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A FUZZY LOCALLY SENSITIVE METHOD 
FOR CLUSTER ANALYSIS 

Abstract: Cluster analysis has been playing an important role in pattern recognition, image 
processing, and time series analysis. The majority of the existing clustering algorithms 
depend on initial parameters and assumptions about the underlying dat,a structure. In this 
paper a fuzzy method of mode separation is proposed. The method addresses the task of 
multi-modal partition through a sequence of locally sensitive searches guided by a 
stochastic gradient ascent procedure, and addresses the cluster validity problem through a 
global partition performance criterion. the algorithm is computational efficient and provided 
gocd results when tested with a number of simulated and real data sets. 
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I - INTRODUCTION 

Cluster analysis plays a very important role in pattern recognition. In fa.ct it represents an 
essential tool for learning and extracting information on those problems where very little 
previous knowledge is available about the data's structure. Cluster analysis is also known 
in tlne literature as unsupervised pattern recognition, and some basic reasons for the interest 
in such unsupervised procedures are usually cited as follows: 

. the collection and labeling of a large set of sample patterns can be very expensive 
and time consuming; 

. in many applications the characteristics of the patterns can ch~ange slowly with 
timc:, and a classifier running in unsupervised mode may achieve better pe:rformance; 

. in the early stages of an investigation it may be valuable to gain some insight into 
the nature of the data set: 

. in many applications like filtering and prediction, an unsupervised partition of the 
input space may lead to better accuracy through a divide-and-conquer approach. 

Cluster analysis techniques are based on partitioning a collection of data points into a 
number of subgroups or clusters, where objects inside a subgroup show ii higher degree of 
sim:ilarity as opposed as objects in different subgroups. In other words :it can be said that 
cluster analysis is used for partitioning multimodal distributions into unj.moda1 subclasses 
in hope to facilitate the implementation of subsequent discriminant functions. 

Three distinct cases for unsupervised learning can arise depending upon which parameters 
are :known and which are unknown (table 1) [Duda73]. 

Table 1 - Possible unsupervised cases 

case 

1 
2 
3 

V i  

unknown 
unknown 
unknown 

c i 

known 
unknown 
unknown 

p(wi> 

known 
unknown 
unknown 

C 
1 

known 
known 

unknow~~ 



where 

vi represents the centroid of the i h  class 
Xi represents the scatter matrix of the ih  class 
P(wi) represents the i h  class prior probability 
C represents the total number of classes 

Case number 3 is very common in real data environments and imposes at least four major 
difficulties on any clustering procedure: 

lathe lack of knowledge about the number of clusters requires EL reliable validity 
criterion to highlight the optimal partition when achieved; 

2. the a priori unknown location of the cluster centers usua1l:y requires initial 
guesses, which makes the algorithms very sensitive to starting points; 

3. variations in shape, size, and orientation of each class may 1ea.d to meaningless 
results; and 

4. outliers may induce misclassification and impose non-existant structures. 

Roughly all existing clustering procedures can be classified into two general categories as 
globally sensitive methods and locally sensitive methods [Kitt76]. Methods in the first 
category represent the clusters by centroids or kernels, and globally assign the data to them 
so that a measure of similarity between the points and the clusters is optimized. Methds in 
the second category make use of the local structure of the data as reflected, for example, in 
the probability density. 

Unfortunately methods in both categories suffer from inherent drawbacks. Global methods 
often generate clusters whether they really exist or not, i.e., regardliess of the data's 
probabilistic structure. It is taking it to the extreme to say that the clustering procedure is 
able to cluster even true random data. Dubes and Jain [Dubes79] throughly discuss the 
prohlem and suggest measures for clustering tendency before the application of any 
clus1:ering procedure. Local methods, on the other hand, often give too much emphasis to 
the clata's structural details and as result tend to generate an excessive number of clusters. 

Global methods are much more popular than local ones due to their si~~~plicity, efficacy, 
and computational efficiency, which seem to outweight the well known drawbacks for 
marry users. Dynamic clustering [Kitt88,Dida74,Dida78] is one of the various attempts that 
have: been made to overcome these problems, while retaining the computational 
attractiveness of the algorithm. The idea is to have multiple, instead of single point, 
reassignment at each iteration, which suggests that the clustering criterion function may 
show some plateaus in the search for the local minimum that can be traversed only by 
simnltaneous reassignment of groups of different points. However, the combinatorial 
coml~lexity of the reassignments may make the procedure impractical. 

The diversity of clustering algorithms is very large. Many are based on iterative relocation, 
which starts with an initial classification and attempts to improve it iteraitively by moving 
samples from one group to another. Others are based on hierarchical agglomeration, which 
start:$, for example, with each sample forming a separate group and successively merges 
those groups close to one another. Some are model-free, others are model-based where the 
classes are assumed to have fixed shapes, say spherical or ellipsoidal, and fixed or varying 



sizes. and orientations. And finally, the clustering procedures may work in a crisp (hard) or 
a fuzzy partition scheme. 

The distinction between hard and fuzzy partition scheme is related to the way each sample 
is attached to the set of clusters. In hard clustering, a sample can only be:long to a unique 
cluster, as opposed as to fuzzy clustering where it may belong to the entire set of clusters 
through different degrees of membership. The use of fuzzy theory in clustering goes back 
to the work of Bellman et al. [Be1166], Ruspini [Rusp69, Rusp701, and Gitman and Levine 
[Gitrn70]. In 1973 Dunn [Dunn73] defined the first generalization of !:he conventional 
minimum-variance hard clustering, and still in 1973 Bezdek [Bezd73] introduced the well 
known Fuzzy C-mean Algorithm (FC-mean). Both hard and fuzzy rrlethods are now 
equally used over all those distinct approaches mentioned in the previous paragraph. 

Since the optimal number of clusters and the data structure are usually unknown, it is of 
fund(menta1 importance to have a kind of performance criterion able to provide a feel for 
the goodness of the resulting partition. Avoiding imposed structures (data overfit) as well 
as lack of accuracy (data underfit) are the main goals to be achieved. It is claimed 
[Dutle79,Xie91.] that the engineering literature has paid very little attention to cluster 
validity issues, limiting the effort to showing that the new clustering algorithm performs 
reasclnably well on a few data sets, often in two dimensions. 

