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A FUZZY LOCALLY SENSITIVE METHOD
FOR CLUSTER ANALYSIS

Abstract: Cluster analysishas been playing an important role in pattern recognition, image
processing, and time series analysis. The majority of the existing clustering algorithms
depend on initial parameters and assumptions about the underlying data structure. In this
paper afuzzy method of mode separation is proposed. The method addresses the task of
multi-modal partition through a sequence of locally sensitive searches guided by a
stochastic gradient ascent procedure, and addresses the cluster validity problem through a
global partition performancecriterion. the algorithm is computational efficient and provided
good results when tested with a number of simulated and real data sets.
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| - INTRODUCTION

Cluster analysis plays a very important role in pattern recognition. In fact it representsan
essential tool for learning and extracting information on those problemswhere very little
previous knowledge is available about the data's structure. Cluster analysisis also known
In the literature as unsupervised pattern recognition, and some basic reasonsfor the interest
in such unsupervised procedures are usudly cited asfollows:

. the collection and labeling of alarge set of sample patternscan be very expensive
and time consuming;

. in many applications the characteristics of the patterns can change slowly with
time, and aclassifier running in unsupervised mode may achieve better performance;

. in theearly stagesdf an investigation it may be valuable to gain some insight into
the nature of the data set:

. iIn many applicationslikefiltering and prediction, an unsupervised partition of the
input space may lead to better accuracy through a divide-and-conquer approach.

Cluster analysis techniques are based on partitioning a collection of data pointsinto a
number of subgroupsor clusters, where objectsinside a subgroup show a higher degree of
similarity as opposed as objectsin different subgroups. In other words :itcan be said that
cluster analysisis used for partitioning multimodal distributionsinto unimodal subclasses
in hope to facilitatethe implementation of subsequent discriminant functions.

Three distinct cases for unsupervised learning can arise depending upon which parameters
are known and which are unknown (table 1) [Duda73].

case v Z P(w;) C
1 unknown | known known known
2 unknown | unknown | unknown | known
3 unknown | unknown | unknown | wnknown

Table 1 - Possible unsupervised cases




where

Vi representsthe centroid of theith class

T represents the scatter matrix of the ith class
P(w;) representstheith class prior probability

C represents the total number of classes

Case number 3 isvery common in real data environmentsand imposesat least four major
difficultieson any clustering procedure:

1.the lack of knowledge about the number of clusters requires a reliable validity
criterion to highlight the optimal partition when achieved;

2. the a priori unknown location of the cluster centers usually requires initial
guesses, which makes the algorithms very sensitive to starting points;

3. variationsin shape, size, and orientation of each class may lead to meaningless
results; and

4. outliers may induce misclassificationand impose non-existant structures.

Roughly all existing clustering procedurescan be classified into two general categoriesas
globally sensitive methods and locally sensitive methods [Kitt76]. Methods in the first
category represent the clusters by centroidsor kernels, and globally assign the data to them
so that a measure of similarity between the pointsand the clustersis optimized. Methods in
the second category make use of thelocal structure of the data as reflected, for example, in
the probability density.

Unfortunately methodsin both categoriessuffer from inherent drawbacks. Global methods
often generate clusters whether they really exist or not, i.e., regardless of the data's
probabilistic structure. It is taking it to the extreme to say that the clustering procedureis
able to cluster even true random data. Dubes and Jain [Dubes79] throughly discuss the
problem and suggest measures for clustering tendency before the application of any
clustering procedure. Local methods, on the other hand, often give too much emphasisto
the datas structural detailsand asresult tend to generate an excessive number of clusters.

Globa methods are much more popular than local ones due to their simplicity, efficacy,
and computational efficiency, which seem to outweight the well known drawbacks for
many users. Dynamic clustering [Kitt88,Dida74,Dida78] is one of the various attempts that
have been made to overcome these problems, while retaining the computational
attractiveness of the algorithm. The idea is to have multiple, instead of single point,
reassignment at each iteration, which suggests that the clustering criterion function may
show some plateaus in the search for the local minimum that can be traversed only by
simnltaneous reassignment of groups of different points. However, the combinatorial
complexity of the reassignmentsmay make the procedure impractical.

Thediversity of clustering algorithmsis very large. Many are based on iterativerelocation,
which starts with an initial classification and attempts to improveit iteratively by moving
samplesfrom one group to another. Othersare based on hierarchical agglomeration, which
starts, for example, with each sample forming a separate group and successively merges
those groups close to one another. Some are model-free, others are model-based where the
classes are assumed to havefixed shapes, say spherica or ellipsoidal, and fixed or varying




sizes.and orientations. And finaly, the clustering procedures may work in acrisp (hard) or
afuzzy partition scheme.

The distinction between hard and fuzzy partition schemeis related to the way each sample
is attached to the set of clusters. In hard clustering, a sample can only belong to a unique
cluster, as opposed as to fuzzy clustering where it may belong to the entire set of clusters
through different degrees of membership. The use of fuzzy theory in clustering goes back
to the work of Bellman et a. [Bell66], Ruspini [Rusp69, Rusp70], and Gitman and Levine
[Gitm70]. In 1973 Dunn [Dunn73] defined the first generalization of the conventional
minimum-variance hard clustering, and still in 1973 Bezdek [Bezd73] introduced the well
known Fuzzy C-mean Algorithm (FC-mean). Both hard and fuzzy methods are now
equally used over al those distinct approaches mentioned in the previous paragraph.

Since the optimal number of clusters and the data structure are usually unknown, it is of
fundamental importance to have akind of performance criterion able to provide afeel for
the goodness of the resulting partition. Avoiding imposed structures (data overfit) as well
as lack of accuracy (data underfit) are the main goals to be achieved. It is claimed
[Dube79,Xie91] that the engineering literature has paid very little attention to cluster
validity issues, limiting the effort to showing that the new clustering algorithm performs
reasonably well on afew data sets, often in two dimensions.

In this report we propose a new clustering algorithm. This algorithm performs the pattern
space partition through a sequence of locally sensitive searches combined with a global
validity criterion. The algorithm is computationally efficient and provides good results on
both artificially generated and real data sets. In section 2 an overview of the basic clustering
concepts and a description of some well known proceduresis shown. In sections 3 and 4
the proposed procedure is discussed, and the results of some experiments are reported in
section 5. Extensions to the basic procedure are proposed in section 6, and some more
results are then reported. Conclusions and ongoing research directions are presented in
section 7.

II - CLUSTERING ALGORITHMS

Clustersare defined as groups of pointsin the feature space that are similar according to a
predefined criterion or measured similarity. Usually, smilarity is defined as proximity of
the points according to a distance function. With the similarity criterion on hand it is
necessary to partition the space into subgroups or clusters of similar points. The methods
for finding the partition may or may not assume parametric forms, may have an heuristic
basis, or may be more rigorously dependent on the minimization of a mathematical cost
function often called criterion function. In all cases, iterative procedures are generally used.

