compilation

C code
Running on host

PTX code
Assembly style device code

Figure 2.5 – Workflow of .cu file compilation

 17

2.3. Existing Real-Time Ray Trace Rendering Techniques

2.3.1. Hardware

Recent developments in real time ray tracing include new hardware

devices. One device is IBM‟s CAS Cell BE processor. This processor is found in

the PlayStation 3. From the work of Cox, Máximo, Bentes and Farias (2009), the

processor is not specifically a ray tracing processing unit. This processor can be

advantageous for ray trace rendering however. What makes this processor

appealing is the parallel nature of the independent cores. The Cell BE processor

is similar to modern GPUs because both hardware devices support SIMD

architecture.

Figure 2.6 – Diagram of Cell BE architecture (Cox, Máximo, Bentes and Farias,
2009, pg. 9)

 An altogether different device is the RPU, ray processing unit. The RPU

was proposed by Woop, Schmittler and Slusallek (2005). Their research

introduced a “prototype implementation of a single chip, fully programmable Ray

Processing Unit.” Most fascinating about the RPU are the ways it is

 18

architecturally different from modern SIMD GPUs. Their prototype RPU supports

recursion and function branching. The RPU runs at low clock speeds of 66MHz.

Despite the low clock rates, the RPU can render at interactive frame rates,

thereby competing with powerful GPUs.

2.3.2. Software

Leveraging the power of modern GPUs is NVidia‟s real time ray tracer,

OptiX. The OptiX renderer is an abstracted perspective on standard graphics ray

tracing. While being fully capable of rendering scenes with ray tracing for

graphics applications: games, marketing, or design, OptiX was designed to be

highly flexible and useful for any ray shooting computation (NVidia, 2010).

Additional industrial applications of OptiX are: acoustic design, volume rendering,

collision checks and radiation research.

The flexibility of OptiX is found in its generality. The data that rays carry

and collect, the intersection algorithms, camera construction, and the shading

algorithms are all programmable. This allows for rendering in different

environments with different types of radiation. The OptiX engine contains spatial

partitioning structures. The included structures are KD-Trees and BVHs. To

increase the quickness of calculation, NVidia included a smart load balancing

system for thread execution. The OptiX engine also supports recursion and easy

OpenGL interoperability. It requires CUDA 2.3.

RTfact is a real-time renderer in development. The authors of RTfact are

Georgiev and Slusallek (2008). RTfact is renderer based on C++ templates to

create abstract definitions of rendering phenomena: Primitive,

Intersectors, and Packet <size, type>. The primitive context contains

not just mesh objects but can also contain photons. The primitive context does

not perform intersection calculations; this is what the Intersectors are for.

Intersectors provide the intersection functionality. The Packet context is easily

scalable to contain one ray, or multiple rays. This ease of ray scalability is due to

 19

the template nature of Packet. Rays are stored as a bundle of rays in one Packet

context. The templated functionality allows the multiple rays per bundle to be

calculated in parallel. “We advocate generic design as a key to flexibility and

efficiency, especially for computationally intensive applications, such as real time

ray tracing” (Georgiev & Slusallek, 2008, page 8). The authors show some time

improvements with RTfact over other renderers: OpenRT, and Manta.

2.4. Summary

This chapter reviewed existing literature in the area of computer graphics

rendering technologies. This review highlighted previous work done in the area of

rendering technologies and software features. These features focused on ray

tracing technologies such as: direct illumination models, shaders, cameras and

shadows. The improvements to rendering speed are implemented using CUDA.

 20

CHAPTER 3. METHODOLOGY

This research is testing to what quantifiable degree is render time

decreased when performing full recursive ray tracing on the GPU using CUDA.

The testing methodology includes two renderers written by the author and one

production-ready renderer available for professionals and consumers. The two

renderers written by the author are used as the control (CPU renderer) and the

testing group (GPU Renderer) to prove efficiency of GPU Rendering. The GPU

renderer is being tested against a production as a more stringent testing

benchmark on the efficiency of GPU Rendering. The production quality renderer

(Mental Ray) is a robust renderer with many data, mathematical and logic

functions to shorten or reduce redundant processes. The GPU-Assisted

Renderer will not have this same robustness of rendering efficiency. These tests

will show how much time is saved rendering on the GPU, if indeed time is saved.

 The measured variable is the average time it takes to complete 25 frames

of rendering, for both GPU and CPU. This time to complete will be measured on

the computer performing the rendering tests. Variable data will be accurate to

milliseconds.

3.1. Algorithms

This section describes the algorithms used in a ray tracer.

3.1.1. The Rendering Equation

The rendering equation is the central algorithm describing the entire

rendering process. It describes geometry, light, objects and the BRDF. The

 21

rendering equation can be formatted for different types of lighting methods. To

calculate direct lighting Dutré, Bala and Bekaert (2006, pg. 44) format the

rendering equation in the following manner:

(2)

 The integral sub-A defines the algorithm to take place over all objects. The

next two terms describe the BRDF formulation for direct lighting. Specifically, “the

direct term is the emitted term from the surface y visible to the point x along the

direction xy; y = r(x, xy).” The next two terms are to describe the visibility of a

surface point from the camera and the local surface information at Ay, V and G

respectively.

3.1.2. Ray Casting

Algorithm 3.1 – Detailed ray tracing algorithm

for (current pixel width: x)

 for (current pixel height: y)

 define current view ray

 for (every shape)

 check Intersection-of-Ray-To-Shape

 if (ray sees shape)

 record shape: color, ID, distance from camera

 sort shapes by distance from camera starting with closest

 if (intersection happens for any shape in pixel x,y)

 calculate reflections

 blend reflection colors with main color

 calculate Fog

 assign new color to pixelPlane at x,y

 if (no intersection happens for any shape in pixel x,y)

 backgroundColor = FogColor

 assign new color to pixelPlane at x,y

Draw Image

 22

 Figure 3.2 represents the main functional kernel of the rendering engine.

For every pixel x and y, for every shape k cast a line of sight ray and check for

object collisions. If a collision is detected record the object color, object ID and

distance from camera of intersection. As ray-object intersections are calculated

the STL::map container sorts them based on distance from camera. Once all

shapes are calculated for intersection for one ray the closest object‟s color is

assigned to the pixel plane. If no intersection is recorded for a ray, the

background color is assigned.

3.1.3. Cameras

Most cameras used in CG are of two types: perspective or parallel

projection. This does not include specialized or abstracted camera models like

multiple centers of projection cameras. For the purpose of this research the

perspective projection camera will be our camera model. It matches human

vision better because it visually enlarges objects in the foreground and

diminishes objects as they are further from the camera. Both parallel and

perspective projection cameras cast rays through each pixel in the pixel plane. In

order for a projection camera to work, each ray is cast from the center of the

camera through each pixel.

 23

Figure 3.1 - Casting a ray through a pixel (top); Camera and Pixel Plane models
(bottom)

3.1.4. BRDFs

Dutré, Bala and Bekaert (2006) discuss shading models are algorithms

that define various BRDFs. There are different classifications of BRDFs:

approximations, physically based, and empirically based. The Lambertian, Phong

and Blinn models are all approximations of BRDFs because they cannot

accurately represent realistic BRDFs. The physically based BRDFs are the Cook-

Torrence and He models. These models account for energy conservation and

BRDF reciprocity. The empirical models formulate their BRDFs from empirically

gathered light-reflectance measurements. These BRDFs were designed to

recreate the recorded reflectance phenomena. These are the Ward and

Lafortune models. Understanding the Phong model provides the background on

which to understand most shading models.

 24

As initially defined by Phong (1975) in his shader model, the reflectance

functions are as follows, with equation 5 being the summation of all components:

 (2)

(3)

 (4)

 (5)

3.1.5. Lighting

Akenine-Möller and Haines (2002) define the local lighting model with a

light distance-attenuation component, d. Light attenuation is affected by three

coefficients (constant), (linear), (quadratic).

(6)

 (7)

Each light has its own ambient, specular and diffuse components which

can map to any shading model, or modified versions of them.

3.1.6. Ray-Object Intersections

Ray-Object intersections satisfy the G component of the rendering

equation. As rays are cast from the camera into the scene they are tested for

intersections with each of the objects in the scene. The definition of a ray comes

from linear algebra and is a vector that originates from a point. It is often given in

the form:

 25

 (8)

Now that a line of sight can be defined mathematically, they must be

integrated into the mathematical definitions of other objects such as spheres and

triangles. For spheres the solution to the intersection equation is of the quadratic

equation form:

(8)

Except values a, b, and c are redefined using ray position and direction,

and x is defined in terms of t, where t is distance between camera and

intersection location. Thus the equation becomes:

(9)

Ray-triangle intersections are solved through the use of barycentric

coordinates: α, β, γ. The point p is on the triangle, if and only if:

 (10)

This can be restated using only two coordinate variables and the third

being a combination of the first two. Restating the requirements of a point on a

triangle becomes:

 (11)

Thus, any cast ray, as either line of sight ray or surface reflection ray, hits

the plane where:

 (12)

 26

3.1.6.1. Line of Sight Rays and Shadow Rays

These formulae are used in line of sight rays (un-occluded visibility,

reflected rays, refracted rays) and also in calculating shadow rays. Revisiting

figure 2.1 shows the path of two shadow rays, SR1 (shadow ray one) has a direct

path to the light source and therefore that p1 receives light. Conversely, SR2

(shadow ray two) is obstructed by the sphere and therefore p2 receives shadow.

3.2. CPU Implementation

The author written renderer for the CPU follows the work of Shirley and

Morley (2003). It is a robust renderer with full C++ implementation.

3.2.1. Classes

Figure 3.2 – An example of shader construction using classes and inheritance

All logical constructs of a ray tracer are created in separate classes using

C++. The use of classes allows for cleaner code and easier editing. It allows for

inheritance, polymorphism and makes it easier to add function overriding as

needed. A table of classes and organization is included below.

 27

Table 3.1 – Organization of class types and their classes

Cameras
 CamC

 PixelPlane

 StaereoCam

Color

 rgb

I/O

 targa

Lights

 LightC

Materials
 LambertMatC

 PhongMatC

 ShadingGroupC

 ShadowMatC
Math

 RayC

 RNGC

 TransformC

 Vect2D

 Vect3D

Scene

 WorldC

Shapes
 readDataC

 Shape

 Sphere

 Triangle

Textures
 MarbleTextureC

 NoiseTextureC

 SolidNoiseC

 TextureC

3.2.2. Polymorphism

An additional feature of class inheritance is polymorphism. This

relationship is used most often in when checking ray-object intersections using

the hit function.

Both Sphere and Triangle extend, or inherit from, the Shape class.

The base class, Shape, is defined as an abstract class from which both Sphere

and Triangle inherit their hit functions. Shape instantiates hit check functions

for use in determining the color of the object at a point and also determining the

shadows on the objects through shadowHit. Sphere and Triangle need to

define their own hit functions though because each requires very different

mathematical processes to define if a given ray does intersect with that object.