In th:is report we propose a new clustering algorithm. This algorithm perfbrms the pattern 
space partition through a sequence of locally sensitive searches combined with a global 
validity criterion. The algorithm is computationally efficient and provides good results on 
both artificially generated and real data sets. In section 2 an overview of the basic clustering 
concepts and a description of some well known procedures is shown. In sections 3 and 4 
the proposed procedure is discussed, and the results of some experiments are reported in 
section 5. Extensions to the basic procedure are proposed in section 6, and some more 
results are then reported. Conclusions and ongoing research directions are presented in 
section 7. 

I1 - CLUSTERING ALGORITHMS 

Clusters are defined as groups of points in the feature space that are similar according to a 
predefined criterion or measure of similarity. Usually, similarity is defined as proximity of 
the points according to a distance function. With the similarity criterion on hand it is 
necessary to partition the space into subgroups or clusters of similar points. The methods 
for finding the partition may or may not assume parametric forms, may have an heuristic 
basis, or may be more rigorously dependent on the minimization of a mathematical cost 
function often called criterion function. In all cases, iterative procedures art: generally used. 

11.1 - Similarity Measures 

Once the clustering problem is described as one of finding natural groups among the data 
set, it is necessary to define what natural group is and how to identify thern. Although this 
issue may be application dependent, the most obvious and widely used measure of 
simi1;uity is the distance between pair of points. Euclidean distance is by fir the most used, 
which provides characteristics of invariance to translation and to rotation to the clustering 
procedure. But it does not provide invariance to general linear transformati.ons or any other 
transformation that distorts the distance relationships. 



dij= [(Xj - Vi) (Xj - v;)] 

where 
Xj E Rd, j=l ... n is thesampleobservation 
Vi E Rd, i=1 ... c is the cluster centroid 

The above observation calls attention to the fact that if clusters are to be meaningful, they 
should be invariant to those transformations most natural to the problem. Ideally, clustering 
algorithms should be insensitive to changes in the similarity criterion. 

11.2 - Criterion Functions 

The definition of a criterion function to measure the quality of the partitioin at each iteration 
is the usual way to transform the clustering problem into a well defined optimization 
prot~lem. Through this transformation the clustering problem becomes one of finding the 
partition that extremizes the criterion function. Some of the most used criteria are based on 
the Sum-of-Squared-Errors and Scatter Mamces. 

a) Sum-of-Squared-Error Criterion 

It is the simplest and most widely used criterion, defined as follows: 

where 

V= [ V1 ....... V,], is a ( d x c ) mamx of cluster centers 
Xi= ( X I X E cluster i ) 
c is the number of clusters 
II . 11 2 is the Euclidean norm 
and 

This criterion has a simple interpretation which states that for a given cluster Xi, the mean 
vector Vi is its best representative in the mean squared error sense. Algorithms of this type 
are (often called minimum variance. It is well known that minimurn variance is an 
appropriate criterion when classes form well separated compact clouds. Problems arise 
when there are great differences in terms of class populations and shapes. 

b) Scatter Matrix Criteria 

This is a family of criterion functions derived from the scatter matrices used in multiple 
disc15minant analysis, which is a generalization of Ficher's linear discriminant [Duda, 
Fisher]. The criteria are based on the following definitions: 

. mean vector of the i& cluster 



. total sample mean vector 

. scatter matrix for the ih cluster 

Si= C (X - v i )  (X - vi)t 
XE Xi 

. within-cluster scatter mamx 

. between-cluster scatter matrix 

. total scatter mamx 

ST= C ( X -  V) ( X -  V)t 
XE Xi 

It turns out that the total scatter matrix is the sum of the intra-cluster and the inter-cluster 
ma~rices; see [Duda73] for more details. The total scatter mamx does not depend on how 
the samples are partitioned, whereas the intra-cluster and the inter-cluster do, which 
suggests the existence of a tradeoff between these two matrices, i.e. when one goes up the 
other must go down. Therefore, by trying to minimize the intra-cluster mamx one is also 
tentling to maximize the inter-cluster matrix. 

Scalar measures of the size of these scatter mamces are necessary in order to use them as 
critc:rion functions. The three most popular ones are: 

.The Trace Criterion 



Which is exactly equal to the aforementioned minimum variance criterion. It was shown 
above that by minimizing tr (S,) we are also maximizing tr (SB). 

. The Determinant Criterion 

This approach measures the square of the scattering volume, since it is proportional to the 
prod.uct of the variances in the directions of the principal axis. 

. Invariant Criterion 

These eigenvalues are invariant under non-singular linear transformations of the data, and 
their values measure the ratio of intra-cluster to inter-cluster scatter matrices in the direction 
of the eigenvectors. Partitions leading to large values of the criterion function are desirable. 

11.3 - Clustering Algorithms 

Once a criterion function has been selected, clustering becomes a well-defined problem in 
discrete optimization. Since the sample set is finite, there is only a finite number of possible 
partitions. Thus, in theory, if ones assumes that the number of classes is known then any 
clustering problem can always be solved by exhaustive enumeration. However, in practice 
such an approach is completely infeasible for most applications. Iterative olptimization is the 
mosl: frequently used approach in the searching for optimal partitions. The basic idea is to 
start from a reasonable or even arbitrary partition and then to reassign samples if such a 
move improves the criterion function. Like hill-climbimg procedures, this approach 
guarantees local but not global optimization, is dependent on the starting configuration, and 
as result one never knows whether or not the best solution has been found. ISODATA and 
K-means are the best known representatives of this class of algorithms. 