II.1 - Similarity Measures

Once the clustering problem isdescribed as one of finding natural groups among the data
Set, it is necessary to define what natural group isand how to identify them. Although this
issue may be application dependent, the most obvious and widely used measure of
similarity is the distance between pair of points. Euclidean distanceis by far the most used,
which provides characteristicsof invariance to translation and to rotation to the clustering
procedure. But it does not provideinvariance to general linear transformations or any other
transformation that distorts the distance relationships.



di= [(X; - Vot(X - Vol (1)

where
X;E R4, j=l ..n is thesampleobservation
V; € R4, i=1..c istheclustercentroid

The above observation calls attention to the fact that if clustersare to be meaningful, they
should be invariant to those transformationsmost natural to the problem. Ideally, clustering
algorithms should be insensitive to changesin the similarity criterion.

112 - Criterion Functions

The definition of acriterion function to measurethe quality of the partition at each iteration
is the usual way to transform the clustering problem into a well defined optimization
problem. Through this transformation the clustering problem becomes one of finding the
partition that extremizes the criterion function. Some of the most used criteria are based on
the Sum-of-Squared-Errors and Scatter Mamces.

a) Sum-of-Squared-Error Criterion

It isthe simplest and most widely used criterion, defined asfollows:

=% S ux-vinz )
i=1 XeX;
where
V=[ Vi ... V],  isa (dxc) mamx of cluster centers
Xi=( XX eclusteri)
C is the number of clusters
.2 is the Euclidean norm
and
1
Vi=— 2 X (3)
1 XeX;

This criterion has a simple interpretation which states that for a given cluster X;, the mean
vector Visits best representative in the mean squared error sense. Algorithms of this type
are often called minimum variance. It is well known that minimum variance is an
appropriate criterion when classes form well separated compact clouds. Problems arise
when there are great differencesin terms of class populationsand shapes.

b) Scatter Matrix Criteria
Thisisafamily of criterion functions derived from the scatter matrices used in multiple

discriminant analysis, which is a generalization of Ficher's linear discriminant [Duda,
Fisher]. The criteria are based on the following definitions:

. mean vector of the ith cluster
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i xe Xj
. total sample mean vector
1
=0 iXi=H 2 0V &)
. scatter matrix for the ith cluster

Si= 2 (X -V (X -Vt 6)
XEX;

. within-cluster scatter mamx
Sw= 3 S; @)
i=1

. between-cluster scatter matrix

Sp= i ni(Vi- V) (V;- V)t (3
i=1
. total scatter mamx
St=_ 2, (X - V) (X- W)t 9)
XE X;

It turns out that the total scatter matrix is the sum of the intra-cluster and the inter-cluster
matrices; see [Duda73] for more details. The total scatter mamx does not depend on how
the samples are partitioned, whereas the intra-cluster and the inter-cluster do, which
suggests the existence of a tradeoff between these two matrices, i.e. when one goes up the
other must go down. Therefore, by trying to minimize the intra-cluster mamx oneis also
tending to maximizetheinter-cluster matrix.

Scalar measures of the size of these scatter mamces are necessary in order to use them as
criterion functions. The three most popular ones are:

.The Trace Criterion



TSw=SuwS)=35S T IX-V;l2 (10)
i=1 1=l XeX;

Which is exactly equal to the aforementioned minimum variance criterion. It was shown
above that by minimizing tr (S) we areaso maximizingtr (Sg).

. The Determinant Criterion

1Sy !=13 8; | (11)

1=1

This approach measuresthe squareof the scattering volume, sinceit is proportiona to the
product of the variancesin the directionsof the principal axis.

. Invariant Criterion
tr (Sw’1Sp)= i Aj (12)
1=1

These eigenvalues are invariant under non-singular linear transformationsof the data, and
their values measuretheratio of intra-cluster to inter-cluster scatter matrices in the direction
of the eigenvectors. Partitionsleading to large valuesof the criterion function aredesirable.

11.3 - Clustering Algorithms

Once acriterion function has been selected, clustering becomes a well-defined problemin
discrete optimization. Since the sample st isfinite, thereisonly afinite number of possible
partitions. Thus, in theory, if ones assumes that the number of classesis known then any
clustering problem can always be solved by exhaustive enumeration. However, in practice
such an approachis completely infeasiblefor most applications. Iterative optimization is the
mos: frequently used approach in the searchingfor optimal partitions. The basicideaisto
start from areasonable or even arbitrary partition and then to reassign samplesif such a
move improves the criterion function. Like hill-climbimg procedures, this approach
guaranteeslocal but not global optimization, is dependent on the starting configuration, and
as result one never knows whether or not the best solution has been found. ISODATA and
K-means are the best known representatives of thisclassof agorithms.

a) Hard K-means

Thisis a very simple and intuitive algorithm, which served as basisfor ISODATA, later
developed by Ball and Hall [Ball67]. It assumes previous knowledge of the number of
classes, and uses the Euclidean distance as the similarity measure. The algorithm's major
stepscan be summarized asfollows:

step 1 - begin with an arbitrary assignment of samplesto the clusters;



step 2 - compute the sample mean of each cluster;
step 3 - reassign each sample according to the nearest mean;

step 4 - if the classification of all samples has not changed, stop; else go to step 2.

b) Fuzzy C-means

Thisisthe fuzzy version of the hard k-means, developed by Bezdek in 1973 [Bezd73]. The
algorithm makes use of a weighted version of the sum-of-sgquared-error criterion function.

U= & Y uym X - V2 (13)
=1 =1
subject to
zuijm= 1, 1<i<n (14)
=
u; 2 0, 1<i<n,  l<j<c (15)

where

m isan scalar greater than 1;

VieRd isthe cluster center

(.1 is the Euclidean norm

0 is the degree of membership of samplei wrt cluster j
UL { u; }, (n x ¢) membership matrix

V= {V;}, (d xc) matrix of clusterscenters

The algorithm computes the cluster centroids and the degrees of membership according to
the following rules:
i u;™ X

V=l (16)

i%‘m

i=1
and

1t
di (17)
C
k=1

A oo

U=

where




dij?= 11 X; - V1l 2 (18)
and
if djj=0, thenuy=1
The FCM agorithm major stepsare:

step 1 - initialization: arbitrarily select membership values between [0,1] satisfying
2;u;; =1, and set k =0O;

step 2 - compute the centroids V;(k) using u;;(k);
step 3 - computeu(k+1) using Vi(k);
step 4 - if f(UKk),Uk+1)) <€ stop, else set k= k+| and go to step 2.