This is the use of polymorphism. Sphere and Triangle define the substance of

their own hit and shadowHit checks; they contain the algorithmic processes to

determine if a hit occurs with a given ray. The Sphere class just declares that

each shape type needs these functions. But why use polymorphism at all?

In the WorldC.h class, all objects are added to one list. This list contains

all the shapes that the renderer will see. To maintain this single list, the WorldC

contains a member vector <Shapes> where both types of shapes are stored.

The shapes and shape types can be stored in any arbitrary order. This means

 28

that it would be easier if all shapes were seen as the same type of object and

treated in the same manner. Because ShapeC.h is a base class that contains

abstract virtual functions, all shapes – regardless of type – are interpreted by the

renderer as the same type of object. Hence, no sorting or segmenting algorithm

need be applied. All shapes, because of abstract virtual functions, are treated the

same. Algorithm 3.1 shows that the hit check is performed for all shapes

regardless of type.

3.2.3. Recursion

Recursion is how reflections are calculated on the CPU. The RayCast

function is designed to call itself as many times as needed. Recursion is a

delicate matter. If a recursive call has no escape the program falls into an infinite

loop, memory leaks and the program eventually crashes. To avoid the disastrous

eventuality the RayCast function has three escape checks: a rayCount

variable, a no reflection check and a no intersection check. Only if the rayCount

is less than MaxTraceDepth, the ray intersects an object, and the intersected

object is reflected, then RayCast call itself again. Each time it calls itself, it

iterates the rayCount variable by one, bringing this escape catch closer to

finality with each recursive call.

 29

Algorithm 3.2 – The RayCast function checks for reflectivity and calls itself

Figure 3.3 – A CPU rendered image with reflectivity

RayCast(inherit previous viewing ray and updated rayCount variable)

 if (rayCount < MaxTraceDepth)

 for (every shape)

 check Intersection-of-Ray-To-Shape

 if (intersection happens for any shape in pixel x,y)

 is new surface reflective?

 if (new surface is reflective)

 rayCount = rayCount + 1

 RayCast (reflected ray, new rayCount)

 return reflected color

 if (no intersection happens for any shape)

 return background color

 30

3.3. CUDA Implementation

This section describes the implementation of ray tracing code on the GPU

using CUDA and discusses key GPU programming issues: minimizing data

transfer between host and device, no support for virtual functions, limited support

for classes, and writing recursive functionality in a programming environment

which does not support recursive functions.

3.3.1. CUDA Code Overview

Writing code in CUDA requires a different workflow as compared to coding

in C++ on the CPU. Because CUDA leverages the parallelism of the GPU, thread

counts, block and grid sizes must be established before any calculation can start.

Coding for CUDA requires coding with the awareness of multiple cores and

parallel processing over cores. Writing code in C++ for the CPU however can be

coded without thought as to the existence of multiple CPU cores. This disparity in

inherent parallelism coding standards requires an initial coding process to be

determined: how to parallelize the rendering process of a single image. Once this

is established the porting process from an unparallel, C++ based, CPU

implementation to a massively parallel, CUDA based, GPU implementation.

The flow of the CUDA ray trace renderer code is divided into four logical

segments: variable and data type declaration, memory initialization, kernel

definition and rendering.

3.3.1.1. Parallelization and Thread Assignment

When rays are cast into a scene their final goal is to return a single color

value for each pixel and the color value of one pixel is not determined by the

color value of a neighboring pixel (excepting anti-aliasing but even here the pixel

is still the smallest, independent component). Given that the nature of ray tracing

is that of casting rays through each pixel and calculating ray-object intersections

over all objects in a scene against all cast rays, the smallest, independent

 31

element in the algorithm is the pixel. Because of this property the parallelization

of the rendering process runs on a per pixel basis. Therefore each pixel of the

final output image has one GPU thread assigned to it. This thread performs all

the lighting, shading and shadow calculations and also checks ray-object

intersections for all objects. In effect, this means each thread has access to the

entire scene description. This is important because when calculating multiple

reflections, each ray can as a possibility bounce into any other section of the

scene.

3.3.1.2. Variable and Data Type Declaration

In order to begin any calculations on the GPU the entire scene data,

already initialized for the CPU renderer, must be passed to CUDA in a format it

can support. CUDA 2.3 has limited support for classes and no support for virtual

functions. The scene data for the CPU renderer is contained in a series of

classes. Each class contains a series of member variables and member

functions. Because of the limited support that CUDA 2.3 has for classes, it was

decided that the data should be rewritten in a sparse form as a series of structs.

A list of the complete set of typedef structs are presented in Appendix A.

Almost all of the newly created data types contain only member variables.

Only the curayTri (struct dataype describing triangles) contains member

functions. These member functions are called at time of object initialization and

define internal member variables. These are called just on initialization because

they define variables that need be only defined once. Redefining the triangle

normal is unnecessary regardless of where on the triangle a ray intersects. This

is not true for spheres so this member function was not defined.

To pass the data from CPU to GPU, a series of global pointer variables

were declared in pairs: one for host memory, one for device memory. Appendix B

has a list of the global variable memory pairs and their uses.

 32

3.3.1.3. Memory Initialization

Once variable pointers are declared, their sizes and contents must be

filled. This process is performed before the GPU kernels are run. This process is

a collection of functions that connect the main CPU renderer to the CUDA

rendering file. There are four types of functions used in this process.

Table 3.2 - Processes Used to Initialize GPU and Pass Data from CPU

Sample Process Name Location Purpose

void LightsToCUDA(WorldC

&world)
rayTracer.cpp Parses all member data needed to

describe the object type into one
linear array that holds all objects

and all object data members

extern "C" void

defineLights(float*, int);
rayTracer.cpp Passes linear array data from .cpp

to .cu

int = number of objects in array

extern "C" void

defineLights(float*, int);
GPU.cu Allocates host and device memory

in preparation of filling in data.

Copies host memory to device
memory once arrays are filled.

void

curayLightInit(curayLight*

lightData, float* data, int

numLights)

GPU.cu Copies linear array data to array
of struct data types. See

Appendices A & B for description
of curay structs and uses

Allocation of host memory is performed with malloc and allocation of

GPU memory is performed with cudaMalloc. Appendix C gives code examples

of these functions.

3.3.1.4. Kernel Definition

Once memory is allocated, defined and moved to the GPU it is time for the

GPU to perform the work of ray tracing. For each section of calculation a CUDA

 33

kernel was written; these sections include: initial object intersection and depth

sorting, object shading, ray reflection, color blending. See Appendices D-G for

examples of all the CUDA kernels.

The first kernel creates the base image. It renders all shapes, finds closest

intersections and assigns appropriate color the float3* C (the color buffer).

This kernel sets up the data stored in the curayFrameBuffer which will be

used in the next three kernels. This data structure stores closest intersection

distance, object id, object type, object normal, and point of intersection. This

storage is vital because CUDA does not allow for virtual functions. The CPU

renderer uses virtual functions numerously to calculate hit checks against

multiple object types for shading values and shadow rays. The

curayFrameBuffer object stores object id and type for use in later

calculations. It stores these values on a per pixel basis.

The second kernel creates the shaded and shadowed image. It first

checks for shadows by casting rays from each intersection point in the previous

image to each light and calculates areas of shadow. If a shadow is present for

the position and light then no material shading component is rendered.

Conversely, if there are no shadows then that point has Phong shading applied

to it. The result is rendered to the color buffer (Appendix D)

Point of intersection and object description are maintained in the

FrameBuffer struct: curayFrameBuffer. These values (object type, object id,

object normal, distance from camera) are generated in the previous kernel and

called here (Appendix E).

The third kernel is only called if the max trace depth is a value greater

than 1. This kernel reads the normal vector of the object defined in the

curayFrameBuffer and the current viewing vector and creates a new reflected

vector using the CUDA math function, reflect. It only calculates reflection if an

object was intersected with a viewing ray in the previous pass. If no object-ray

 34

intersection occurs then the curayFrameBuffer object records ObjType to be 0

(Appendix F).

This final kernel blends the colors of current color and previous color,

C2[i] and C[i] respectively. The blending value will be defined by a material

coefficient of reflectivity (Appendix

G).

3.3.1.5. Rendering

The final step in the process is to put each of the steps together. This is where

the series of kernels are called to action for as many times as defined by the max

GPU Rendering Pipeline

Kernel 1

Object Intersection, Define curayFrameBuffers,
Populate Color buffer with flat, object color

Kernel 2

Calculate Materials and Shadows

Recursion Loop

If (maxTraceDepth > 1)
Do {Loop} while (rayCount < maxTraceDepth)

Kernel 3

Calculate new look vectors

Kernel 1

Kernel 2

Kernel 4

Blend Colors of current and previous rays

Figure 3.4 – Kernel flow of GPU renderer

 35

trace depth. Figure 3.5 expresses, in pseudo-code, the layout of the GPU

rendering process.

There are four main sections to the rendering function: color buffer

initialization, rendering first ray cast, rendering multiple ray casts, and writing the

image.

 The ray cast is kept separate from the reflection ray casts because it is

safe to assume there will always be at least ray cast. All subsequent ray casts

are decided by the maxDepth variable in the C++ side of code. Before the ray

casting process is begun for multiple iterations the reflected vectors need to be

calculated. ReflectedViewingRays is first performed kernel in the recursive

loop for this reason. The last step in this process is to blend the reflected color

together with the previous color. BlendColors performs this operation.

Algorithm 3.3 – Pseudo-code outlining flow of GPU.cu

3.3.2. GPGPU Programming Issues

CUDA 2.3, and earlier versions, do not support certain features found in

C++. Two of these features required a large rewrite of the rendering code when

porting from CPU to GPU: no support for virtual functions and no support for

Begin GPURenderCycle
 Kernel1 – IntersectShapes
 Kernel2 – CalculateShadingShadows
 If (maxDepth is greater than 1)
 do
 {

Kernel3 – ReflectRays
 Kernel1
 Kernel2
 Kernel4 – BlendColors
 Add one to rayCounter

}
while (rayCounter is less than maxDepth)

 36

recursive functionality. In addition to these limitations is the goal of reducing the

number of data transfers between host and device.

3.3.2.1. Minimizing Data Transfer Between Host and Device

The original goal of this research was to use the GPU to assist in the ray

trace rendering process. At first, the design was to use the data processing

efficiency of the GPU to calculate all intersections, this would include all ray-

object intersection tests: viewing rays, shadow rays and reflected rays. This

would leave the CPU to calculate all material shading and declare the necessity

of bounce rays on a per object per pixel basis. Because the CPU renderer is

designed to make use of only one CPU thread this would mean that any use of

the CPU to calculate on a per object or per pixel basis the CPU becomes a

bottleneck in the rendering process. More to the point, calculating ray-object

intersections on a per ray cast basis would mean transferring data back from the

GPU to the CPU a number of times as shown in the equation below (where SD

represents the amount of data to describe the scene, VI represents the

accumulated data for ray-object intersections of viewing rays, SI represents the

accumulated shadow buffer of ray-object intersections for shadow rays):

(13)

 You can see that the amount of data transfers increase drastically with

each increase in maxTraceDepth. However, with fully implemented ray tracing

on the GPU the number of data transfers, per frame, is limited to two. Even if we

are to put the speed lag due to large numbers of data transfers momentarily

aside, there would be an increased cost of development time for unraveling the

complex data coming from the GPU and interpreting the data for CPU rendering.