This is a very simple and intuitive algorithm, which served as basis for ISODATA, later 
developed by Ball and Hall [Ba1167]. It assumes previous knowledge of the number of 
classes, and uses the Euclidean distance as the similarity measure. The allgorithm's major 
steps can be summarized as follows: 

step 1 - begin with an arbitrary assignment of samples to the clusters; 



step 2 - compute the sample mean of each cluster; 

step 3 - reassign each sample according to the nearest mean; 

step 4 - if the classification of all samples has not changed, stop; else go to step 2. 

b) Fuzzy C-means 

This is the fuzzy version of the hard k-means, developed by Bezdek in 1973 [Bezd73]. The 
algorithm makes use of a weighted version of the sum-of-squared-error c:riterion function. 

subject to 

where 

m is an scalar greater than 1 ; 
Vj€ Rd is the cluster center 
11.11 is the Euclidean norm 
u;j is the degree of membership of sample i wrt cluster j 
U= { uij }, (n x c) membership matrix 
V= { Vi }, (d x c) matrix of clusters centers 

The algorithm computes the cluster centroids and the degrees of membei-ship according to 
the lfollowing rules: 

and 

where 



and 

if dij = 0, then uij = 1 

The FCM algorithm major steps are: 

step 1 - initialization: arbitrarily select membership values between [O, 11 satisfying 
Cjuij = 1, and set k =O; 

step 2 - compute the centroids Vj(k) using uij(k); 

step 3 - compute uij(k+l) using Vj(k); 

step 4 - if f(U(k),U(k+l)) < E stop, else set k= k+l and go to step 2. 

Bezclek [Bezdek87] shows that the algorithm converges to a local rninimurn satisfying: 

J,(u*,v*) I Jm(U,V*), and (19) 

J,(u*,v*) I J,(u*,v) (20) 

Introduced by Ball and Hall [Ba1167], this algorithm provides a way for determining the 
number of clusters through the use of heuristic tools for splitting and merging the existing 
clusters. The algorithm always mes to split if the total number of clusters is less than half 
of th,e user desired number, and to merge if the current number is more than twice this 
number. Several parameters need to be previously specified, which requires from the user a 
goodl intuition or a reasonable knowledge about the structure of the data. 

T threshold on the number of samples in a cluster, 
ND approximate (desired) number of clusters, 
a,2 maximum spread parameter for splitting, 
Dm maximum distance separation for merging, and 
Nmax maximum number of clusters that can be merged. 

The algorithm major steps are: 

step 1 - cluster the data set into c classes, eliminating any data and classes with 
fewer than T members. Exit when classification has not changed; 

ND step 2 - if c IT and iteration is odd, then 

a. split any cluster whose spread is larger than a,* 
b. if any cluster has been split, go to step 1; 

step 3 - if c > ~ N D ,  then merge any pair of clusters whose samples are sufficiently 
close: and / or overlapping; 



step 4 - go to step 1. 

d) ]Hierarchical Clustering 

These are based on either hierarchical agglomeration or division of tihe pattern space. 
Agglomerative, or bottom-up procedures, start with n singleton clusters and successively 
merge those close to one another. On the other hand, Divisive, or top-clown procedures, 
stan: with all samples in one cluster and successively split those far to one another. For 
eveIy hierarchical clustering there is a corresponding tree, called dendrogram, that shows 
how the samples are grouped. 

The basic steps in agglomerative clustering are: 

step 1 - let c = n and Xi = {Xi}, i=l ... n 

step 2 - if c = 1, stop. 

step 3 - find the nearest pair within two distinct clusters, say Xi and Xj 

step 4 - merge both clusters and decrement c by 1 

step 5 - go back to step 2 

Beciiuse of their conceptual simplicity, hierarchical procedures are among the best known 
metllods Pimi88,  Murt921. However, they suffer from drawbacks like sensitivity to 
outliers, tendency to impose structure, and computational effort required for the pairwise 
distance computation at every tree level. 

e) 1,ocally Sensitive Methods 

Techniques in this class try to exploit the local structure of the data as reflected in some 
statistical parameters like, for example, the probability density functioi~. It is implicitly 
assumed that the samples form well-defined clouds in a d-dimensional space, and it is often 
assumed that they come from a mixture of c normal distributions which means that the 
optimal partition falls into hyperellipsoids of various sizes and orientations. Of course,if the 
saml~les are definitively far from a normal distribution then the second-order statistics will 
be incapable of capturing the underlying structure, and a misleading partition may result. 

The problem of estimating the parameters of a mixture density is not trivial, particularly in 
situations where relatively little a priori knowledge about the nature of the data is available. 
The assumption of any particular paramemc form may lead to poor results where structure 
may be imposed rather than found. Alternatively, nonparametric meth0d.s such as Parzen 
Windows or K-nearest neighbors may be used. 

Parz'en window was originally proposed by Parzen in 1962[Parz62] for one-dimensional 
distributions and later extended to the n-dimensional case by Cacaullos [Caco66]. Its 
general formulation for the n-dimensional case is 



where 
N represents the number of samples 
p is a constant parameter denoting the adopted scale (bin) 
y(.) is the kernel function or Parzen window 
A x is the estimated mean 

In general, both the parameter p and the kernel function y(.) can be chosein by the user. The 
most widely used kernel functions are: 

a) hypercubic kernel 

L O o t h e r w i s e  

b) hyperspherical kernel 

1 0  o t h e r w i s e  

c) exponential kernel 

d) Gaussian kernel 

The major problem inherent to Parzen estimation is that it may easily overestimate the 
distribution when the kernel is too broad, or underestimate it when the kernel is to narrow. 



111 - THE FUZZY LOCALLY SENSITIVE PROCEDURE 

This paper presents a new clustering algorithm. The proposed algorith~n approaches the 
clustering problem from the perspective of partitioning a multimodal patte:m space into a set 
of unimodal subspaces. This is done by assuming that the data set comes from a mixture 
den:;ity, and that each subspace defines a homogeneous subpopulation or  cluster. Here the 
tern1 homogeneous is used in the sense that all points in the same group are more similar to 
each other than to points in any other group according to a pre-specified similarity criterion. 

The proposed algorithm falls into the class of locally sensitive methods, where local 
structures of the data are captured and evaluated as possible representatives of significant 
classes. The algorithm, in contrast to some previous work reported in the literature, as in 
[Gitm70] and [Kitt76], adopts a simplified version of the exponential Parzen estimate as an 
energy function. This energy function is continuous and differentiable, which allows the 
use of simple hill-climbing procedures to detect the modes, or peaks, of the underlying 
mixture density . 

The notion of fuzzy sets adds global measure to the algorithm, which strengthen's its 
capability of detecting highly concentrated subpopulations and of not being trapped by 
spuiious points or outliers. Low computational effort, guaranteed convergence, and low 
sensitivity to starting points, are major features of this algorithm. 