Bezdek [Bezdek87] shows that the algorithm convergesto aloca minimum satisfying:
Im(U*,V*) £ J(U, V"), and (19)

I (U* V" < I (U V) (20)

c) ISODATA

Introduced by Ball and Hall [Ball67], this algorithm provides a way for determining the
number of clusters through the use of heuristic toolsfor splitting and merging the existing
clusters. The algorithm always mesto split if the total number of clustersis less than half
of the user desired number, and to merge if the current number is more than twice this
number. Several parametersneed to be previoudy specified, which requires from the user a
good! intuition or a reasonable knowledge about the structure of the data.

T threshold on the number of samplesin acluster,
Np  approximate (desired) number of clusters,

o2  Mmaximum spread parameter for splitting,

Do, maximum distance separation for merging, and
Nmax  maximum number of clustersthat can be merged.

The algorithm mgjor steps are:

step 1 - cluster the data set into C classes, eliminating any data and classes with
fewer than T members. Exit when classification has not changed;

step 2-if cs%‘2 and iteration isodd, then

a. split any cluster whose spread is larger than o2
b. if any cluster has been split, go to step 1;

step 3 - if ¢ > 2Np, then merge any pair of clusters whose samples are sufficiently
close and / or overlapping;




step4 - gotostep 1.
d) Hierarchical Clustering

These are based on either hierarchical agglomeration or division of the pattern space.
Agglomerative, or bottom-up procedures, start with n singleton clusters and successively
merge those close to one another. On the other hand, Divisive, or top-clown procedures,
start with all samplesin one cluster and successively split those far to one another. For
every hierarchical clustering thereis a corresponding tree, called dendrogram, that shows
how the samplesare grouped.

The basic stepsin agglomerativeclusteringare:
stepl-letc=nand X;={X;},i=l ...n
step 2 - if ¢ =1, stop.
step 3 - find the nearest pair within two distinct clusters, say X; and X;
step 4 - merge both clustersand decrement ¢ by 1
step 5 - go back to step 2

Beciiuseof their conceptual simplicity, hierarchical procedures are among the best known
methods [Dimi88, Murt92]. However, they suffer from drawbacks like sensitivity to
outliers, tendency to impose structure, and computational effort required for the pairwise
distance computation at every treelevel.

e) Locally Sensitive Methods

Techniques in this class try to exploit the local structure of the data as reflected in some
statistical parameters like, for example, the probability density function. It is implicitly
assumed that the samplesform well-defined cloudsin ad-dimensional space, and it isoften
assumed that they come from a mixture of ¢ normal distributions which means that the
optimal partition fallsinto hyperellipsoidsof various sizesand orientations. Of course,if the
samples are definitively far from a normal distribution then the second-order statistics will
be incapable of capturing the underlying structure, and a misleading partition may result.

The problem of estimating the parameters of a mixture density is not trivial, particularly in
situations where relatively little a priori knowledge about the nature of the datais available.
The assumption of any particular paramemc form may lead to poor results where structure
may be imposed rather than found. Alternatively, nonparametric methods such as Parzen
Windows or K-nearest neighbors may be used.

Parzen window was originally proposed by Parzen in 1962[Parz62] for one-dimensional

distributions and later extended to the n-dimensional case by Cacaullos [Caco66]. Its
general formulation for the n-dimensional caseis

Bx)= = i p-d y(ﬁ - xi] Q@1
N P

i=1
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where

N represents the number of samples

p isaconstant parameter denoting the adopted scale (bin)
g(_) is the kernel function or Parzen window

IS the estimated mean
In general, both the parameter p and the kernel functiony(.) can be chosen by the user. The
most widely used kernel functions are:

a) hypercubic kernel

‘(ﬁ v XA S.t. |7,(\j - xijl <p
Y= (22)
0 otherwise
b) hyperspherical kernel
1 v 2 12 <
v X s.tiX;- Xl s p
v()= (23)
0 otherwise
c) exponential kernel
1 R - x4l
= ! 24
d) Gaussian kernel
p-d -1oA O
¥()= Q)2 3l exP(zpz (X - xt 21 (X - x7)) (25)

The major problem inherent to Parzen estimation is that it may easily overestimate the
distribution when the kernel is too broad, or underestimateit when the kernel is to narrow.




III - THE FUZZY LOCALLY SENSITIVE PROCEDURE

This paper presents a new clustering algorithm. The proposed algorithm approaches the
clustering problem from the perspective of partitioning a multimodal pattern space into a set
of unimodal subspaces. Thisisdone by assuming that the data set comes from a mixture
density, and that each subspace defines a homogeneous subpopulation or cluster. Here the
term homogeneous is used In the sense that all pointsin the same group are more similar to
each other than to points in any other group according to a pre-specified similarity criterion.

The proposed algorithm falls into the class of locally sensitive methods, where local
structures of the data are captured and evaluated as possible representatives of significant
classes. The algorithm, in contrast to some previous work reported in the literature, asin
[Gitm70] and [Kitt76], adoptsa simplified version of theexponential Parzen estimate asan
energy function. Thisenergy function is continuous and differentiable, which allows the
use of simple hill-climbing procedures to detect the modes, or peaks, of the underlying
mixture density .

The notion of fuzzy sets adds global measure to the algorithm, which strengthen's its
capability of detecting highly concentrated subpopulations and of not being trapped by
spurious points or outliers. Low computational effort, guaranteed convergence, and low
sensitivity to starting points, are major featuresof thisalgorithm.

III.1 - The Mode Detecting Concept

The proposed algorithm is model-based, performs an iterative optimization of a criterion
function, and realizes a sequential partition of the pattern space. Thefollowing assumptions
are made: a) the observations are d_dimensional; b) the observationsform adiscrete set 1?
of size n; c) the natureof I" isa mixture of normal densities; and d) no other information is
available. The assumption that the samples come from a mixture of normal observations
may be seen as arestriction to the algorithm, but it is useful to recall that the central limit
theorem supports theideafor alarge variety of situations of interest. Therefore, the larger
the training set, the morereliableis the resulting partition.

The: problem of estimating the parameters of a mixture density is not trivial, particularly
when almost no a priori knowledge isavailable. Mixture densities are resultantsof random
processes Where the samples are assumed to be obtained by selecting a state of nature, say
class wj, with a certain probability P(w;) and then selecting from it one sample X
according to the distribution p(X/w;,0;). The total probability density for the sample is
then given by:

p(X/8)= i p(X/w;,8;) P(w)), VXeTl (26)
=1

where
0= (0, ... 0¢), aretheloca density parameters
p(X/w;,0), isthecomponent (local) density wrt classj
P(w)), isthe prior probability of classj, also called the mixing parameter

In cases like the one assumed here, where no knowledgeis available about the number ¢ of
modes, the local densities, the prior probabilities, or the local density parameters, the
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paramemc approach cannot ke used. The aternativeis nonparametric toolslike the Parzen
estirnate or k-nearest neighbors.