Given these considerations it was decided the greatest improvements in

speed and implementation would be gained in performing the full rendering

process on the GPU.

 37

3.3.2.2. No Support for Virtual Functions

CUDA 2.3 has limited C++ features. Specifically it lacks support for virtual

functions. This required a major rewrite from the CPU rendering code. This

required two main changes to code. The CPU implementation uses virtual

functions in the Shape.h to define the hit and shadowHit functions. Both the

Sphere.h and TriangleC.h are extended from the Shape.h class. Because

the hit functions are virtual functions, the sphere and triangle intersection tests

are performed in their mathematically appropriate manner while still being called

using the same root function name as initialized in Shape.h. The benefit of

virtual functions in this case is that a list of arbitrary, non-negative, size can be

generated containing any amount of spheres and or triangles in an arbitrary

order. This implementation is borrowed from Shirley and Morley (2003).

The solution to this lay in creating two separate processes where sphere

and triangle intersections are calculated separately and then tested for which is

closest. This series of intersection tests is performed in the IntersectShapes

kernel. For the complete CUDA kernel see Appendix D.

Algorithm 3.4 – The intermediate arrays store the placement ID from the vector
of <Shape>

//List of Object IDs that are spheres

IDSphere = new int[world.shapes.size()];

//List of Object IDs that are triangles

IDTri = new int[world.shapes.size()];

for(unsigned int i=0; i<world.shapes.size(); i++)

 {

 if(world.shapes[i]->m_objType == 1)//Spheres

 {

 IDSphere[countSph] = i;

 countSph++;

 }

 if(world.shapes[i]->m_objType == 2)//Triangles

 {

 IDTri[countTri] = i;

 countTri++;

 }

 }

 38

The first step in circumventing the lack of virtual functions is in splitting up

the spheres and triangles into their own arrays of size defined in scene file. Once

the shapes are split into individual arrays and their respective numbers counted,

they are then passed to the GPU where a device array is generated and data is

copied. Below is the main loop that separates the shapes into their respective

arrays.

Appendix H contains the full code for shape separation.

3.3.2.3. Recursive Functionality and GPGPU Programming

3.3.2.3.1. Color Mixing

Another feature not supported by CUDA 2.3 is recursion. This change in

coding standards creates a new challenge in writing a ray tracer. The current

CPU renderer, coded with recursive functionality, traces reflected light paths to a

terminating condition and then starts mixing the color from the back moving

forward, always linear interpolating by the reflectivity coefficient. This means that

the last two colors to mix are the first two ray casts. The CUDA ray trace

algorithm is coded in a forward collective approach. This means that the first two

colors to mix are the results of the first two ray casts.

The change in color mixing directions causes a problem. In a forward color

mixing approach the first ray cast has the least effect in the final image where

ideally and naturally it should have an effect as defined by:

(14)

There are two easily identifiable methods to solve this approach. The first

would be to create a large data storage structure that can hold as many color

buffers as there are numbers of ray casts. This would be an unwise usage of

memory and generally difficult to code for. The second method is to consider a

summation series based on the number of expected ray casts (also equal to the

 39

maxTraceDepth value). The second method takes no more memory and only a

few more divisions or multiplications.

Consider the algorithm in figure 3.4, notice how in the original color mixing

paradigm, via a series of linear interpolations where maxTraceDepth equals six,

the first color to mix at 50% in the first linear interpolation ends up only

contributing 3.125% to the overall image.

Figure 3.5 – A series of linear interpolations decreases a color‟s final effect; note

color1.

 In the CUDA implementation of forward ray color mixing, this means that

the result of the first ray cast, where maxTraceDepth equals six, will have an

overall influence of 3.125% on the final image. This is backwards. We need a

predictive summation series that will properly calculate the interpolation values

for all colors without having to change ray color mixing directions. Through the

equation below a solid formula can be pieced together that describes how much

a color should mix into the final image, where x is the coefficient of reflection.

 40

(15)

 Notice particularly the power coefficients in each color mixing value.

These values are equal to 1 – current reflection depth; there is a value

already defined as such in the main rendering function. Notice the rayCount

value defined on the first page of Appendix I and iterated in the second page of

Appendix I. The final check will be when rayCount = 1 – maxDepth, then

power coefficient is equal to 1 – rayCount.

3.3.2.3.2. Do While Loop

As used in the work of Allgyer (2008), one method of recreating the effect

of recursive functionality, without using recursive functions, is to use the DO

WHILE loop. Appendix I gives the code usage of the DO WHILE loop. Each cycle

of the loop iterates a counter value and goes through the render loop again, until

the counter value reaches the max limit as defined by the maxTraceDepth

value.

3.4. Research Framework

This research on ray-tracing will present three different renderers and test

their respective render times in four main categories. The purpose of these tests

is to determine which renderer completes different tests faster. It is the

hypothesis of this research that the GPU assisted renderer will out-perform the

two CPU renderers. The three renderers that will be tested are:

 Mental Ray

 CPU Ray-Tracer written by Author

 GPU Ray-Tracer written by Author

 41

Each Renderer will be tested for time to complete a render. Each renderer

generated 25 frames and the average time was computed. The averaged times

for each renderer were compared.

The variable in this study that will be tested for is time to complete each task.

All three renderers will be tested. The following figure represents the nature of

the study:

Average
time for
25
renders

% Speedup
of GPU
Renderer

C
P

U

R
e
n

d
e

re
rs

Author
Renderer

MentalRay

G
P

U

A
s
s

is
te

d

R
e
n

d
e

re
r

Author
Renderer

Figure 3.6 – Diagram of Testable Rendering Tests

 All tests will take place on one computer with all software installed on it.

The purpose of this is to limit the introduction of confounding variables through

different hardware configurations.

3.4.1. Hypotheses

The testing of GPU rendering speed timing was tested using two

hypotheses. For each hypothesis there exist a default and an alternate

hypothesis. The purpose of this testing is to prove both alternate hypotheses.

 42

The first hypothesis tests if the author written GPU renderer out-performs

the author written CPU renderer. This is designed as a litmus test. This is the test

that should be passed very early in the implementation stages of the GPU

renderer. If this test cannot be passed, there is no reasonable expectation that

the second hypothesis would be passed.

That makes the second hypothesis a strict test of increases in rendering

speed. Proving the alternate for hypothesis two is the main goal of this research

and will provide statistically significant results for the validity of rendering with

massively parallel systems.

Table 3.3 – Table of testing hypotheses

 Hypothesis 1 Hypothesis 2

Default

Hypothesis

Ho1 – There is no noticeable

increased speed of rendering with

GPU rendering versus CPU

rendering

Ho2 – There is no noticeable

increase in rendering speed when

rendering with GPU versus

rendering on CPU with a

production quality renderer

Alternate

Hypothesis

Hα1 – There exists a statistically

significant increase in rendering

speed when rendering with GPU

versus rendering on the CPU

Hα2 – There exists a statistically

significant increase in rendering

speed when rendering with GPU

versus rendering on the CPU with

a production quality renderer

The testing method used to analyze the data will be a comparison of

comparison of render times.

3.4.2. Pre-Testing Expectation of Hypotheses

To gauge a level of success or failure, criteria for success will be

established for each hypothesis.

 43

3.4.2.1. Proving the Alternative Hypothesis 1

With respect to the cost of rendering as measured in time, any increase in

speed is of great benefit, even when the increase in speed is measured 10‟s of

percentage points. So a renderer that measures 50% faster than previous

renderers is considered a marked improvement and worthy of financial

investment. A renderer that can improve render times by whole multiples would

be welcome in the computer graphics industry.

A success would be an increase of rendering speed where the new

renderer is two to four times faster. Therefore, to establish the alternative

hypothesis 1 as accurate, the author written GPU will have to measure 4 times

faster than the author written CPU renderer.

3.4.2.2. Proving the Alternative Hypothesis 2

Gaining rendering speed against a highly respected, professionally

developed and professionally used, renderer is the more stringent test of speed

improvements for the author written GPU renderer. The Mental Ray renderer

supports many features that both author written renderers do not support. The

largest advantage the Mental Ray renderer has over the author written renderers

is an implemented spatial partitioning system. Mental Ray uses BSPs to divide

the space to decrease render times. The BSP settings are as follows:

Table 3.4 - Mental Ray BSP settings to increase render speeds for scene1

BSP Type Regular BSP

BSP Size 10

BSP Depth 60

Changing the BSP Depth value, from default, reduced the final render to

3/4th the original render time. The fastest computer to render the Mental Ray

scene dropped the render time from four seconds to three seconds. In addition to

 44

the BSP algorithms, Mental Ray also supports multi-threaded rendering on the

CPU.

When weighed against these advanced spatial partitioning features and

any number of subtle tricks of logic, math or algorithm, I was unsure how much

improvement the GPU renderer would have. In order to prove the speed

effectiveness of the GPU renderer, a success in the second hypothesis will be

measured to be at least 20% faster than the Mental Ray renderer. This percent

increase was chosen because any amount less would not be enough of an

increase to warrant a financial investment in new software. From the author‟s

experience in industry, this is believed to be a minimal threshold.

3.5. Test Conditions

Four 3D scenes were created using to test the two hypotheses. These two

scenes are divided into two groups: (A) high reflection with low object count, (B)

no reflection with hi object count.

The scene in group A was rendered with these settings:

 48 spheres

 10 triangles for scene extent

 Phong shader

 Two point lights

 Ray trace shadows for each light

 Max Trace Depth of 10

There are three scenes in group B. These scenes were generated through

the creation of a set number of shapes with random locations in the scene.

Group B was rendered with these settings:

 900, 10000, or 30000 objects

 10 triangles for scene extent

 Phong Shader

 Two point lights

 45

 Ray trace shadows for each light

 Max Trace Depth of 1

The number of objects for scene in the group B category was decided on

by a Windows operating system feature. This feature times out any GPU process

that takes longer than 2 – 3 seconds to complete.

Table 3.5 – Attributes of test scenes from Group A and Group B

 Group A Group B

Object Count 58 910 10,010 30,010

Max Trace
Depth

10 1 1 1

Each renderer will be time tested using the same scene data.

3.6. Chapter Summary

The testing methodologies described in this chapter are four tests of time.

Each timed test will test four renderers. The four renderers are divided into two

categories: CPU and GPU Assisted. The CPU category of renderers is further

subdivided into two more categories: Production and Author Written. The

MentalRay renderer is of the production category. The second main category is

the GPU Assisted category. This is also an author written renderer. The GPU

Assisted renderer will be tested, for time efficiency, against the two CPU

renderers. The tests are three in count and test each renderers speed in

rendering the similar data.

 46

CHAPTER 4. RESULTS

This chapter will discuss the timed results of the three renderers and their

outcomes with respect to the two hypotheses: GPU rendering times compared

against author written CPU renderer and production quality Mental Ray renderer.