111.1 - T h e  Mode Detecting Concept 

The proposed algorithm is model-based, performs an iterative optimization of a criterion 
function, and realizes a sequential partition of the pattern space. The following assumptions 
are made: a) the observations are d-dimensional; b) the observations form a discrete set I? 
of size n; c) the nature of r is a mixture of normal densities; and d) no other information is 
available. The assumption that the samples come from a mixture of no~mal  observations 
may be seen as a restriction to the algorithm, but it is useful to recall that the central limit 
theorem supports the idea for a large variety of situations of interest. Thlerefore, the larger 
the training set, the more reliable is the resulting partition. 

The: problem of estimating the parameters of a mixture density is not trivial, particularly 
when almost no a priori knowledge is available. Mixture densities are resultants of random 
processes where the samples are assumed to be obtained by selecting a state of nature, say 
class wj, with a certain probability P(w.) and then selecting from it one sample X 
according to the distribution p(X/wj,8j). ?he total probability density for the sample is 
the11 given by: 

where 
8= (el ... 8,), are the local density parameters 
p(X/wj,Bj), is the component (local) density wrt class j 
P(wj>, is the prior probability of class j, also called the mixing parameter 

In cases like the one assumed here, where no knowledge is available about the number c of 
modes, the local densities, the prior probabilities, or the local density parameters, the 



paramemc approach cannot be used. The alternative is nonparametric tools like the Parzen 
estirnate or k-nearest neighbors. 

Kider [Xitt76] proposes a mode separation technique based on a cubic Parzen window and 
a fuinction that maps the d-dimensional observations into a sequence of scalar points. The 
mapping operation is done such that observations belonging to same mode tend to become 
succ:essive elements of the sequence. Intervals on the sequence are then assumed to 
separate distinct modes. The major drawbacks of the method are the necessity of extra 
discriminant functions to classify those ambiguous points not included into any identified 
mocle, the possibility of the cubic estimate being trapped by smoothed valleys where the 
mapping function has no hint for choosing the correct sequence, and also the excessive 
corn.putationa1 effort required for large data sets. 

The procedure proposed here mes to mitigate such problems through .the adoption of a 
con~inuously differentiable kernel function, here named energy kernel, that navigates freely 
around the pattern space. The most dense concentrations, which define local maxima in the 
spac:e, are then detected by an ateactive force felt by the itinerant kernel. 'The energy kernel 
is a simplified version of the exponential Parzen estimate defined as: 

wheae 
dij is any similarity measure 
b is a constant specifying the size of the energy kernel . - - ~ 

v, is the center of gravity of the j~ energy kernel prototype 

The modes of the underlying mixture density are sequentially detected b'y throwing a new 
energy kernel prototype into the pattern space at every new stage and letting it converge, or 
be a~ttracted, by one of the subpopulations not identified yet. The kernel pi:ototypes navigate 
through an iterative hill-climbing procedure which searches for local maxima of the surface 
defined by the energy function. The main advantage of this approach compared to the 
hypercubic used by Kitler is the infinite and very flexible window provided by the 
exponential kernel prototype, as seen in figure 1. By controlling the parameter b one 
controls the degree of resolution of the search process. 

The: major steps of the algorithm can be summarized as follows: 

step 0 - initialization: set j = 0, and goodness= --; 

step 1 - select starting energy kernel center: set j= j+l; and Vj= Xi Vi; 

step 2 - maximize the energy with respect to v,: max g(Vj); 

step 3 - evaluate the partition, if rejected stop. 

step 4 - adjust the pattern space according to the current partition, i.e. 

X= { X ( X E Xj} 



step 5 - go back to step 1. 

Fig 1 - Kernel prototype window for different values oft)  

Eve~y loop starts with a new energy prototype being thrown into the patte:m space and ends 
with the detection of a significant mode or subclass. The starting energy kernel center is 
always randomly selected from the sample set, which implicity takes into account the 
unknown prior probability of the underlying classes, since those with higher probability 
will have a greater chance of being chosen. This also reduces the converge:nce time. 

The maximum of the kernel energy in the step two is found through the following 
unconstrained optimization scheme: 

where the stepwise update of Vj is given by 

a g Vj(k+ l)= Vj(k) + a(k) 
av,<k) (29) 

and 
1 

a(k) = -- 
g(k) 

is the normalized gain coefficient 

The normalized gain provides stability and speed to the algorithm, so thalt when the kernel 
function is far from any subpopulation the gain increases and allows the kernel to be more 
sensitive to the surrounding forces of attraction. On the other hand, when a particular mode 
is detected the gain decreases in proportion to its energy intensity, thus tra.pping the kernel. 

The algorithm performs a sequential partition of the space and the goodn~ess at every stage 
is evaluated through a global fuzzy validity scheme. The fuzzy measurement takes into 
account all modes already detected up to that point and performs the didation over the 
entire set of observations. In fact, it adds a global measure to the local searches. If the 
partition is positively evaluated, i-e., if its degree of goodness improved with respect to the 



previous one, then all observations seleted as belonging to the detected subpopulation are 
masked, as in the sense of hard classification. This is done so that they do not influence the 
navigation of subsequent kernel prototypes. 

Three points may have been noted as being critical to the algorithm: the size b of the kernel 
prototype, the sensitivity to starting configurations, and the partition goodness evaluation 
criterion. The validy problem is discussed in more detail in the next selction, and as it is 
shown below, the other two points can be addressed with a reasonable extra computational 
effort. 

111.2 - Kernel Size 

It is well known that the size of the kernel function is directly related to the quality of the 
resulting estimate of the probability density [Kitt76,Duda73,Ther89]. Figure 2 shows the 
surface detected by the energy kernel function when applied to a thr~ce-modal normal 
mixture density using different sizes. It is clear that either under or overestimates may 
easily result depending on the adopted scale, i.e. depending on the degree of resolution 
used. 



Fig. 2 - Surfaces detected by the energy kernel prototype, (a) adequate size; 
(b) too broad; and (c) too narrow 

Intuitively, the original covariance matrix of the data set can be used as a rough indicaton of 
the size of the kernel prototype. Using a percentage of the largest eigenvalue, say 50%, we 
can establish a range of possible sizes for the kernel, repeat the entire algorithm for a 
saml~ling of sizes from this interval, and select the best partition according to the validity 
criterion. The practice of repeating the entire process to identify the optimatl partition is very 
common in clustering procedures. The advantage here is that this scherne still keeps the 
algorithm fast. 