Kider [Kitt76] proposes a mode separation technique based on acubic Parzen window and
afunction that maps the d-dimensional observations into a sequence of scalar points. The
mapping operation is done such that observations belonging to same mode tend to become
successive elements of the sequence. Intervals on the sequence are then assumed to
separate distinct modes. The major drawbacks of the method are the necessity of extra
discriminant functionsto classify those ambiguous points not included into any identified
modle, the possibility of the cubic estimate being trapped by smoothed valleys where the
mapping function has no hint for choosing the correct sequence, and also the excessive
computational effort required for large data sets.

The procedure proposed here mes to mitigate such problems through the adoption of a
continuously differentiable kernel function, here named energy kernel, that navigatesfreely
around the pattern space. The most dense concentrations, which define local maximain the
space, aethen detected by an attractive forcefdt by theitinerant kernel. The energy kernd
isasmplifiedverson of the exponential Parzen estimate defined as:

g(v))= X exp[_—gu} @)

i=1

whese
dj; isany smilarity measure
isaconstant specifying the size of the energy kemel
is the center of gravity of the jth energy kerndl prototype

Vi

The modes of the underlying mixture density are sequentially detected by throwing a new
energy kerndl prototypeinto the pattern space a every new stage and letting it converge, or
be attracted, by oneof the subpopulationsnot identified yet. The kernel prototypes navigate
through an iterative hill-climbing procedure which searchesfor local maximaor the surface
defined by the energy function. The main advantage of this approach compared to the
hypercubic used by Kitler is the infinite and very flexible window provided by the
exponential kernel prototype, as seen in figure 1. By controlling the parameter b one
controlsthe degree of resolution of the search process.

Themaor stepsof the algorithm can be summarized asfollows:
step O - initialization: set j =0, and goodness=-<<;
step 1 - select starting energy kernel center: set j=j+1; and Vi=X; Vi
step 2 - maximizethe energy with respect to v;: max g(V;);
step 3 - evaluate the partition, if rejected stop.
step 4 - adjust the pattern space according to the current partition, i.e.
X={ X | Xe Xj}




step 5 - go back to step 1.

0.8F
0.6}
0.4

0.2

oL
-10

-5 10

Fig 1 - Kernel prototype window for different values of b

Every loop starts with a new energy prototype being thrown into the pattern space and ends
with the detection of asignificant mode or subclass. The starting energy kernel center is
always randomly selected from the sample set, which implicity takes into account the
unknown prior probability of the underlying classes, since those with higher probability
will have a greater chance of being chosen. This also reducesthe convergence time.

The maximum of the kernel energy in the step two is found through the following
uncongtrained optimization scheme:

max g(V;)= 2 CXP(MJ (28)

i=1

where the stepwise updated Vjisgiven by

og
Vik+1)= V;k) + ak) W (29)
and

ok) = g(—lk) is the normalized gain coefficient

The normalized gain provides stability and speed to the algorithm, so that when the kernel
function is far from any subpopulation the gain increasesand allows the kernel to be more
sensitiveto the surrounding forces of attraction. On the other hand, when a particular mode
isdetected the gain decreasesin proportion to its energy intensity, thus trapping the kernel.

The algorithm performs asequential partition of the space and the goodness at every stage
is evaluated through a global fuzzy validity scheme. The fuzzy measurement takes into
account all modes aready detected up to that point and performs the validation over the
entire set of observations. In fact, it adds a global measure to the local searches. If the
partition is positively evaluated, i.e., if itsdegreeof goodness improved with respect to the

13




previous one, then all observations seleted as belonging to the detected subpopulation are
masked, asin the sense of hard classification. This is done so that they do not influence the
navigation of subsequent kernel prototypes.

Three points may have been noted as being critica to the agorithm: the size b of the kernel
prototype, the sensitivity to starting configurations, and the partition goodness evaluation
criterion. The validy problem is discussed in more detail in the next section, and asit is
shown below, the other two points can be addressed with a reasonableextra computational
effort.

II1.2 - Kernd Size

It is well known that the size of the kernel functionis directly related to the quality of the
resulting estimate of the probability density [Kitt76,Duda73,Ther89]. Figure 2 shows the
surface detected by the energy kernel function when applied to a three-modal normal
mixture density using different sizes. It is clear that either under or overestimates may
easily result depending on the adopted scale, i.e. depending on the degree of resolution
used.

(a)

(b)

14
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Fig. 2 - Surfacesdetected by the energy kernel prototype, (a) adequate size;
(b) too broad; and (c) too narrow

Intuitively, the original covariancematrix of the data set can e used as arough indicaton of
thesize of the kernel prototype. Using a percentageof the largest eigenvalue, say 50%, we
can establish a range of possible sizes for the kernel, repeat the entire algorithm for a
sampling of sizesfrom thisinterval, and select the best partition according to the vaidity
criterion. The practice of repeating theentire processto identify the optimat! partitionisvery
common in clustering procedures. The advantage here is that this schere still keeps the
algorithm fast.

The classification of ambiguous points, i.e. pointslocated on the boundary of twoor more
subpopulations, as well as outliers, are automatically resolved by the degreeof membership
induced by thefuzzy validity measure. The performanceof the algorithm was evaluated on
artificially generated data setsas well ason real data. The obtained results are discussed in
section 5. Extensionsto the basic algorithm are presented and discussed in section 6.

111.3 - Starting Points

Occasionally the kernel prototypemay be trapped by cloudsof spuriousdata. In general it
moves toward the most dense subpopulation surroundingitsinital position, but spurious
densities on its way may have enough energy to attract and hold the prototype when it is
close.

Since the starting center for each prototype is randomly selected from the pool of available
samples, which decreases as the partitioning process flows, a reasonable strategy for
avoiding spurious clustersis to repeat the search process a number of times, say 3, a each
stage and select the best one. In practice, this made the algorithm very robust with respect
to starting points.

1114 - Convergence
The convergence of the algorithm is assured since the objective function is monotonic

increased every step and the number of possible allocations is finite. Since the kernel
energy function is not quadratic, the algorithm converges to local minima, which hopefully
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represent the modes, or most important peaks, of the underlying distribution. Spurious
pealks that can be occasionally detected are avoided through the global fuzzy validation.