4.1. Author Written CPU Renderer Results

Figure 4.1 - Rendered Image from author written CPU renderer

 47

 The CPU renderer written by the author creates images with high visual

quality. As is expected, the render times for the author written CPU renderer are

slower than the Mental ray renderer. The fastest CPU render times came from a

Core2 Duo 3GHz, 4GB RAM with the slowest render times coming from a Dual

Xeon 3GHz processors.

4.2. Mental Ray Renderer Results

Figure 4.2 – Render results from Mental Ray

 The rendering results from Mental Ray proved to be much faster than the

author written CPU renderer.

 48

4.3. Results: Scene 1

The results of this study have surpassed the expectations greatly. Both

alternative hypothesis were proven true by larger percentages than originally

expected. These results apply to the scene defined in Group A: high reflection

with low object count. This table breaks down the comparison:

Table 4.1 – Comparison of rendering times for GPU, CPU and Mental Ray
renderings. Units of time are given in milliseconds.

Scene 1 Render Times

GPU CPU CPU/GPU Mental Ray Mental Ray /GPU

Average 988.94 75246.33 76.08786 6007.067 6.074248

Fastest Times 244.84 28773.92 117.5213 2423.2 9.897076
Slowest Times 1900.76 158151.8 83.20453 11256.8 5.922263

The results of the data show significant increases in rendering speed with

respect to the GPU over both the author written CPU renderer and even the

Mental Ray renderer. The complete timing data is presented in Appendix J.

4.3.1. Strict and Favorable Timing Comparisons

Tables 4.2 and 4.3 demonstrate the clear advantage in rendering speed

the GPU has over both the author written CPU renderer and the production ready

Mental Ray renderer. In the strictest comparison of times, Table 4.2, the GPU

renderer is 27% faster than Mental Ray and 1400% faster than the author written

CPU renderer.

Table 4.2 – Strict timing comparisons to GPU

Slowest GPU to Fastest CPU and Fastest Mental Ray
*time measured in milliseconds

GPU CPU CPU/GPU MR MR / GPU

1900.76 28773.92 15.13811 2423.2 1.274858

 In a more favorable comparison of times, the fastest GPU times are

compared to the slowest CPU and Mental Ray renders. Here, the advantages in

 49

speed of GPU rendering are more prevalent. The GPU is 64,493% faster than

the CPU and 4,497% faster than the slowest Mental Ray renderer. Table 4.3

shows the data.

Table 4.3 – Favorable timing comparisons to GPU

Fastest GPU to Slowest CPU and Slowest Mental Ray
*time measured in milliseconds

GPU CPU CPU/GPU MR MR / GPU

244.84 158151.8 645.9394 11256.8 45.97615

4.4. Results: Scenes 2 – 4

Scenes 2 through 4 create a series of scenes with ever increasing object

counts. These 3D scenes are members of Group B: no reflection with high object

count. Figure 4.3 illustrates the render times for the three comparable scenes.

The chart shows the times for three CPUs and two GPUs. The CPUs are two I7

processors and one Core2Quad. The two GPUs timed are a GTX 275 and a GTS

250. Each hardware device rendered the 900, 10,000 and 30,000 object scenes.

Figure 4.3 – Mental Ray render 900 Triangles, each as a separate pbject

 50

Figure 4.4 – The GPU renders 30,000 randomly placed spheres

The comparison of GPU speed to Mental Ray spatial partitioning is

presented in figures 4.5 and 4.6. The first figure shows the render times of the

GTX 275 out-performing all Mental Ray renders of similar scenes with the same

object counts.

Upon inspection of figure 4.6, a new phenomenon is illustrated. For the

same rendered scenes and the same render timing, as seen in figure 4.5, the

speed efficiency of the GPU decreases as the object count increases. The data

is calculated by dividing the Mental Ray render time by the GPU render time.

This shows how many times the GPU can render the same frame by the time

Mental Ray can render one complete frame. In the first scene, of 900 objects, the

GPU can render one frame almost 14 times before Mental Ray can render one

frame. As the number of objects in the scene increases, the comparative GPU

rendering performance decreases.

 51

Figure 4.5 – GPU render times versus Mental Ray (CPU) render times for scenes
with increasing object counts

Figure 4.6 – Chart of declining GPU renderer performance with increasing object
counts

 52

4.5. Hypothesis 1 Results

Figure 4.7 - Averaged timing comparison of GPU v. CPU

 It is not a surprise that the GPU renderer would be faster than the CPU

renderer. What was surprising was the level of speed increase. Looking back at

Table 4.1, when comparing the slowest and fastest rendering times for both

renderers, the GPU outperforms drastically. The average GPU render time is 75

times faster than the average CPU render time. The fastest GPU rendering time

is 116 time faster than the fastest CPU render time.

4.6. Hypothesis 2 Results

Figure 4.8 - Averaged timing Comparison of GPU v. Mental Ray

 53

 The alternative hypothesis two is proven based on the data shown Tables

4.1 and 4.2. The slowest GPU average render time is 27% faster than the fastest

Mental Ray rendering speed. Of the time it takes to render both the average

render times of GPU and Mental Ray, the GPU takes 14% of the overall render

time; see Figure 4.8. Figure 4.6 shows that the GPU renderer, even at 30,000

objects, is more than 2x faster than Mental Ray.

 54

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1. GPU Renderer Design

The original research plan was to leverage the power of GPU paralleled

architecture to calculate the most mathematically intense functions. These

functions are the intersection check for both viewing rays and shadow rays. They

are calculated in a brute force method with no spatial partitioning or scene

hierarchy, nor a predictive intersection algorithm for shadow checking.

There are two conditions that slow down GPU efficiency: conditional

statements and host to device memory transfers. The first condition is not being

dealt with at this time. With respect to solving the second condition, finding a

stream-lined method to limit the number of data transfers between the host and

device created a major shift in the development plan for the GPU renderer. The

easiest way to limit the number of data transfers is to send data only once, to the

device, to describe the scene, and then to send the image back to the host when

rendering is ended. On a per frame basis, this generates only two mass data

transfers. Were the GPU used only for ray – object intersection checks, there

would exist at least two intersection tests (one viewing and one shadow

intersection) therefore requiring 4 data transfers. However, a scene with multiple

lights and setting a max trace depth above 4 or more would create numerous

data transfers per frame. This would slow the rendering process down

significantly.

The best method, to limit unnecessary data transfer, was to perform all

shading and rendering calculations on the GPU. Now data transfer is a constant

amount per frame, regardless of the number of lights or reflection bounces.

 55

5.2. Results

The data presented in the timed results of GPU, CPU and Mental Ray

renderers shows, without a doubt, that rendering on the GPU increases

rendering speeds dramatically. The highly paralleled nature of current GPUs

allows for extraordinary increases in rendering speed. This is true even when

compared to the added algorithms for rendering efficiency apparent in Mental

Ray.

5.2.1. Massive Parallelism versus Spatial Partitioning

Figure 4.4 shows an interesting trend in GPU vs. Mental Ray rendering

performance. While the GPU outperforms Mental Ray in all three scenes (900 –

10,000 – 30,000), the degree by which the GPU outperforms decreases as the

number of objects increases. This trend shows that, at some point of increased

object count, the Mental Ray rendering speed will converge with the GPU render

speeds. At some point further in the graph, Mental Ray may even outperform the

GPU renderer. These results show that while a massively parallel renderer has

definite timing advantages, at some point the efficiency of spatial partitioning

approaches similar timing results. This finding illustrates the need to implement

spatial partitioning on the GPU renderer.

5.2.2. General Discussion of Results

The Mental Ray renderer has added functionality for spatial partitioning

through the use of BSP trees, multi-threading on the CPU, and any number of

subtle or hidden checks for rendering efficiency. In addition to these efficiencies,

the Mental Ray renderer also leverages the strong logic capabilities of CPUs

With respect to GPUs, the architecture favors brute force, stream

calculation over logic operations. Conditional statements and operations slow

down GPU performance significantly. Another obstacle GPUs face is transmitting

scene and image data from the CPU to the GPU and data flow in reverse.

 56

Despite the time to pass data over the bus, to and from host and device, and the

lack of spatial partitioning and intersection prediction, the amount of processors

and the streaming nature of current GPUs cause them to out-perform a

production ready and highly modified renderer.

5.3. Future Work

Future work on the GPU renderer should first be aimed at increasing

rendering speed with large data sets. This would require the addition of a scene

partitioning system and would therefore limit the practice of brute force rendering

via ray – object intersections. Using BVHs will greatly increase rendering speed.

To get a sense of the gain in rendering speeds, compare the speed of the Mental

Ray renderer versus the author written CPU renderer.

Figure 5.1 – Comparison of render times between two CPU renderers. One is a
brute force renderer and the Mental Ray renderer has added efficiency
algorithms

 In addition to BVHs, creating a CUDA struct or class that supports a hash

table type of object storage, per pixel, of intersection data would allow for easier

 57

sorting while maintaining low access speeds – similar to the STL::map container.

This would be an important step in calculating objects with various levels of semi-

transparency.

LIST OF REFERENCES

 58

LIST OF REFERENCES

Agarwal, P. K., & Sharir, M. (1998). Efficient algorithms for geometric
optimization. ACM Comput. Surv., 30(4), 412-458. doi:
10.1145/299917.299918.

Alberti, L. B. (1991). On painting. (M. Kemp, Ed., C. Grayson, Tran.). Penguin
Classics. (Original work published in 1435).

Akenine-Moller, T., Haines, E., & Hoffman, N. (2008). Real-time rendering, third
edition (3rd ed.). AK Peters

Allgyer, M. (2008, April 12). Real-time Ray Tracing using CUDA. Retrieved from
HTTP://WWW.HANDSFREEPROGRAMMING.COM/MASTERS/.

Angel, E. (2008). Interactive computer graphics: A top-down approach using
OpenGL (5th ed.). Addison Wesley.

Apodaca, A. A., & Gritz, L. (1999). Advanced RenderMan: Creating CGI for
motion pictures (1st ed.). Morgan Kaufmann.

Bailey, M., & Cunningham, S. (2008). Introduction to CG shaders (pp. 1-126).
Singapore: ACM. doi: 10.1145/1508044.1508069.

Birn, J. (2000). Digital lighting & rendering (1st ed., p. 304). New Riders Press.

Blinn, J. F. (1977). Models of light reflection for computer synthesized pictures.
SIGGRAPH Comput. Graph., 11(2), 192-198. doi:
10.1145/965141.563893.

Blinn, J. F. (1978). Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph.,
12(3), 286-292. doi: 10.1145/965139.507101.

Blinn, J. F., & Newell, M. E. (1976). Texture and reflection in computer generated
images. Commun. ACM, 19(10), 542-547. doi: 10.1145/360349.360353.

Board, O. A. R., Shreiner, D., Woo, M., Neider, J., & Davis, T. (2007).
OpenGL(R) programming guide: The official guide to learning OpenGL(R),
Version 2.1 (6th ed.). Addison-Wesley Professional.