The classification of ambiguous points, i.e. points located on the bounda~y of two or more 
subpopulations, as well as outliers, are automatically resolved by the degree of membership 
induced by the fuzzy validity measure. The performance of the algorithm was evaluated on 
artificially generated data sets as well as on real data. The obtained resu1t:s are discussed in 
section 5. Extensions to the basic algorithm are presented and discussed in section 6. 

111.3 - Starting Points 

Occasionally the kernel prototype may be trapped by clouds of spurious data. In general it 
moves toward the most dense subpopulation surrounding its inital position, but spurious 
densities on its way may have enough energy to attract and hold the prototype when it is 
clos12. 

Since the starting center for each prototype is randomly selected from the pool of available 
samples, which decreases as the partitioning process flows, a reasonable strategy for 
avoiding spurious clusters is to repeat the search process a number of times, say 3, at each 
stage and select the best one. In practice, this made the algorithm very robust with respect 
to starting points. 

111.4 - Convergence 

The convergence of the algorithm is assured since the objective function is monotonic 
increased every step and the number of possible allocations is finite. Since the kernel 
energy function is not quadratic, the algorithm converges to local minima, which hopefully 



represent the modes, or most important peaks, of the underlying distribution. Spurious 
pealrs that can be occasionally detected are avoided through the global fuz:q validation. 

The gradient optimization ends each step with the kernel prototype center converging to the 
weighted mean of those active data samples 

where 
X= { X / X is not masked ) 

IV - CHOICE OF VALIDITY SCHEMES 

Despite some comments to the effect that very little attention has been dedicated to cluster 
validity issues, the research on this topic seems to be very active with several papers 
directly addressing the problem. Different schemes are available, for hard as well as for 
f~zi:y environments. Through the validity measure, problems like the optimal number of 
clusters, the separability of clusters, and the overall goodness of the partition are 
adkressed. Current approaches usually take into account parameters the compactness of 
each cluster, the isolation of the clusters within the environment, and thle global fit which 
relates to the accuracy with which the partition describes the actual structure. 

Cluster validity is critical to the performance of the algorithm we propose. A fuzzy criterion 
was preferred in order to add global information to the locally sensitive search performed 
by the energy kernel prototype. Several distinct schemes were evaluated and finally we 
decided on the ones proposed by Xie [Xie91.] and Gath [Gath89]. Minor modifications 
were introduced to better reflect the desired compromise between local compactness and 
global fitness, and both schemes were tested in combination with tihe energy kernel 
prototype. 

IV.1 - Xie's Validity Criterion 

The suggested compactness and separation validity function S is defined as 

where 
uij is the degree of membership of sample j to cluster i 
Vi is the centroid of cluster i 
n is the number of samples 
II.II istheEuclideannorm 



S is the ratio of compactness (n) of the fuzzy c-partition to the sepa:ration (7) of the 
clusters, defined as follows: 

where 
(3 is the total variation (fuzzy squared error) of the c-partition 

and 
7= (d,,)2 = n)]n ( 1 1 ~ ~ .  vjI12) 

where 
d m  is the shortest distance between cluster centroids 

Goold partitions are associated with small values of S. Besides the tendency of S eventually 
decrease with the increase of c, it was also observed that the criterion some times favoured 
spurious densities, or nearly empty clusters, and rejected true s~bclas~ses close to one 
another. Such problems were mitigated by adopting a slightly different function: 

The cardinality of each fuzzy cluster ni is given by the summation of all corresponding 
degrees of membership and satisfies the property of adding to the total number of samples. 

If the data set really comes from a mixture of well defined densities then it is expected that 
the energy kernel prototype is able to produce relatively hard clusters wit:h very small local 
vari,ation, and that the validity criterion is able to reject those spurious ones and to allow the 
existence of clusters close to one another. 

IV.2 - Gath's Validity Criterion 

Thi!; criterion is based on the fuzzy covariance matrix, its hypervolume., and the partition 
den:sity. The fuzzy covariance matrix is an weighted scatter matrix cclmputed from the 
perspective of each cluster as follows: 



[Beregl], the same entropy concept as it is used in information theory can1 be extended to 
the fuzzy clustering. There, in the information theory, the entropy for discrete events is 
defined as 

Here, assuming that the degree of membership can be viewed as an estimate of the 
probability of a particular sample to belong to a particular class, it becomes straightforward 
to define the fuzzy entropy as 

This :function generates the graph shown in figure 3, where maximum fuzziness occurs for 
va1ue.s of membership equal to 112. For the multi-modal mixture case, assuming the 
independence of the modes, a global partition fuzziness measure can be computed by just 
adding the individual mode measures together. 

Fig. 3 - Measure of Fuzziness Function 



V - ISXPERIMENTAL RESULTS 

A sinlulation environment was created using Matlab and a Sun Sparc workstation. The 
basic energy maximization procedure was tested in combination with both validity 
measurement schemes, as described in the last section, and several sets of artificially 
generated as well as real data points were used. In this section some of the experiments and 
the results obtained are described and compared to some of the well known algorithms. 

V . l  - Data Sets 

As described in Appendix A, four generated and two real data sets were used in 
the experiments. The artificial sets are all, but one, from normal mixture densities. Data sets 
D l  arid D2 are two-dimensional and data set D3 is three-dimensional. Data set D4 is from 
an uniformly random two-dimensional distribution. It may be clear that not having natural 
clusters does not necessarily imply that the data is random, but the reverse is necessarily 
true, i.e. if the data is random no cluster shall be detected. 

For the real data environment we chose the four-dimensional Iris data set which has been 
wide1.y used since the work on linear discriminants reported by Fisher in 1956. The other 
set is a five-dimensional data used in an attempt to define the nature of chemical diabetes 
using a multidimensional analysis. According to Andrew [Andr85], this data set was 
visually inspected at the Stanford Linear Accelerator Computation Center and it was 
observed that the three primary variables show a configuration resemblii~g a boomerang 
with a fat middle and two wings. From the clinical point of view the middle points 
represent the normal subjects and the two wings, the chemical and overt diabetic subjects. 