The gradient optimization endseach step with the kernel prototypecenter converging to the
weighted mean of those active data samples

23X
* JGX
= 29
Vi Zaj (29a)
jex

where
¥={ X/ X isnot masked )

-l X - v 112
aj= exp(—‘b—')

IV - CHOICE OF VALIDITY SCHEMES

Despite some comments to the effect that very little attention has been dedicated to cluster
validity issues, the research on this topic seems to be very active with several papers
directly addressing the problem. Different schemes are available, for hard as well as for
fuzzy environments. Through the validity measure, problems like the optimal number of
clusters, the separability of clusters, and the overall goodness of the partition are
addressed. Current approaches usually take into account parameters the compactness of
each cluster, theisolation of the clusters within the environment, and the globa fit which
relates to the accuracy with which the partition describes the actual structure.

Cluster validity iscritical to the performanceof the algorithm we propose. A fuzzy criterion
was preferred in order to add global information to the locally sensitive search performed
by the energy kernel prototype. Several distinct schemes were evaluated and finally we
decided on the ones proposed by Xie [Xie91] and Gath [Gath89]. Minor modifications
were introduced to better reflect the desired compromise between local compactness and
global fitness, and both schemes were tested in combination with the energy kernel
prototype.

IV.1 - Xie's Validity Criterion

The suggested compactnessand separation validity function S is defined as

c n
Y D ui X, - Vil
i=l =1
§S=—% (30)
n WR(IV; - VjIi2)

where
s is the degreeof membership of samplej to cluster i
1] . . .
Vi is the centroid of cluster i
n is the number of samples

(LIl is the Euclidean norm




S is the ratio of compactness (n) of the fuzzy c-partition to the separation (1) of the
clusters, defined asfollows:

c 1€ 1
Tt:H:H.ZO.i =H[2 l]ijZIIVi,lelz] (31)
i=1 =

where

c is the total variation (fuzzy squared error) of the c-partition

and .
1= (dmin)2 = n?}n (”Vvl - VJ”2) (32)

where

dmin IS theshortest distance between cluster centroids
Good partitions are associated with small valuesdf S. Besides the tendency of Seventualy
decrease with theincreasedf ¢, it was also observed that the criterion some times favoured
spurious densities, or nearly empty clusters, and rejected true subclasses close to one
another. Such problems were mitigated by adopting adightly different function:

n

i Zluif I1X; - V;ii2
§=3 &

i=1

(33)

nj

The cardinality of each fuzzy cluster n; is given by the summation of all corresponding
degreesof membership and satisfies the property of adding to the total number of samples.

n
ni= '21Ui ] (34)
J:

C
3n;=n (35)

i=1

If the data set really comesfrom a mixtureof wel defined densitiesthen it is expected that
the energy kernel prototypeisableto produce relaively hard clusterswith very small local
variation, and that the validity criterion is able to regject those spuriousones and to dlow the
existenceof clusters close to one another.

IV.2 - Gath's Validity Criterion
This criterion is based on the fuzzy covariance matrix, its hypervolume.,and the partition

density. The fuzzy covariance matrix is an weighted scatter matrix computed from the
perspectiveof each cluster asfollows:

1 n
Fi= o 2 uij (Xj - Vi) (X - V! (36)
j=1
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[Bere91], the same entropy concept asit is used in information theory can be extended to
the fuzzy clustering. There, in the information theory, the entropy for discrete eventsis
defined as

H(x)= -3 pilogap; (42)

Here, assuming that the degree of membership can be viewed as an estimate of the
probability of a particular sample to belong to a particular class, it becomes straightforward
to define the fuzzy entropy as

H;X)= % ‘gl(UijlogZUij"'(l‘uij)10g2(1‘uij)) (43)
J:

This:functiongenerates the graph shown in figure 3, where maximum fuzziness occurs for
values of membership equal to 1/2, For the multi-modal mixture case, assuming the
independence of the modes, a global partition fuzziness measure can be computed by just
adding the individual mode measures together.
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Fig. 3 - Measureof FuzzinessFunction
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V - ISXPERIMENTAL RESULTS

A simulation environment was created using Matlab and a Sun Sparc workstation. The
basic energy maximization procedure was tested in combination with both validity
measurement schemes, as described in the last section, and severa sets of artificially
generated as well asreal data points were used. In this section some of the experimentsand
the results obtained are described and compared to some o the well known algorithms.

V.l - Data Sets

Asdescribed in Appendix A, four artificially generated and two real data sets were usedin
the experiments. The artificial setsare all, but one, from normal mixturedensities. Data sets
D1 aid D2 are two-dimensional and data set D3 is three-dimensional . Data set D4 isfrom
an uniformly random two-dimensional distribution. It may be clear that not having natura
clusters does not necessarily imply that the datais random, but the reverseis necessarily
true, i.e. if thedatais random no cluster shall be detected.

For the real data environment we chose the four-dimensional Iris dataset which has been
widely used since the work on linear discriminantsreported by Fisher in 1956. The other
set is afive-dimensional data used in an attempt to define the nature of chemical diabetes
using a multidimensional analysis. According to Andrew [Andr85], this data set was
visually inspected at the Stanford Linear Accelerator Computation Center and it was
observed that the three primary variables show a configuration resembling a boomerang
with a fat middle and two wings. From the clinical point of view the middle points
represent the normal subjectsand the two wings, the chemical and overt diabetic subjects.

V.2 - Artificial Data Tests

Example 1: Two-Dimensiona Data Set (DI) - This ssimple case was used to show the
performance of the algorithm over a well defined and well separated mixture of Gaussian
dismbutions. Asshownin figure 5.1, 300 samplesclustered in eight independent Gaussian
dismbutionsof different sizesand densities were considered for this experiment.

x>§‘§k’°§‘x & x
a4l 4
- Ear
21 X > 3999 J
x x
OF j@%"& 8 x x ixx“ .
x
_2 - x X * *xg(x);x i
X
X %
AL % 53?33{,{(*)( i
01 2 0 2 ) 6 8

Fig. 5.1 - Two-Dimensional Data Set used for example 1: 300 pointsclusteredin 8
independent Gaussian dismbutionsof different sizesand densities
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A pocl of 15 different sizesfor the kernel prototype, ranging from .5 to 6.5, was used and
both validity criterion schemes were checked against their ability to identify the ideal kernel
size and the best partition. Figure 5.2 shows the results: the number of detected clusters,
the partition goodness measure, and the kernel sizefor both criteria.
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Fig. 5.2 - Number of clusters and correspondent partition goodness measure, (a) with the
fuzzy compactnesscriterion, and (b) with the fuzzy density criterion

Both criterialeaded to the identification of the correct number of clusters and the kernel

prototype converged to a very close neighborhood of the true center of mass of each sample.

subclass. According to the compactnesscriterion (S), the best partition was obtained with
kernel size of 1.5, and with size of 1.1 according to the average density. criterion (AD).
Figure 5.3 shows some partitions and correspondent compactness criterion for different
kernel Sizes.
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Fig. 5.3 - Partitions obtained with different szes of the kernd prototype

Because of the global fuzzy validation, small kernel sizesdo not necessarily imply larger
number of clusters being detected, but the resultant partition goodnessis usually low due to
the bad placement of the kernel centroids. The fuzzy entropy, normalized to the range0 - 1,
givesan idea about the ambiguity of the cluster boundaries. For the 1.5 kernd size partition
showed in figure 5.3, the fuzzy entropy coefficientsare .0074; .0304; .0412; .0012; .0211;
.0105; .0209; and .0021, which indicatesthat the clustersare well separated.