 59

Carr, N. A., Hoberock, J., Crane, K., & Hart, J. C. (2006). Fast GPU ray tracing of
dynamic meshes using geometry images. In Proceedings of Graphics
Interface 2006 (pp. 203-209). Quebec, Canada: Canadian Information
Processing Society. Retrieved November 19, 2009, from
http://portal.acm.org/citation.cfm?id=1143079.1143113&coll=GUIDE&dl=G
UIDE&CFID=63865150&CFTOKEN=17787473.

Chen, C., & Liu, D. S. (2007). Use of hardware Z-buffered rasterization to
accelerate ray tracing. In Proceedings of the 2007 ACM symposium on
Applied computing (pp. 1046-1050). Seoul, Korea: ACM. doi:
10.1145/1244002.1244231.

Cook, R. L. (1984). Shade trees (pp. 223-231). ACM. doi:
10.1145/800031.808602.

Cook, R. L., & Torrance, K. E. (1981). A reflectance model for computer graphics
(pp. 307-316). Dallas, Texas, United States: ACM. doi:
10.1145/800224.806819.

Cox, G., Máximo, A., Bentes, C., & Farias, R. (2009). Irregular Grid Raycasting
Implementation on the Cell Broadband Engine. 2009 21st International
Symposium on Computer Architecture and High Performance Computing,
93 - 100.

Dempski, K. (2004). Advanced lighting and materials with shaders. Wordware
Publishing, Inc.

Dunn, F., & Parberry, I. (2002). 3D math primer for graphics and game
development (p. 429). Wordware Publishing.

Dutre, P., Bala, K., & Bekaert, P. (2006). Advanced global illumination (2nd ed.).
AK Peters.

Ericson, C. (2005). Real-time collision detection. Morgan Kaufmann.

Fernando, R., & Kilgard, M. J. (2003). The CG tutorial: The definitive guide to
programmable real-time graphics. Addison-Wesley Professional.

Fischer, J., Bartz, D., & Straβer, W. (2005). Artistic reality: fast brush stroke
stylization for augmented reality (pp. 155-158). Monterey, CA, USA: ACM.
doi: 10.1145/1101616.1101649.

Friedrich, H., Günther, J., Dietrich, A., Scherbaum, M., Seidel, H., & Slusallek, P.
(2006). Exploring the use of ray tracing for future games (pp. 41-50).
Boston, Massachusetts: ACM. doi: 10.1145/1183316.1183323.

 60

Funkhouser, T. (2002, Fall). Monte Carlo Integration for Image Synthesis.
Princeton University, COS 526. Retrieved from
http://www.cs.princeton.edu/courses/archive/fall02/cs526/lectures/montec
arlo.pdf.

Gaddis, T., Walters, J., & Muganda, G. (2007). Starting out with c++ (6th ed., p.
1122). Boston: Addison-Wesley.

Goral, C. M., Torrance, K. E., Greenberg, D. P., & Battaile, B. (1984). Modeling
the interaction of light between diffuse surfaces. SIGGRAPH Comput.
Graph., 18(3), 213-222. doi: 10.1145/964965.808601.

Gottschalk, S., Lin, M. C., & Manocha, D. (1996). OBBTree: a hierarchical
structure for rapid interference detection (pp. 171-180). ACM. doi:
10.1145/237170.237244.

Gu, X., Gortler, S. J., & Hoppe, H. (2002). Geometry images. ACM Trans.
Graph., 21(3), 355-361. doi: 10.1145/566654.566589.

Guenter, B., Knoblock, T. B., & Ruf, E. (1995). Specializing shaders (pp. 343-
350). ACM. doi: 10.1145/218380.218470.

He, X. D., Torrance, K. E., Sillion, F. X., & Greenberg, D. P. (1991). A
comprehensive physical model for light reflection. SIGGRAPH Comput.
Graph., 25(4), 175-186. doi: 10.1145/127719.122738.

Heidrich, W., Slusallek, P., & Seidel, H. (1998). Sampling procedural shaders
using affine arithmetic. ACM Trans. Graph., 17(3), 158-176. doi:
10.1145/285857.285859.

Hill, F. S. (2000). Computer graphics using OpenGL (2nd ed.). Prentice Hall.

Hubbard, P. M. (1996). Approximating polyhedra with spheres for time-critical
collision detection. ACM Trans. Graph., 15(3), 179-210. doi:
10.1145/231731.231732.

Jacobs, K., Ward, G., & Loscos, C. (2005). Automatic HDRI generation of
dynamic environments (p. 43). Los Angeles, California: ACM. doi:
10.1145/1187112.1187163.

Jarosz, W., Jensen, H. W., & Donner, C. (2008). Advanced global illumination
using photon mapping (pp. 1-112). Los Angeles, California: ACM. doi:
10.1145/1401132.1401136.

Jensen, H. W. (1997). Rendering Caustics on Non-Lambertian Surfaces.
Computer Graphics Forum, 16(1), 57-64. doi: 10.1111/1467-8659.329000.

 61

Jensen, H. W., & Christensen, P. (2007). High quality rendering using ray tracing
and photon mapping (p. 1). San Diego, California: ACM. doi:
10.1145/1281500.1281593.

Kajiya, J. T. (1986). The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques (pp. 143-
150). ACM. doi: 10.1145/15922.15902.

Kass, M., Lefohn, A., & Owens, J. (n.d.). Interactive Depth of Field. Retrieved
April 6, 2009, from http://graphics.pixar.com/library/DepthOfField/.

Keller, A. (1997). Instant radiosity (pp. 49-56). ACM Press/Addison-Wesley
Publishing Co. doi: 10.1145/258734.258769.

Klein, J., & Zachmann, G. (2003). Time-critical collision detection using an
average-case approach (pp. 22-31). Osaka, Japan: ACM. doi:
10.1145/1008653.1008660.

Lafortune, E. P. F., Foo, S., Torrance, K. E., & Greenberg, D. P. (1997). Non-
linear approximation of reflectance functions (pp. 117-126). ACM
Press/Addison-Wesley Publishing Co. doi: 10.1145/258734.258801.

Lawrence, J., Rusinkiewicz, S., & Ramamoorthi, R. (2004). Efficient BRDF
importance sampling using a factored representation (pp. 496-505). Los
Angeles, California: ACM. doi: 10.1145/1186562.1015751.

Luong, T., Seth, A., Klein, A., & Lawrence, J. (2005). Isoluminant color picking for
non-photorealistic rendering (pp. 233-240). Victoria, British Columbia:
Canadian Human-Computer Communications Society. Retrieved March
27, 2009, from
http://portal.acm.org/citation.cfm?id=1089508.1089547&coll=ACM&dl=AC
M&CFID=28592590&CFTOKEN=72825349.

Marschner, S. R., Westin, S. H., Lafortune, E. P. F., & Torrance, K. E. (2000).
Image-Based Bidirectional Reflectance Distribution Function
Measurement. Applied Optics, 39(16), 2592-2600. doi:
10.1364/AO.39.002592.

Meyers, S. (2005). Effective c++: 55 specific ways to improve your programs and
designs (3rd Edition) (3rd ed.). Addison-Wesley Professional.

Meyers, S. (2001). Effective STL: 50 specific ways to improve your use of the
standard template library. Addison-Wesley Professional.

 62

Nettle, P. (1999, May 20). Radiosity In English. Radiosity in English. Retrieved
from
http://www.paulnettle.com/pub/FluidStudios/Radiosity/Radiosity_in_Englis
h.pdf.

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsburg, I. W., & Limperis, T.
(1977). Geometrical considerations and nomenclature for reflectance.
National Bureau of Standards monograph (p. 67). Washington:
Department of Commerce, National Bureau of Standards.

NVidia Corporation. (2009, Aug 26). NVIDIA_CUDA_Programming_Guide_2.3
(application/pdf Object). NVidia Corporation. Retrieved January 6, 2010,
from
http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVID
IA_CUDA_Programming_Guide_2.3.pdf.

NVidia Corporation. (2010, Jan 19.). NVIDIA® OptiX™ ray tracing engine.

NVIDIA OptiX ray tracing engine. Retrieved April 29, 2010, from
http://developer.nvidia.com/object/optix-home.html.

Parker, S., Martin, W., Sloan, P. J., Shirley, P., Smits, B., & Hansen, C. (2005).

Interactive ray tracing (p. 12). Los Angeles, California: ACM. doi:
10.1145/1198555.1198751.

Pharr, M., & Fernando, R. (2005). GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-
Wesley Professional.

Pharr, M., & Humphreys, G. (2004). Physically based rendering : From theory to

implementation (the Morgan Kaufmann series in interactive 3D
technology). Morgan Kaufmann.

Phong, B. T. (1975). Illumination for computer generated pictures. Commun.
ACM, 18(6), 311-317. doi: 10.1145/360825.360839.

Ragan-Kelley, J., & Massachusetts Institute of Technology. (2007). The

lightspeed automatic interactive lighting preview system.

Rushmeier, H. (2008). Input for participating media. In ACM SIGGRAPH 2008
classes (pp. 1-24). Los Angeles, California: ACM. doi:
10.1145/1401132.1401141.

Schwan. (1994). Raytracing on the macintosh book. The Great State of Texas:
FT Prentice Hall.

 63

Shah, A., Ritter, J., & Gronsky, S. (n.d.). Fast, Soft Reflections Using Radiance
Caches. Retrieved April 6, 2009, from
http://graphics.pixar.com/library/SoftReflections/index.html.

Shirley, P., Ashikhmin, M., Gleicher, M., Marschner, S., Reinhard, E., Sung, K.,
et al. (2005). Fundamentals of Computer Graphics, Second Ed. (2nd ed.).
A K Peters, Ltd.

Shirley, P., & Morley, R. K. (2003). Realistic ray tracing (2nd ed., p. 225). A K
Peters.

Shirley, P., Wang, C., & Zimmerman, K. (1996). Monte Carlo techniques for
direct lighting calculations. ACM Trans. Graph., 15(1), 1-36. doi:
10.1145/226150.226151.

Shreiner, D., & Group, T. K. O. A. W. (2009). OpenGL programming guide: The
official guide to learning OpenGL, Versions 3.0 and 3.1 (7th ed.). Addison-
Wesley Professional.

Speer, L. R. (1992a). An updated cross-indexed guide to the ray-tracing
literature. SIGGRAPH Comput. Graph., 26(1), 41-72. doi:
10.1145/142403.142405.

Speer, L. R. (1992b). An updated cross-indexed guide to the ray-tracing
literature. SIGGRAPH Comput. Graph., 26(1), 41-72. doi:
10.1145/142403.142405.

Tabellion, E., & Lamorlette, A. (2008). An approximate global illumination system
for computer generated films. In ACM SIGGRAPH 2008 classes (pp. 1-8).
Los Angeles, California: ACM. doi: 10.1145/1401132.1401227.

Wald, I., Kollig, T., Benthin, C., Keller, A., & Slusallek, P. (2002). Interactive
global illumination using fast ray tracing (pp. 15-24). Pisa, Italy:
Eurographics Association. Retrieved March 27, 2009, from
http://portal.acm.org/citation.cfm?id=581896.581899&coll=GUIDE&dl=GUI
DE&CFID=28594501&CFTOKEN=62038515.