V.2 - Artificial Data Tests 

Example 1: Two-Dimensional Data Set (Dl) - This simple case was used to show the 
perfomrmance of the algorithm over a well defined and well separated mixture of Gaussian 
dismbutions. As shown in figure 5.1,300 samples clustered in eight independent Gaussian 
dismbutions of different sizes and densities were considered for this experiment. 

Fig. 5.1 - Two-Dimensional Data Set used for example 1: 300 points clustered in 8 
independent Gaussian dismbutions of different sizes and densities 



A pocll of 15 different sizes for the kernel prototype, ranging from .5 to 6.5, was used and 
both validity criterion schemes were checked against their ability to identify the ideal kernel 
size and the best partition. Figure 5.2 shows the results: the number of detected clusters, 
the partition goodness measure, and the kernel size for both criteria. 

(a) (b) 

--amber of c l u l ~  

1000 I a * * * .. denmry muulr (Ad) 

I i 

Fig. 5.2 - Number of clusters and correspondent partition goodness measure, (a) with the 
fuzzy compactness criterion, and (b) with the fuzzy density criterion 

Both criteria leaded to the identification of the correct number of clusters and the kernel 
prototype converged to a very close neighborhood of the true center of mass of each sample. 
subclass. According to the compactness criterion (S), the best partition wias obtained with 
kernel size of 1.5, and with size of 1.1 according to the average density. criterion (AD). 
Figure 5.3 shows some partitions and correspondent compactness criterion for different 
kernel sizes. 

10 
kemel size: 0.5 

8 - compactness measure: 2.974 1 
number of clusters: 1 6  

kernel size: 1.5 
compactness measure: 2.9 105 
number of clusters: 8 I 



1 0  
kernel size: 3 

8 compactness measure: 3.4568 

1 number of clusters: 8 
6 1 

kernel size: 4.5 
compactness measure: 4.8249 
number of clusters: 7 

Fig. 5.3 - Partitions obtained with different sizes of the kernel prototype 

Because of the global fuzzy validation, small kernel sizes do not necess;lrily imply larger 
number of clusters being detected, but the resultant partition goodness is usually low due to 
the bad placement of the kernel centroids. The fuzzy entropy, normalized to the range 0 - 1, 
gives an idea about the ambiguity of the cluster boundaries. For the 1.5 kernel size partition 
showed in figure 5.3, the fuzzy entropy coefficients are .0074; .0304; .0412; .0012; .0211; 
.0105; .0209; and .0021, which indicates that the clusters are well separated. 

Example 2 : Two-Dimensional Data Set (D2) - This case was considere:d to evaluate the 
algorithm performance over well separated distributions of different sizes, shapes, and 
orientations. Figure 5.4 shows the 470 samples, clustered in seven independent Gaussian 
distributions, used for this experiment. 

For chis experiment we used the same pool of kernel sizes used in example 1. The results 
matched the expectations, i.e. because of the fixed model (size, shape, and orientation) of 
the Iternel prototype, those more alonged dismbutions were subdivided in two or more 
distinct clusters. Figures 5.5 and 5.6 show respectively, the partition golodness vs. kernel 
size and the best partition for both validity criteria. 



Fig, 5.4 - Two-Dimensional Data Set used for example 2: 470 points clustered in 7 
independent Gaussian dismbutions of different sizes, shapes, orientations, and densities 
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Fig 5.5 - Number of clusters and partition goodness vs kernel size, (a) compactness 
criterion, and (b) density criterion 

kernel size: 1.5 
compactness measure: 5.0987 
number of clusters: 14 
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Fig. 5.6 - Partitions obtained with (a) the compactness criterion, (b) the density criterion 

example 3: Three-Dimensional Data Set (D3) - This case was considered to evaluate the 
overhead created by a higher dimension. The same number of samples, 300, and the same 
number of distributions, 8, as in example 1 were used for this experiment. The elapsed 
time taken to compute the entire pool of kernel sizes and select the best partition was 
299.134 seconds for the two-dimensional case (example 1) and 370.04 seconds for the 
three-dimensional case (both using compactness validation criterion), ancl253.39 seconds 
and 399.65 seconds respectively (using density criterion). The extra com~putational effort 
introduced by the additional dimension was about 50%. Both criteria identified the correct 
number of clusters and provided centers of mass very close to those of the sample 
subc:lasses. Figure 5.7 shows the number of clusters and partition goodness relation to the 
kernel sizes. 
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E:ig 5.7 - Number of clusters and partition goodness vs kernel size, (a) compactness 
criterion, and (b) density criterion 
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example 4: Two-Dimensional Uniformly Random Data Set @4) - This case was considered 
to evaluate the tendency of the algorithm to impose rather than to find structure. It is true 
that 'lack of natural structure does not necessarily imply randomness, but the reverse does 
not follow the same rule, i.e. randomness necessarily implies lack of structure, and no 
partition should be expected from the algorithm. A pool of 15 kernel sizes was used, and as 
can be seen in figure 5.8 only the compactness validation criterion provided the expected 
answer. In all previous experiments both criteria performed well and very close to one 
another, but here the density criterion provided completely misleading result. 
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Fig. 5.8 - Partition for the uniformly random data set: (a) number of c1uste:rs and partition 
goodness vs kernel sizes with compactness criterion, and (b) with density criterion 
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V.3 - Real Data Tests 
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Exanlple 1: Four-Dimensional Iris Data Set (D5) - Since Fisher (1956) this data set has 
been frequently used for clustering and pattern discrimination benchmarks. It consists of 
three apparently non-Gaussian classes represented by equal number of s(amp1es (50 each 
class) in a four-dimensional feature space. A pool of kernel sizes ranging from .04 to 3.38 
was used, respectively 2% and 80% of the highest eigenvalue of the sa~nple covariance 
matn'x (fig 5.9). Four clusters, instead of three, were identified as the best partition. 

OO- 0.5 I 1 i s  3.5 0 0.5 1 1.5 2 2.5 3 3.3 

-- ~iumbcr d clutterr i 
.. compcmas measure (S) i + *  + + -- number oiclis~ers 1 

I I . parnnon denr~ry (Ad) 

Fig. 5.9 - Number of clusters and parti tion goodness vs kernel size (a) compactness 
cri terion, and (b) density cri terion 

The results are presented in terms of confusion matrices (fig 5.10) for the best three cluster 
cases, and in terms of an estended confusion matrix (fig. 5.1 1) for those cases where more 
than three resulting clusters are considered. Figure 5.12 presents the results for the K- 
means, the ISODATA, and the Fuzzy C-means algorithms. 