Example 2 : Two-Dimensional Data Set (D2) - This case was considered to evaluate the
algorithm performance over well separated distributions of different sizes, shapes, and
orientations. Figure 5.4 shows the 470 samples, clustered in seven independent Gaussian
distributions, used for this experiment.

For this experiment we used the same pool of kernel sizes used in example 1. The results
matched the expectations, i.e. because of the fixed model (size, shape, and orientation) of
the kernel prototype, those more alonged dismbutions were subdivided in two or more
distinct clusters. Figures 5.5 and 5.6 show respectively, the partition goodness vs. kernd
Size and the best partition for both vaidity criteria.
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Fig. 54 - Two-Dimensional Data Set used for example 2: 470 pointsclustered in 7
independent Gaussian dismbutions of different sizes, shapes, orientations, and densities
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Fig 5.5 - Number of clustersand partition goodness vs kernel size, (a) compactness
criterion, and (b) density criterion
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Fig. 5.6 - Partitions obtained with (&) the compactnesscriterion, (b) the density criterion

example 3: Three-Dimensional Data Set (D3) - This case was considered to evaluate the
overhead created by a higher dimension. The same number of samples, 300, and the same
number of distributions, 8, asin example 1 were used for this experiment. The elapsed
time taken to compute the entire pool of kernel sizes and select the best partition was
299.34 seconds for the two-dimensional case (example 1) and 370.04 seconds for the
three-dimensional case (both using compactness validation criterion), ancl253.39 seconds
and 399.65 seconds respectively (using density criterion). The extracomputational effort
introduced by the additional dimension was about 50%. Both criteriaidentified the correct
number of clusters and provided centers of mass very close to those of the sample
iubcgass_es. Figure 5.7 shows the number of clustersand partition goodnessrelation to the
erndl sizes.
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Fig 5.7 - Number of clustersand partition goodnessvs kerndl size, (a) compactness
criterion, and (b) density criterion

example 4. Two-Dimensiona Uniformly Random Data Set @4) - This case was considered
to evaluate the tendency of the algorithm to impose rather than to find structure. It is true
that 'lack of natural structure does not necessarily imply randomness, but the reverse does
not follow the same rule, i.e. randomness necessarily implies lack of structure, and no
partition should be expected from the algorithm. A pool of 15 kernel sizes was used, and as
can be seen in figure 5.8 only the compactness validation criterion provided the expected
answer. In al previous experiments both criteria performed well and very close to one
another, but here the density criterion provided completely mideading resullt.
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Fig. 5.8- Partition for the uniformly random data set: (a) number of clusters and partition
goodness vs kernel sizes with compactness criterion, and (b) with density criterion

V.3 - Real Data Tests

Example 1. Four-Dimensional Iris Data Set {DS) - Since Fisher (1956) this data set has
been frequently used for clustering and pattern discrimination benchmarks. It consists of
three apparently non-Gaussian classes represented by equal number of samples (50 each
class) in a four-dimensional feature space. A pool of kernel sizes ranging from .04t03.38
was used, respectively 2% and 80% of the highest eigenvalue of the sample covariance
matrix (fig 5.9). Four clusters, instead of three, were identified as the best partition.
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Fig. 5.9 - Number of clusters and partition goodness vs kernel size (a) compactness
criterion, and (b) density criterion

The results are presented in terms of confusion matrices (fig 5.10) for the best three cluster
cases, and in terms of an extended confusion matrix (fig. 5.11) for those cases where more
than three resulting clusters are considered. Figure 5.12 presents the results for the K-
means, the ISODATA, and the Fuzzy C-means algorithms.
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Fig 5.10 - Best three clusters partition, (a) compactness criterion (kerne! size of .4), (b)
density criterion (kernel size of .3)
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Fig. 5.11 - Best partition, (a) compactnesscriterion (kernd size of 2),and (b) density
criterion (kernd size 2)
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Fig 5.12 - Confusion matrices for the K-means, the ISODATA, and the FC-means

The fuzziness entropy for the above four cluster cases (fig. 5.13) reveals ambiguity for
some: cluster boundaries. The same ambiguity can be also seen on the bottom-up
hierarchical clustering (fig.5.14).

H1 H2 H3 H4 Avergge
3-cl compact 3037 3101 .0069 - 2069
3-cl density 3182 3239 .0063 - 2162
best compact 3896 1935 0171 2266 2067
best density .3906 .1949 0171 2265 .2073

Fig. 5.13 - Partition fuzzinessentropy

example 2 Five-Dimensiona Diabetes Data (D6)- Only threedimensionsof the data were
used: the glucoseintolerance (d3); the insulin response to ord glucose (d4); and the insulin
resistance (d5), and an scale transformation was applied to reduce the absolute values. The
classes seem to be very diffused and very far from the Gaussian shape. As can beseenin
figure 5.14, the proposed algorithm was not able to perform a good partition. Assuming
the knowledge of the number of existing classes, the K-means, the FC-means, and the
ISODATA dgorithms provided partitions like is shown in figure 5.15.
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Fig. 5.14 - Fuzzy locally partition, (a) with compactness cri tenon, and
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Fig. 5.15- Confusion matricesfor the K-means, the ISODATA, and the FC-means




VI - RELAXING THE KERNEL'S SHAPE

The proposed algorithm, as described in section 3, is model-based and the energy kernel
prototype is of the form of a hypersphere of fixed size. A natural relaxation to this
assurnptiom is to allow the kernel prototype to be transformed into hyperellipsoid of
variable size and orientation. Relaxation of shape, size, and orientation may be very useful
and a powerful tool to deal with those strongly heterogeneous structures, where differences
among classes' population and distribution are remarkable. However, the additional
degrees of freedom considerably increase the computational complexity of the algorithm.