Ward, G., Reinhard, E., & Debevec, P. (2008). High dynamic range imaging \&
image-based lighting (pp. 1-137). Los Angeles, California: ACM. doi:
10.1145/1401132.1401170.

Whitted, T. (1980). An improved illumination model for shaded display. Commun.
ACM, 23(6), 343-349. doi: 10.1145/358876.358882.

 64

Woop, S., Schmittler, J., & Slusallek, P. (2005). RPU: a programmable ray
processing unit for realtime ray tracing. ACM Trans. Graph., 24(3), 434-
444. doi: 10.1145/1073204.1073211.

Xie, F., Tabellion, E., & Pearce, A. (2007). Soft Shadows by Ray Tracing
Multilayer Transparent Shadow Maps. Presented at the Eurographics
Symposium on Rendering.

Zachmann, G. (2002). Minimal hierarchical collision detection (pp. 121-128).
Hong Kong, China: ACM. doi: 10.1145/585740.585761.

APPENDICES

 65

Appendix A. CUDA Struct Declarations and Data Contents

Table A.1 – Host and Device Global Memory Pairings and Their Use

Struct Name Data Contents Array Size
N = number of pixels

M = number of objects

curayCam float3 pos 1
float3 dir

float3 up

curayLight float m_intensity 1 – n
float3 m_diffuse

float3 m_specular

float3 m_pos

curaySphere float radius 0 – n
float3 m_pos

float3 m_color

int matID

curayTri float3 p0, p1, p2 0 – n
float3 m_normal

float3 m_color

float3 ABC, DEF

int matID

DefineABCDEF()

DefineNormal()

curayFog float3 m_color 0 - 1
float3 m_IntMinMax

curayRay float3 m_dir, m_pos 1, Defined in Kernel

curayRec float t 1
int id

curayFrameBuffer int id, ObjType N
float t

float3 normal, point

curayMat float3 color, spec 0 – N
or

0 – M

float reflectivity, shininess

 66

Appendix B. CUDA Global Memory Variable Pairs

Table B.1 – Data Contents of New Struct Data Types
Host Variables Device Variables Use

curaySphere*

h_Spheres=NULL;

curaySphere*

d_Spheres=NULL;

Stores n amount of spheres
where n is defined by CPU

curayTri*

h_Tris=NULL;

curayTri*

d_Tris=NULL;
Stores n amount of triangles
where n is defined by CPU

curayLight*

h_Lights=NULL;

curayLight*

d_Lights=NULL;
Stores n amount of lights where
n is defined by CPU

curayCam*

h_Camera=NULL;

curayCam*

d_Camera=NULL;
Stores camera data

curayFog* h_Fog=NULL;

curayFog*

d_Fog=NULL;
Stores fog data

curayFrameBuffer*

h_FB=NULL;

curayFrameBuffer*

d_FB=NULL;
FrameBuffer stores data for the
closest object id and ObjType,
distance to nearest intersection,
normal and position of object of
nearest intersection

curayMat* h_Mat=NULL;

curayMat*

d_Mat=NULL;
Material description.

Note: Because of the thread per
pixel nature of the GPU
renderer, material definitions
can be defined per pixel and/or
per object.

float3*

h_Vectors=NULL;

float3*

d_Vectors=NULL;
Stores ray cast and reflection
vectors

float3* h_C=NULL;

float3* d_C=NULL;

float3* d_C2=NULL;

Stores color data

d_C2 is defined as the
intermediate color value during
recursive ray casting steps.

 67

Appendix C. Host and Device Memory Allocation and Assignment

extern "C" void defineLights(float* data, int numLights)

{

 // data in is defined in strips of number numLights: 1 x

// float(intensity), 3 x float(colDiff), 3 x float(colSpec),

// 3 x float(pos)

 cudaError_t error; //Define cudaError to bug check memory

//allocation!! Really Important for debugging!!

 //allocate Host memory

 h_Lights = (curayLight*)malloc(sizeof(curayLight)*numLights);

 if(h_Lights==0) Cleanup(false);

 //allocate Device Memory

 error = cudaMalloc((void**)&d_Lights,

sizeof(curayLight)*numLights);

 if (error!= cudaSuccess) Cleanup(false);

 //Init Lights in CUDA

 curayLightInit(h_Lights, data, numLights);

 //copy Lights memory to GPU memory

 error = cudaMemcpy(d_Lights, h_Lights,

sizeof(curayLight)*numLights, cudaMemcpyHostToDevice);

 if (error != cudaSuccess) Cleanup(false);

 NumLight = numLights;

};

Figure C.1 – GPU.cu host and device memory allocation code

 68

//Defines the lights (h_Lights) with pos, m_diffuse, m_specular,

m_intensity

void curayLightInit(curayLight* lightData, float* data, int numLights)

{

 for (int i=0; i<numLights; i++)

 {

 lightData[i].m_intensity = data[i*10+0];

 lightData[i].m_diffuse.x = data[i*10+1];

 lightData[i].m_diffuse.y = data[i*10+2];

 lightData[i].m_diffuse.z = data[i*10+3];

 lightData[i].m_specular.x = data[i*10+4];

 lightData[i].m_specular.y = data[i*10+5];

 lightData[i].m_specular.z = data[i*10+6];

 lightData[i].m_pos.x = data[i*10+7];

 lightData[i].m_pos.y = data[i*10+8];

 lightData[i].m_pos.z = data[i*10+9];

 }

 // Lights data is defined and assigned to curayLight data type

and array

}

Figure C.2 – GPU.cu curayLight array data assignment, per light

void LightsToCUDA(WorldC &world)

{

 float *data;

 int floatCount = 10; //number of floats needed to represent one Light

 data = new float[world.phong1.m_numLights*floatCount];

 for(int i=0; i<world.phong1.m_numLights; i++)

 {

 data[i*floatCount+0] = world.phong1.m_lights[i]->m_intensity;

 data[i*floatCount+1] = world.phong1.m_lights[i]->m_diffuse.r();

 data[i*floatCount+2] = world.phong1.m_lights[i]->m_diffuse.g();

 data[i*floatCount+3] = world.phong1.m_lights[i]->m_diffuse.b();

 data[i*floatCount+4] = world.phong1.m_lights[i]->m_specular.r();

 data[i*floatCount+5] = world.phong1.m_lights[i]->m_specular.g();

 data[i*floatCount+6] = world.phong1.m_lights[i]->m_specular.b();

 data[i*floatCount+7] = world.phong1.m_lights[i]->m_translate.x();

 data[i*floatCount+8] = world.phong1.m_lights[i]->m_translate.y();

 data[i*floatCount+9] = world.phong1.m_lights[i]->m_translate.z();

 }

 defineLights(data,world.phong1.m_numLights);

 delete [] data;

 data = NULL;

}

Figure C.3 – RayTrace.cpp assignment of light data to linear array and passing
to GPU.cu

 69

Appendix D. CUDA Kernels – Shape Intersection Kernel

The first kernel creates the base image. It renders all shapes, finds closest

intersections and assigns appropriate color the float3* C (the color buffer).

__global__ void IntersectShapes(float3* C, curayFrameBuffer* C_FB, int

N, curaySphere* gpuSpheres, int SphereCount, curayTri* gpuTris, int

TriCount, float3* Vectors, curayCam* d_Cam, float _tmin, float _tmax)

{

 __shared__ curayCam gpuCamera;

 gpuCamera = d_Cam[0];

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 float3 colorBG = {0.1f,0.1f,0.5f};

 if (i<N)

 {

 curayRec recordSph, recordTri;

 recordSph.t = _tmax;

 recordTri.t = _tmax;

 int tickSph=0;

 int tickTri=0;

 bool chk1, chk2;

 chk1 = chk2 = false;

 ///

 //// Calculate Sphere Intersections

 ///

 if(SphereCount>0)

 for (int j=0; j<SphereCount; j++)

 {

 float3 temp = gpuCamera/*[0]*/.pos-

gpuSpheres[j].m_pos;

 float3 temp2;

 temp2 = Vectors[i];

 float a = dot(temp2,Vectors[i]);

 float b = 2 * dot(temp2,temp);

 float c = dot(temp,temp) - gpuSpheres[j].m_radius *

gpuSpheres[j].m_radius;

 float discriminant = b*b - 4*a*c;

 if (discriminant > 0)

 {

 //cout << "Discriminant Check if > 0" << endl;

 discriminant=sqrt(discriminant);

 float t = (-b - discriminant) / (2*a);

 //now check for valid interval ???

 if (t < _tmin)

 t = (-b + discriminant) / (2*a);

 70

 if (t < _tmin || t > _tmax)

 break;

 // we have a valid hit!!!!

 tickSph++;

 if (t<recordSph.t) { recordSph.t=t;

recordSph.id = j; }

 }

 }

 ///

 //// Calculate Triangle Intersections

 ///

 if(TriCount>0)

 for (int j=0; j<TriCount; j++)

 {

 float3 temp = gpuCamera/*[0]*/.pos;

 float3 temp2 = Vectors[i];

 float tval;

 float A = gpuTris[j].ABC.x;

 float B = gpuTris[j].ABC.y;

 float C = gpuTris[j].ABC.z;

 float D = gpuTris[j].DEF.x;

 float E = gpuTris[j].DEF.y;

 float F = gpuTris[j].DEF.z;

 float G = temp2.x;

 float H = temp2.y;

 float I = temp2.z;

 float J = gpuTris[j].p0.x - temp.x;

 float K = gpuTris[j].p0.y - temp.y;

 float L = gpuTris[j].p0.z - temp.z;

 float EIHF = E*I - H*F;

 float GFDI = G*F- D*I;

 float DHEG = D*H - E*G;

 float denom = (A*EIHF + B*GFDI + C*DHEG);

 float beta = (J*EIHF + K*GFDI + L*DHEG) / denom;

 if(beta <= 0.f || beta >= 1.f) { chk1=true;}

 float AKJB = A*K - J*B;

 float JCAL = J*C - A*L;

 float BLKC = B*L - K*C;

 float gamma = (I*AKJB + H*JCAL + G*BLKC)/denom;

 if (gamma <= 0.f || beta + gamma >= 1.f) {

chk2=true;}

 tval = -(F*AKJB + E*JCAL + D*BLKC) / denom;

 if (tval >= _tmin && tval <= _tmax)

 71

 {

 if(chk1==false && chk2==false)

 {

 tickTri++;

 if(tval<recordTri.t) { recordTri.t =

tval; recordTri.id = j; }

 }

 }

 chk1 = chk2 = false;

 }

 if(tickSph>0 && tickTri>0)

 {

 //sort by t

 if(recordTri.t<recordSph.t)

 {

 C[i]= gpuTris[recordTri.id].m_color;

 C_FB[i].id = recordTri.id;

 C_FB[i].ObjType = 2;

 C_FB[i].t = recordTri.t;

 C_FB[i].normal =

gpuTris[recordTri.id].m_normal;

 }

 else

 {

 C[i] = gpuSpheres[recordSph.id].m_color;