Fi,g 5.10 - Best three clusters partition, (a) compactness criterion (kernell size of .4), (b) 
density criterion (kernel size of .3) 



Fig. 5.1 1 - Best partition, (a) compactness criterion (kernel size of 2), and (b) density 
criterion (kernel size 2) 

Fig 5.12 - Confusion matrices for the K-means, the ISODATA, and the FC-means 

The fuzziness entropy for the above four cluster cases (fig. 5.13) revea1.s ambiguity for 
some: cluster boundaries. The same ambiguity can be also seen on the bottom-up 
hierarchical clustering (fig. 5.14). 

H1 I H2 I H3 H4 I Average I 

Fig. 5.13 - Parti tion fuzziness entropy 

example 2: Five-Dimensional Diabetes Data (D6) - Only three dimensions of the data were 
used: the glucose intolerance (d3) ; the insulin response to oral glucose (d4); and the insulin 
resisrance (d5), and an scale transformation was applied to reduce the absolute values. The 
classes seem to be very diffused and very far from the Gaussian shape. A.s can be seen in 
figure 5.14, the proposed algorithm was not able to perform a good partition. Assuming 
the k:nowledge of the number of existing classes, the K-means, the FC-means, and the 
ISODATA algorithms provided partitions like is shown in figure 5.15. 

Fig. 5.14 - Fuzzy locally partition, (a) with compactness cri tenon, and 
(b) with density criterion 

Fig. 5.15 - Confusion matrices for the K-means, the ISODATA, and the FC-means 



VI - RELAXING THE KERNEL'S SHAPE 

The proposed algorithm, as described in section 3, is model-based and the energy kernel 
prototype is of the form of a hypersphere of fixed size. A natural relaxation to this 
assurnptiom is to allow the kernel prototype to be transformed into h:yperellipsoid of 
variable size and orientation. Relaxation of shape, size, and orientation ma.y be very useful 
and a powerful tool to deal with those strongly heterogeneous structures, where differences 
among classes' population and distribution are remarkable. However, the additional 
degre:es of freedom considerably increase the computational complexity of 1:he algorithm. 

In this section two possible approaches are discussed. The first one is an extension to the 
basic procedure presented in section 3. The relaxation does not cover the size of the kernel 
prototype, being restricted to the shape and to the orientation only. The second approach 
can be seen as a postprocess procedure. It covers all degrees of freedom and is performed 
over the results provided by a previous partition scheme. 

VI.1 - Relaxing Shape and Orientation 

This procedure works in combination with the basic fuzzy locally senlsitive procedure 
described in section 3. The shape and the orientation relaxations on the basic hypersperical 
shaped kernel prototype is accomplished by the introduction of an adaptation routine 
between steps 2 and 3. The major steps for the new algorithm becomes: 

step 1 - initialization; 

step 2 - select starting kernel prototype centroid; 

step2a - adjust shape and orientation; 

step 3 - evaluate the partition, if rejected stop. 

step 4 - adjust pattern space; 

step 5 - go back to step 1; 

The adjustment procedure in step 2a preserves the hypervolume of the kernel prototype and 
alters both shape and orientation to better fit the population surrounding the centroid. The 
major steps of the routine are executed as follows: 

step 1 - compute the fuzzy scatter matrix for the current (unmasked) set of samples 
with respect to the kernel centroid; 

step 2 - perform the single value decomposition of the scatter matrix; 

step 3 - adjust the eigenvalues to preserve the prototype hypervolunne 



where 
hi is the scatter matrix eigenvalue 
b is the kernel prototype size parameter 
d is the dimension of the samples 

step 4 - reconstruct the kernel prototype coordinates from the e.igenvectors and 
adjusted eigenvalues 

Bi= v.A*.v~ 
where 

V is the eigenvectors matrix 
A* is the adjusted eigenvalues matrix 

The validity coefficient computed in step 3 is also adapted to incorporate the new shape. 

and 

The degree of membership (41) is now computed as follows: 

This new algorithm was evaluated on the same data sets as in section V and, as expected, it 
improved the previously obtained partitions for those cases where the subclasses presented 
a dismbution far from hipersphere. The results for the data sets D2, Iris, and Diabetes are 
illus~rated in the figures 6.1 to 6.3. The best partition was found to be 8 clusters for the D2 
data set, 2 clusters for the Iris data set, and 4 clusters for the Diabetes data set. The fixed 
size of the kernel prototype, at least for the D2 case, may be the reason for the procedure 
had inot found the correct number of clusters. Confusion matrices and ex1:ended confusion 
matrices for the cases of 3, 4, and 2 cluster partition are presented for the Iris and for the 
Diabetes data sets. 
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Fig. 6.2 - Iris Data Set: (a) number of clusters and partition performance vs; kernel size, (b) 
3-cluster partition (kernel size of 0.8), (c) 4-cluster partition (kernel of 0.5), and 

(d) 2-clusters partition (kernel of 2.5) 

Fig. 6.3 - Diabetes Data Set: (a) 3-cluster partition (kernel of ..), and 
(b) 4-cluster partition (kernel of ..) 

VI.2 - Relaxing Shape, Orientation and Size 

This procedure uses the kernel centroids and sizes provided by any of the previous partition 
schemes as starting configuration for a more complex optimization process. The optimal 
partition is searched by maximizing a two parameter compound cost function, where one of 
the parameters, here called attraction term, takes account of the within-cluster distances, 
and the other, called repulsion term, takes account of the between-cluster distances. The 
cost function is continuously differentiable which allows the use of the gradient descent or 
any other Newton's like technique for the optimization process. 