In this section two possible approaches are discussed. Thefirst oneis an extension to the
basic procedure presented in section 3. The relaxation does not cover thesize of the kernel
prototype, being restricted to the shape and to the orientation only. The second approach
can be seen as a postprocess procedure. It coversall degrees of freedom and is performed
over theresults provided by a previouspartition scheme.
VL1 - Relaxing Shape and Orientation
This procedure works in combination with the basic fuzzy locally sensitive procedure
described in section 3. The shape and the orientation relaxations on the basic hypersperical
shaped kernel prototype is accomplished by the introduction of an adaptation routine
between steps 2 and 3. The mgjor stepsfor the new algorithm becomes:

step 1 - initiaization;

step 2 - select starting kerndl prototypecentroid;

step2a - adjust shape and orientation;

step 3 - evaluate the partition, if rejected stop.

step 4 - adjust pattern space;

step 5 - go back to step 1;
The adjustment procedurein step 2a preserves the hypervolumeof thekernel prototypeand
alters both shape and orientation to better fit the population surrounding the centroid. The
major stepsof the routineare executed asfollows:

step 1 - compute the fuzzy scatter matrix for the current (unmasked) set of samples
with respect to the kernel centroid,;

1 m
A= —— 2 uij (Xj- Vi) (Xj- V)t (44)
m j=1
YU
=1
step 2 - perform the single value decomposition of the scatter matrix;
step 3 - adjust the eigenvaluesto preserve the prototype hypervolume
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M=ri YA 45)
[T~
i=1
where
A is the scatter matrix eigenvalue
b isthekerne prototypesize parameter
d isthedimensionof the samples

step 4 - reconstruct the kernel prototype coordinates from the eigenvectors and
adjusted eilgenvalues

B;= V.A*.Vt (46)
where
\% is the eigenvectorsmatrix

A* IS the adjusted eigenval uesmatrix

Thevalidity coefficient computedin step 3is also adapted to incorporate the new shape.

n
> w(X; - Vot Byl (X - V)

&
S'= §1 ! — 47)
i= !

and

. N2
Ap=2ALD ZSi.e det(F)™, 0 <<k < 1 (48)

i=1
The degree of membership (41)is now computed asfollows:

= exp(-[ (Xj- V! By I(X;- V) ]1/?) (49)

c
;exp( -[ (Xj -Vt Bi'l(Xj - V) 1112

This new agorithm was evaluated on the samedata setsasin section V and, as expected, it
improved the previously obtained partitionsfor those cases where the subclasses presented
adistribution far from hipersphere. The resultsfor the data sets D2, Iris, and Diabetes are
illustrated in thefigures 6.1 t0 6.3. The best partition was found to be 8 clustersfor the D2
data set, 2 clustersfor the Iris data set, and 4 clusters for the Diabetes data set. The fixed
size of the kernel prototype, at least for the D2 case, may be the reason for the procedure
had not found the correct number of clusters. Confusion matricesand extended confusion
matricesfor the cases of 3, 4, and 2 cluster partition are presented for the Iris and for the
Diabetesdata sets.
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Fig. 6.1 - Two-Dimensional Data Set (example 2 section V), (@) number of clustersand
partition performance vs kemel size, and (b) best partition obtained with kernel size of .8
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Fig. 6.2 - IrisData Set: (a) number of clustersand partition performancevs kernel size, (b)
3-cluster partition (kernel size of 0.8), (c) 4-cluster partition (kernel of 0.5), and
(d) 2-clusters partition (kernel of 2.5)
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Fig. 6.3 - DiabetesData Set: (a) 3-cluster partition (kernel of ..), and
(b) 4-cluster partition (kernel of ..)

VI.2 - Relaxing Shape, Orientation and Size

This procedure uses the kernel centroidsand sizes provided by any of the previous partition
schemes as starting configuration for a more complex optimization process. The optimal
partition is searched by maximizing atwo parameter compound cost function, where one o
the parameters, here called attraction term, takes account of the within-cluster distances,
and the other, called repulsion term, takes account of the between-cluster distances. The
cost function is continuoudly differentiablewhich allows the use of the gradient descent or
any other Newton'slike techniquefor the optimization process.

J(V.B)= 5 AR; (50)
i=1
where
V =[Vy.. V] isan (d,c) mamx of kernel centroids
B =[Bj .. B] isan (d,(c.d)) mamx of kernd coordinates
C is the number of clusterson the partition
A isthe attraction term
Rj isthe repulsion term

The attraction term isdefined as;

A= gi(j) (50)

=N
Il Mo
UK

]
where

£i(G)=exp( 71 (xj-v)t Byl (xj-vy)) 5D
Therepulsion termis defined as.
Ri= cl (52)

$ (1 + expl-a(wi() - b)])

j#
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where
a isasigmoid sharpnesscoefficient;, (a>1)
b isan overlapping control coefficient; (0<b<1)
wi(G)= (vj - v Byl (vj - vy) (53)
and
Bjj=B; + B; (54)

It can be noticed that both terms, A; and R;, can be related as the continuoudly differentiable
version of the Fisher's multi-dimensional scatter matrices (tr Sy and tr Sg) respectively.
Asdescribed in Appendix B, the first order necessary conditionsfor the critical points of
the cost function leads to the stepwise evolution of the variablesV and B asfollows:

J(V,B
vilk+ D)= vi(k) + (k) w (55)

and

. 4 dI(V,B
biqk+1)= bjy(k) + B ab(g,q(k))’ p=1..d,q=p..d (56)

where

relates to the pf row of B
relatesto the g column of B
isaconstant gain coefficient

%“@.D'U

d
a;k)= g_%k_) is the normalized gain coefficient for the j& subclassa time step k
j

The algorithm is not alowed to change the properties of symmetry and positive semi-
definitenessof the scatter matrices
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Fig. 6.4 - Two-Dimensional Data Set @2) - Simulated initial partition for the full
relaxation prunning
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Fig. 65 - Result obtained after the relaxationof the kernel size, shape, and orientation

VIl - CONCLUSIONS

In this paper a new mode separation procedure has been proposed for the unsupervised
clustering problem. The procedurefallsinto the category of locally sensitive methods, it is
model-based, it performs an iterativeoptimization of acost criterionfunction, and it redizes
a sequential partition of the pattern space. Extensions to the basic procedure, i.e. shape,
size, and orientation of the subclassesmode relaxation,have also been devel oped.

In contrast to some previous work reported in the literature, the proposed algorithm usesa
gradient ascent evolution scheme to detect the relevant peaks of the underlying mixture
density. The cost function isexpressed by a smplifiedversion of the exponential Parzen
estimator. A global performance criterion is used as an attempt to automatically overcome
the natural tendency of such approaches to over or underestimate the true number of distinct
modes present in the mixturedensity. The combination of these two strategiesimprovesthe
efficiency and the ability of the algorithm to identify those highly concentrated clusters, and
to solve the validity problem.