 C_FB[i].id = recordSph.id;

 C_FB[i].ObjType = 1;

 C_FB[i].t = recordSph.t;

 C_FB[i].normal = normalize((C_FB[i].t *

Vectors[i] + gpuCamera/*[0]*/.pos) - gpuSpheres[recordSph.id].m_pos);

 }

 C_FB[i].point = C_FB[i].t * Vectors[i] +

gpuCamera/*[0]*/.pos;

 }

 else if(tickSph>0 && tickTri==0)

 {

 //draw Sph

 C[i] = gpuSpheres[recordSph.id].m_color;

 C_FB[i].id = recordSph.id;

 C_FB[i].ObjType = 1;

 C_FB[i].t = recordSph.t;

 C_FB[i].normal = normalize((C_FB[i].t * Vectors[i] +

gpuCamera/*[0]*/.pos) - gpuSpheres[recordSph.id].m_pos);

 C_FB[i].point = C_FB[i].t * Vectors[i] +

gpuCamera/*[0]*/.pos;

 }

 else if(tickSph==0 && tickTri>0)

 {

 //draw Tri

 C[i] = gpuTris[recordTri.id].m_color;

 C_FB[i].id = recordTri.id;

 C_FB[i].ObjType = 2;

 C_FB[i].t = recordTri.t;

 C_FB[i].normal = gpuTris[recordTri.id].m_normal;

 72

 C_FB[i].point = C_FB[i].t * Vectors[i] +

gpuCamera/*[0]*/.pos;

 }

 else

 {

 //draw BG

 C[i] = colorBG;

 C_FB[i].ObjType = 0; //no object present

 C_FB[i].normal = make_float3(0.f);

 }

 }

}

 73

Appendix E. CUDA Kernels – Shading Calculation

The second kernel creates the shaded and shadowed image. It first

checks for shadows by casting rays from each intersection point in the previous

image to each light and calculates areas of shadow. If a shadow is present for

the position and light then no material shading component is rendered.

Conversely, if there are no shadows then that point has Phong shading applied

to it. The result is rendered to the color buffer.

Point of intersection and object description are maintained in the

FrameBuffer struct: curayFrameBuffer. These values (object type, object id,

object normal, distance from camera) are generated in the previous kernel

(Appendix D) and called here.

__global__ void CalculateShading(float3* C, curayFrameBuffer* FB, int

N, curayLight* d_Lights, int countLight, curayCam* d_Camera, float3*

d_Vectors, curaySphere* gpuSpheres, int SphereCount, curayTri* d_Tris,

int TriCount, float _tmin, float _tmax)

{

 /*__shared__ curayCam gpuCamera;

 gpuCamera = d_Camera[0];*/

 __shared__ curayLight gpuLights[2];

 gpuLights[0] = d_Lights[0];

 gpuLights[1] = d_Lights[1];

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 if (i<N)

 {

 //Diffuse = clamp(dot(lightV,

lookV),0,1)*light[j].m_diffuse*light[j].m_intensity*object.color

 float3 lightV, reflV;

 float3 lookV = normalize(FB[i].point - d_Camera[0].pos);

 float3 color = {0.f, 0.f, 0.f};

 float3 Diff, Spec;

 Diff = Spec = color;

 float3 colorInit = C[i];

 float dotProd;

 for(int h=0; h<countLight; h++)

 {

 bool isShadow = false;

 ///

 //// Calculate Shadows of Spheres

 ////

 ///

 74

 if(SphereCount>0)

 for (int j=0; j<SphereCount; j++)

 {

 float3 temp = FB[i].point -

gpuSpheres[j].m_pos;//the currentPoint - all shapes

 float3 temp2 = gpuLights[h].m_pos -

FB[i].point; //light minus the point

 float a = dot(temp2,temp2);

 float b = 2 * dot(temp2,temp);

 float c = dot(temp,temp) -

gpuSpheres[j].m_radius * gpuSpheres[j].m_radius;

 float discriminant = b*b - 4*a*c;

 if (discriminant > 0)

 {

 //cout << "Discriminant Check if > 0" <<

endl;

 discriminant = sqrt(discriminant);

 float t = (-b - discriminant) / (2*a);

 //now check for valid interval ???

 if (t < _tmin)

 t = (-b + discriminant) / (2*a);

 if (t < _tmin || t > _tmax)

 break;

 isShadow=true;

 }

 //if (shadowChk>0)break;

 }

 if(!isShadow)

 {

 lightV = normalize(gpuLights[h].m_pos -

FB[i].point);

 reflV = reflect(lightV, FB[i].normal);

 dotProd = clamp(dot(FB[i].normal,

lightV),0.f,1.f);

 Diff = dotProd * gpuLights[h].m_diffuse *

gpuLights[h].m_intensity * colorInit + color;

 dotProd = clamp(dot(reflV, lookV), 0.f, 1.f);

 Spec = gpuLights[h].m_specular *

gpuLights[h].m_intensity * pow(dotProd,20.f);

 color = Diff + Spec;

 color = clamp(color, 0.f, 1.f);

 }

 }

 C[i] = color;

 }

}

 75

Appendix F. CUDA Kernels – Calculating Reflected Viewing Rays

The third kernel is only called if the max trace depth is a value greater

than 1. This kernel reads the normal vector of the object defined in the

curayFrameBuffer and the current viewing vector and creates a new reflected

vector using the CUDA math function, reflect. It only calculates reflection if an

object was intersected with a viewing ray in the previous pass. If no object-ray

intersection exists then the curayFrameBuffer object records ObjType to be 0.

__global__ void ReflectViewingRays(curayFrameBuffer* FB, float3*

Vectors, int N)

{

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 float3 tmp;

 if (i<N)

 {

 if(FB[i].ObjType != 0)

 {

 tmp = reflect(Vectors[i],FB[i].normal);

 Vectors[i] = tmp;

 }

 }

}

 76

Appendix G. CUDA Kernels – Reflection Color Mixing Kernel

This final kernel blends the colors of current color and previous color,

C2[i] and C[i] respectively. The blending value will be defined by a material

coefficient of reflectivity.

__global__ void BlendColors(float3* C, float3* C2, int N)

{

 int i = blockDim.x * blockIdx.x + threadIdx.x;

 if (i<N)

 {

 C[i] = lerp(C[i],C2[i],0.5f /*material reflectivity

coefficient*/);

 }

}

 77

Appendix H. GPU Shape Splitting into Independent Arrays

void ShapesToCUDA(WorldC &world)

{

 //search list of shapes and count number of spheres and tris

 int countSph, countTri;

 countSph = countTri = 0;

 int *IDSphere, *IDTri;

 IDSphere = new int[world.shapes.size()]; //List of Object IDs

that are spheres

 IDTri = new int[world.shapes.size()]; //List of Object IDs that

are triangles

 for(unsigned int i=0; i<world.shapes.size(); i++)

 {

 if(world.shapes[i]->m_objType == 1)//Spheres

 {

 IDSphere[countSph] = i;

 countSph++;

 }

 if(world.shapes[i]->m_objType == 2)//Triangles

 {

 IDTri[countTri] = i;

 countTri++;

 }

 }

 float *dataSphere;

 float *dataTri;

 int sphereFloatSize = 7; //Number of floats to represent a sphere

 int triFloatSize = 12; //Number of floats to represent a triangle

 dataSphere = new float[countSph * sphereFloatSize];

 dataTri = new float[countTri * triFloatSize];

 Vect3d p0, p1, p2;

 rgb color;

 for(int i=0; i<countSph; i++)

 {

 p0 = world.shapes[IDSphere[i]]->getSphereCenter();

 color = world.shapes[IDSphere[i]]->m_color;

 color.UINTtoRGBcheck();

 dataSphere[i*sphereFloatSize+0] =

world.shapes[IDSphere[i]]->getSphereRadius();//get sphere radius data

 dataSphere[i*sphereFloatSize+1] = p0.x();

 dataSphere[i*sphereFloatSize+2] = p0.y();

 dataSphere[i*sphereFloatSize+3] = p0.z();

 dataSphere[i*sphereFloatSize+4] = color.r();

 dataSphere[i*sphereFloatSize+5] = color.g();

 dataSphere[i*sphereFloatSize+6] = color.b();

 }

 for(int i=0; i<countTri; i++)

 {

 p0 = world.shapes[IDTri[i]]->getTriangleP0();

 p1 = world.shapes[IDTri[i]]->getTriangleP1();

 p2 = world.shapes[IDTri[i]]->getTriangleP2();

 78

 color = world.shapes[IDTri[i]]->m_color;

 color.UINTtoRGBcheck();//convert color from 0-255 to 0-1

 dataTri[i*triFloatSize+0] = p0.x();

 dataTri[i*triFloatSize+1] = p0.y();

 dataTri[i*triFloatSize+2] = p0.z();

 dataTri[i*triFloatSize+3] = p1.x();

 dataTri[i*triFloatSize+4] = p1.y();

 dataTri[i*triFloatSize+5] = p1.z();

 dataTri[i*triFloatSize+6] = p2.x();

 dataTri[i*triFloatSize+7] = p2.y();

 dataTri[i*triFloatSize+8] = p2.z();

 dataTri[i*triFloatSize+9] = color.r();

 dataTri[i*triFloatSize+10] = color.g();

 dataTri[i*triFloatSize+11] = color.b();

 }

 if(countSph>0) defineSpheres(dataSphere,countSph);

 if(countTri>0) defineTris(dataTri,countTri);

 delete [] dataSphere;

 delete [] IDSphere;

 delete [] dataTri;

 delete [] IDTri;

 dataSphere = NULL;

 IDSphere = NULL;

 dataTri = NULL;

 IDTri = NULL;

 color.~rgb();

 p0.~Vect3d();

 p1.~Vect3d();

 p2.~Vect3d();

}

 79

Appendix I. GPU.cu Rendering Function

extern "C" void startKernel(int frame, int threadsPerBlock)

{

 //int Loop;

 int I=500,J=500;

 int N=I*J;

 int rayCount = 1;

 float tMin, tMax;

 tMin = 0.00001f;

 tMax = 100000.f;

 clock_t start_t, end_t;

 printf("Vector addition\n");

 size_t size = N * sizeof(float3);

 cudaError_t error;

 //Generate Materials

 //curayMatInit(h_Mat);

 cudaDeviceProp prop;

 int dev;

 // Allocate input vectors h_A and h_B in host memory

 h_C = (float3*)malloc(size);

 if (h_C == 0) Cleanup(false);

 defineFrameBuffer(N);

 // Initialize input vectors

 // Allocate vectors in device memory

 error = cudaMalloc((void**)&d_C, size);

 if (error != cudaSuccess) Cleanup(false);

 error = cudaMalloc((void**)&d_C2, size);

 if (error != cudaSuccess) Cleanup(false);

 error = cudaGetDevice(&dev);

 error = cudaGetDeviceProperties(&prop, dev);

 printf("Major, minor of GPU is: %i.%i\n", prop.major,

prop.minor);

 // Invoke kernel

 int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;

 int f, g;