J(V,B)= f AiRi 
i= 1 

(50) 

where 
V = [vl ... V,] is an (d,c) mamx of kernel centroids 
B = [ B1 ... Bc] is an ( d,(c.d) ) mamx of kernel coordinates 
c is the number of clusters on the partition 
A i is the attraction term 
Ri is the repulsion term 

The attraction term is defined as: 

where 
- 1 

gi(i)= exp( T (xj-vi)' Bi-' (xj-vi) ) 

The i:epulsion term is defined as: 



where 
a is a sigmoid sharpness coefficient; ( a 2 1 ) 
b is an overlapping control coefficient ; ( 0 I b < 1 ) 

wi(i)= (vj - vi)t Bij-1 (vj - v;) 
and 

Bij= B; + Bj 

It can be noticed that both terms, A; and R;, can be related as the continuously differentiable 
version of the Fisher's multi-dimensional scatter matrices (tr S, and t r  SB) respectively. 
As described in Appendix B, the first order necessary conditions for the critical points of 
the cost function leads to the stepwise evolution of the variables V and B as follows: 

and 

where 
P relates to the @ row of B 

B relates to the qfh column of B 
is a constant gain coefficient 

and 
A 

aj(k)= - 
gj(k)' 

is the normalized gain coefficient for the jfh subclass at time step k 

The algorithm is not allowed to change the properties of symmetry and positive semi- 
definiteness of the scatter matrices 

Fig. 6.4 - Two-Dimensional Data Set @2) - Simulated initial partitiori for the full 
relaxation prunning 



Fig. 6.5 - Result obtained after the relaxation of the kernel size, shape, and orientation 

VII - CONCLUSIONS 

In thiis paper a new mode separation procedure has been proposed for the unsupervised 
clustering problem. The procedure falls into the category of locally sensitive methods, it is 
mode:l-based, it performs an iterative optimization of a cost criterion function, and it realizes 
a sequential partition of the pattern space. Extensions to the basic procedure, i.e. shape, 
size, and orientation of the subclasses model relaxation, have also been developed. 

In contrast to some previous work reported in the literature, the proposed algorithm uses a 
gradient ascent evolution scheme to detect the relevant peaks of the underlying mixture 
density. The cost function is expressed by a simplified version of the exponential Parzen 
estirriator. A global performance criterion is used as an attempt to automatically overcome 
the natural tendency of such approaches to over or underestimate the true number of distinct 
modes present in the mixture density. The combination of these two strategies improves the 
efficiency and the ability of the algorithm to identify those highly concentrated clusters, and 
to solve the validity problem. 

The algorithm performance has been tested with a number of simulated as well as real data 
sets. The obtained results are encouraging, being comparable to those obtained through 
some: well known procedures like K-means, FC-means, and ISODATA with the advantage 
of not requiring initial parameters. In comparison to other locally sensitive methods, it 
appears to be superior in computational efficiency and comparable in performance. 
However, the computational demand may also grow fast for higher dimenisions. 



APPENDIX A 

The data sets used in the simulations are described as follows: 

a)  Artificially Generated Sets 

a.1) Set Dl - A total of 300 points from a 2-dimensional mixture of 8 distinct 
Gaussian distributions according to the rules: N(pi,oi2) and P(wi) 

a.2) Set D2 - A total of 470 points from a 2-dimensional mixture of 7 distinct 
Gaussian distributions according to the rules: N(pi,Ci) and P(wi) 

class # 

w l  
w2 
w3 
w4 

a3) Set D3 - A total of 300 points from a 3-dimensional mixture of 8 distinct 
Gaussian distributions according to the rules: N(yi,oi2) and P(wi) 

Parameters 
values 

([-2,21',. 15) 
([-.5,411,.25) 
([O,0lt,. 15) 
([O.5lt.. 1) 

5 
class # 

W 2  

w3 

w4 

P(wi> 

.2 
-1 

.08 

.05 

Parameters 
values 

(:)G -7) 

(;l)?(b3 l. 1 9  

(-?),(62 .!) 

(09(6'.3:> 

class # 

w5 
w6 
w7 
w8 

P(wi) 

.lo64 

.I489 

.085 1 

.I702 - 

P(wi> 

.I489 

.2128 

.I277 

- 

class # 

w6 

"' 

Parameters 
values 

([2,21',.2) 
([3,-111,.3) 

([3.5,4Iv,. 15) 
(r5.21t..2) 

- 

Parameters 
values 

2 0 
""-;),(6 -8)  

2 0 (-;)&I . I )  

(:>.(A:; :::> 

P(wi> 

.15 

.12 

.18 

.I2 



a4) Set D4 - A total of 300 points of a 2-dimensional uniformly random distribution 

class # 

w l  
w2 
w3 
w4 

b) Real Data Sets 

b.1) Set D5 - Iris Data 

Parameters 
values 

([l,l,1l1,-3) 
([4,2,01',.5) 

([3,-2,- L]',.2) 
([- 1 ,4,311,.4) 

It is the 4-dimensional Iris Data Set obtained from [Andr85]. This data set is also 
refe~red as the Fisher Iris Data, with measurements of the sepal length ancl width and petal 
length and width in centimeters of fitfty plants of each of three types of Iris: Iris Setosa, Iris 
Versi~color, and Iris Virginica. 

b.2) Set D6 - Chemical and Overt Diabetes Data 

P(wi) 

.2 

.1 
.08 
.05 

It is a 5-dimensional data set also obtained from [Andrew]. This data set were used 
by Reaven and Miller (1979) to examine the relationship between chemical subclinical and 
oven: nonketotic diabetes in 145 non-obese adult subjects. The primary variables are 
glucose intolerance (d3), insulin response to oral glucose (d4), and insuliil resistance (d5). 
In addition, the relative weight (dl) and the fasting plasma glucose (d2) were measured for 
each person. 

class # 

~5 
w6 
w7 
w8 

Parameters 
values 

( - 3 , - 2 - 2 ' 3 )  
([-2,2,-3]',.4') 
([2,0,5l1,.5) 
(LO,-5,01',.4) 

P(wi) 

.15 

.12 
.I8 
.12 



APPENDIX B 

The f i t  order necessary conditions for the unconstrained maximization prolblem 

C 
max J(V,B)= C AiRi 

i= 1 

and 

where 

and 

where 

(see Appendix C) 





APPENDIX C 

Matrix Operations. 

Let A(x) denote a matrix whose elements are functions of the viaxiable x, so the 
derivative of A(x) with respect to the free variable x is given by a matrix which elements 
are the derivative of each original element with respect to x. 

The conventional calculus is also valid for matrices which provides the following 
derivative computations: 
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