 /*VecAdd<<<blocksPerGrid,threadsPerBlock>>>(d_C,N, d_Camera,

d_Lights,

 d_Spheres, d_Tris, MaxDepth,

 d_Fog, d_Vectors

);*/

 //getchar();

 error = cudaGetLastError();

 if (error != cudaSuccess) Cleanup(false);

 80

#ifdef _DEBUG

 error = cudaThreadSynchronize();

 if (error != cudaSuccess) Cleanup(false);

#endif

 start_t = clock(); // Start Timer

////////////////////////////////////-----

/////////////////////////////////////

//// First Ray Cast

//./..//./..//./..//./..//./..//./..-----

//./..//./..//./..//./..//./..//./../

/////////////////////-----Intersection Calculation-----

///////////////////////

 IntersectShapes<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_FB, N,

d_Spheres, NumSphere, d_Tris, NumTri, d_Vectors, d_Camera, tMin, tMax);

 error = cudaGetLastError();

/////////////////////-----Material Shading Calculation-----

///////////////////////

 CalculateShading<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_FB, N,

d_Lights, NumLight, d_Camera, d_Vectors, d_Spheres, NumSphere, d_Tris,

NumTri, tMin, tMax);

//./..//./..//./..//./..//./..//./..//

// Begin Ray Tracing //

//./..//./..//./..//./..//./..//./..//

 if(MaxDepth>1)

 do

 {

 //recalculate rays

 ReflectViewingRays<<<blocksPerGrid,threadsPerBlock>>>(d_FB,

d_Vectors, N);

 //Intersect Shapes

 IntersectShapes<<<blocksPerGrid,threadsPerBlock>>>(d_C2,

d_FB, N, d_Spheres, NumSphere, d_Tris, NumTri, d_Vectors, d_Camera,

tMin, tMax);

 //Calculate Shading

 CalculateShading<<<blocksPerGrid,threadsPerBlock>>>(d_C2,

d_FB, N, d_Lights, NumLight, d_Camera, d_Vectors, d_Spheres, NumSphere,

d_Tris, NumTri, tMin, tMax);

 //Blend Colors based on reflectivity

 BlendColors<<<blocksPerGrid,threadsPerBlock>>>(d_C, d_C2,

N);

 //increase Ray count by one

 rayCount++;

 printf("do-while loop iter: %i\n",rayCount);

 } while (rayCount<MaxDepth);

 end_t = clock() - start_t; // End GPU Timer

 81

 printf("finished CUDA render in %d milliseconds.\n\n", end_t);

 // Copy result from device memory to host memory

 // h_C contains the result in host memory

 error = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

 if (error != cudaSuccess) Cleanup(false);

 printf("Resorting\n");

 // Convert h_C to fractalOut[f][g][h]

 for (int i=0; i<N; i++)

 {

 //N=k+(j*3)+(i*3*J);

 //h=(int)i%3;

 g=(int)i%I;

 f=(int)((i-g)/J)%I;

 fractalOut[f][g][0] = (unsigned char)(h_C[i].x*(unsigned

char)255);

 fractalOut[f][g][1] = (unsigned char)(h_C[i].y*(unsigned

char)255);

 fractalOut[f][g][2] = (unsigned char)(h_C[i].z*(unsigned

char)255);

 //if(i%150==0)printf("Value in image at index %d, with x%d

y%d , is: %f.\n",i,f,g,h_C[i]);

 }

 //Write Image

 sprintf(ImageName, "CUDA_Render.%i.tga",frame);

 SaveTGA(ImageName,(unsigned char*)fractalOut,I,J,24);

 printf("Print after writing image\n");

 //getchar();

 Cleanup(true);

}

 82

Appendix J. Scene 1 Testing Data

This first table represents to the timed data for different GPUs. All units of

time are measured in milliseconds.

Table J.1 – List of GPUs and render times
CUDA
compute
Architecture 1.3 1.3 1.1 1.0 1.1

Graphics
Card GTX-260 GTX 275 GTS 250

GeForce
8800GTX

9800GTM
512M RAM

GPU GPU GPU GPU GPU

Frame 1 303 280 2043 1781

O
u

t
o

f
M

em
o

ry

 O

u
t

o
f

M
em

o
ry

 O
u

t
o

f
M

em
o

ry

Frame 2 295 244 1887 1500

Frame 3 289 243 1887 1468

Frame 4 284 245 1888 1515

Frame 5 278 242 1903 1500

Frame 6 282 242 1903 1468

Frame 7 285 239 1888 1500

Frame 8 284 241 1904 1531

Frame 9 277 240 1903 1484

Frame 10 288 241 1903 1485

Frame 11 290 247 1904 1547

Frame 12 284 245 1919 1484

Frame 13 289 247 1888 1563

Frame 14 296 241 1888 1500

Frame 15 304 240 1903 1515

Frame 16 287 242 1888 1500

Frame 17 300 244 1888 1546

Frame 18 292 243 1888 1500

Frame 19 291 245 1903 1516

Frame 20 285 246 1888 1516

Frame 21 281 246 1903 1531

Frame 22 278 243 1872 1547

Frame 23 295 246 1888 1516

Frame 24 292 245 1903 1516

Frame 25 295 244 1887 1501

Average 288.96 244.84 1900.76 1521.2

 83

This second table represents the CPU render times.

Table J.2 – List CPUs and render times for author written CPU ray tracer

Processor

Core2
Duo
3GHz,
4GB
RAM

I7 (920)
@
2.67GHz
6GB
RAM

Core2
Quad
Q9400
@
2.66GHz

Intel Core2
Quad CPU
Q7600 @2.66
(4 CPUs)

Dual
Xeon
3GHz

CPU CPU CPU CPU CPU

Frame 1 30723 66129 92586 123092 248578

Frame 2 30718 44041 78374 62296 155406

Frame 3 30696 45304 77907 62859 158157

Frame 4 29398 46041 77906 63202 154671

Frame 5 28173 45680 77876 62093 153719

Frame 6 28621 45588 78203 62280 154625

Frame 7 28341 44094 78577 62687 156516

Frame 8 28334 45521 77610 62234 154219

Frame 9 28253 44422 78843 62358 152875

Frame 10 28272 45658 77844 62531 156390

Frame 11 28414 45894 78296 62186 154765

Frame 12 28402 45780 79872 62187 151563

Frame 13 28270 45828 78905 59234 152109

Frame 14 29290 45820 77735 62015 152469

Frame 15 28487 45800 74444 61608 153281

Frame 16 28681 45703 78639 62281 150781

Frame 17 28921 44821 79280 62046 152375

Frame 18 28933 45537 78780 62093 152250

Frame 19 28820 44405 79092 62030 153344

Frame 20 28256 40861 78499 62296 151234

Frame 21 28294 42625 79233 62016 155157

Frame 22 28347 42755 79388 62288 153843

Frame 23 28212 42761 79295 62414 155985

Frame 24 28204 41882 79841 62194 160468

Frame 25 28288 48131 79529 62492 159016

Average 28774 45643 79062 64600.48 158152

 84

This last table represents timing data for rendering scene1 in Mental Ray.

Table J.3 – List of CPUs and render times for Mental Ray rendering

Processor

Intel Core2
Quad CPU
Q7600 @2.66
(4 CPUs)

Dual
Xeon
3GHz

2.53GHz
Core2
Duo

MR

Mental
Ray

Mental
Ray

Frame 1 670 920 580.00

Frame 2 2530 10690 4540.00

Frame 3 2500 10330 4520.00

Frame 4 2410 10620 4500.00

Frame 5 2410 10740 4410.00

Frame 6 2450 11060 4480.00

Frame 7 2390 11140 4430.00

Frame 8 2560 11440 4460.00

Frame 9 2410 11440 4550.00

Frame 10 2480 11430 4480.00

Frame 11 2420 11660 4490.00

Frame 12 2540 11750 4470.00

Frame 13 2450 11660 4430.00

Frame 14 2590 11850 4460.00

Frame 15 2320 11960 4510.00

Frame 16 3150 12110 4720.00

Frame 17 2200 12040 4470.00

Frame 18 2570 12130 4440.00

Frame 19 2420 12110 4730.00

Frame 20 2420 12200 4490.00

Frame 21 2390 12280 4460.00

Frame 22 2490 12440 4450.00

Frame 23 2610 12520 4460.00

Frame 24 2560 12370 4510.00

Frame 25 2640 12530 4490.00

Average 2423.2 11257 4341.20

 85

Appendix K. Classes Chart of CPU Renderer

Figure K.1 – Close-up of flowchart planning for CPU renderer

 86

Figure K.2 – Close-up of flowchart planning for CPU renderer

	Purdue University
	Purdue e-Pubs
	4-30-2010

	Full CUDA Implementation Of GPGPU Recursive Ray-Tracing
	Andrew D. Britton

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF Algorithms
	GLOSSARY
	ABSTRACT
	INTRODUCTION
	Research Question
	Scope
	Significance
	Assumptions
	Limitations
	Delimitations
	Chapter Summary

	Literature Review
	Ray Tracing
	Ray – Object Intersections
	Spatial Partitioning
	Illumination
	Direct Illumination & Shadows
	Cameras
	Objects
	Texture Mapping

	Speed Improvements
	GPGPU with CUDA™

	Existing Real-Time Ray Trace Rendering Techniques
	Hardware
	Software

	Summary

	METHODOLOGY
	Algorithms
	The Rendering Equation
	Ray Casting
	Cameras
	BRDFs
	Lighting
	Ray-Object Intersections
	Line of Sight Rays and Shadow Rays

	CPU Implementation
	Classes
	Polymorphism
	Recursion

	CUDA Implementation
	CUDA Code Overview
	Parallelization and Thread Assignment
	Variable and Data Type Declaration
	Memory Initialization
	Kernel Definition
	Rendering

	GPGPU Programming Issues
	Minimizing Data Transfer Between Host and Device
	No Support for Virtual Functions
	Recursive Functionality and GPGPU Programming
	Color Mixing
	Do While Loop

	Research Framework
	Hypotheses
	Pre-Testing Expectation of Hypotheses
	Proving the Alternative Hypothesis 1
	Proving the Alternative Hypothesis 2

	Test Conditions
	Chapter Summary

	Results
	Author Written CPU Renderer Results
	Mental Ray Renderer Results
	Results: Scene 1
	Strict and Favorable Timing Comparisons

	Results: Scenes 2 – 4
	Hypothesis 1 Results
	Hypothesis 2 Results

	Conclusions and Future Work
	GPU Renderer Design
	Results
	Massive Parallelism versus Spatial Partitioning
	General Discussion of Results

	Future Work

	LIST OF REFERENCES
	CUDA Struct Declarations and Data Contents
	CUDA Global Memory Variable Pairs
	Host and Device Memory Allocation and Assignment
	CUDA Kernels – Shape Intersection Kernel
	CUDA Kernels – Shading Calculation
	CUDA Kernels – Calculating Reflected Viewing Rays
	CUDA Kernels – Reflection Color Mixing Kernel
	GPU Shape Splitting into Independent Arrays
	GPU.cu Rendering Function
	Scene 1 Testing Data
	Classes Chart of CPU Renderer