The algorithm performance has been tested with a number of simulated as well asreal data
sets. The obtained results are encouraging, being comparable to those obtained through
some well known procedureslike K-means, FC-means, and ISODATA with the advantage
of not requiring initial parameters. In comparison to other locally sensitive methods, it
appears to be superior in computational efficiency and comparable in performance.
However, the computationa demand may also grow fast for higher dimensions.
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APPENDIX A

Thedatasets used in the simul ationsare described asfollows:

a) Artificially Generated Sets

a.l) Set D1 - A tota of 300 points from a 2-dimensional mixture of 8 distinct

Gaussian distributions according to the rules; N(i;,0:2) and P(w;)

class# Parameters P(wy) class# Parameters P(wy)
L vaues vaues
Wi ([-2,2],.15) 2 w5 ([2,2]',.2) 15
w2 ([-.5,4]',.25) .1 w6 ({3.-1]'..3) 12
w3 ([0,01',.15) .08 w7 ([3.5,4]',.15) .18
w4 ([0,57',.1) .05 w8 (15,21',.2) 12

a.2) Set D2 - A tota of 470 points from a 2-dimensional mixture of 7 distinct

Gaussian distributionsaccording to the rules: N(u;,X;) and P(w;)

class# Pa\r/glrﬁee;ers P(w;) class# Parglmcésers P(wj)
valu
wl (%)(02 (1)> .1064 w35 (72)(02 g) .1489
b 1 1489 we 0 2128
BIGEIN (-25)’(62 )| :
i 0 2 0851 v 4 1277
(DG 3) | ()05 11|
wd
BFY | ™

a3) Set D3 - A total of 300 points from a 3-dimensional mixture of 8 distinct

Gaussian distributionsaccording to the rules: N(u;,0:2) and P(w;)




class# Parameters P(wi) class# Parameters P(wi)
vaues vaues
wl (I1,1,17,.3) 2 w35 ([-3,-2,-2]',.3) .15
w2 ([4,2,0],.5) .1 w§ ([-2,2,-3]',.4) A2
w3 ([3,-2,-11',.2) .08 w7 (2,0,5],.5) .18
wi ([-1,4,3],.4) .05 w38 ([0,-3,01',-4) 12

a4) Set D4 - A totd of 300 pointsaf a2-dimensiona uniformly random distribution
b) Real Data Sets

b.1) Set D5 - IrisData

It is the 4-dimensional Iris Data Set obtained from [Andr85]. Thisdata set isaso
referred as the Fisher Iris Data, with measurementsof the sepal length and width and petal
length and width in centimetersof fitfty plantsof each of threetypesof Iris: Iris Setosa, Iris
Versicolor, and Iris Virginica

b.2) Set D6 - Chemica and Overt Diabetes Data

It isa5-dimensional data set also obtained from [Andrew]. This data set were used
by Reaven and Miller (1979) to examine the rel ationship between chemical subclinical and
oven: nonketotic diabetes in 145 non-obese adult subjects. The primary variables are
glucose intolerance (ds), insulin response to oral glucose (d4), and insulin resistance (ds).
In addition, the relative weight (d;) and thefasting plasma glucose (d2) were measured for
each person.
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Thef i t order necessary conditions for the unconstrained maximization problem

C
max J(V,B)= ¥ AiR;

i=1

dJ(V,B) 0A; 0B;) _
ovk) = (W.Bi + A W]_O
1=
and
0J(V,B) 0A; 9B;)
oBK) (a_B-Bi + A a—B—]— 0
=1
where
0 ik
0A; _
ovi ] n
z{ B l(x;-vidgx(G) i=k
J:
and
0
0A; _
obk ~ L& '
3 Zl ()'ij-Vk)I By.Bi Bi (xj-viogk(j)
J:

where

Bi= %?—kk (see Appendix C)

iz k




oB;

bk, ~
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r

C
- %{25113}5 (vj - Vi) exp(-a(wx(j)-b))
J

1=k
2
[_i (1+exp(-a(wk(i)-b)))]
J#k

(-2aBik (vi- vi) exp(-a(wi(j)-b)))

. 1k
[_i(l+exp(—a<wﬁ)—b)))}
J#1

.

C
-2 a(virviolBi Bk B (vivi) exp(-a(wk(j)-b))

jzk

=k
c 2 :
3 (1 + exp(-a(wi(i)-b)))
jzk

(-avi-vio'(Bid By B)(vi-vi) exp(-a(wi(j)-b)))

1#k

c 2
T (1 + exp(-a(wi(j)-b)))
J#i
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APPENDIX C

Matrix Operations.

Let A(x) denote a matrix whose elements are functions of the variable X, so the
derivative of A(x) with respect to thefree variable x isgiven by a matrix which elements
arethe derivative of each original element with respect to x.

daji(x) Odaja(x)
ox ox

Q)
>
|
!
>

dazi(x) daga(x)
ox ox

The conventional calculusisalso valid for matrices which provides thefollowing
derivative computations:

2) a’%i(x) “A'A +AA"

b) Q‘% =A'B + AB

c) %@ =- (A'LA'A;
0A2(x)

d) 3~ =-(ALA'ATAT+ ATATAAY




35

VIIl - REFERENCES

[Andr85]

[Ball57]

(Bere91]

[Bezd73]

[Bezd74]

[Caco66]

[Dida74]

[Dida76]

[Dimi88]

[Dube78]

[Dube79]

[Duda73]

[Dunn74]

[Gath89]

[Gitr70]

[Kitt76]

Andrew, D. and Herzberg, A., 1985, Data: A collection of problemsfor
many fieldsfor the student and research worker, Spring Verlag.

Ball, G. and Hall, D., 1967, "A clustering technique for summarizing
multivariate data", Behav. Sci., vol. 12, pp. 153-155.

Béreau, M. and Dubuisson, B., 1991, "A fuzzy extended k-nearest
neighborsrule”, Fuzzy Sets and Systems, vol. 44, pp. 17-32.

Bezdek, J., 1973, "Fuzzy mathematicsin pattern classification”, Ph.D.
dissertation, Cornell University, Ithaca, NY.

Bezdek, J., 1974, "Cluster Vaidity with fuzzy sets’, J. Cybernet, vol. 3,
pp. 58-73.

Cacoullos, T., 1966, "Estimation of a multivariate density”, Ann. Inst.
Math, vol. 18, pp. 179-190.

Diday, E., 1974, "Optimization in non-hierarchical clustering”, Pattern
Recognition, val. 6, pp. 17-33.

Diday, E. and Simon, J, 1976, "Cluster analysis', Digital Pattern
Recognition, ed. springer, Berlin.

Dimitrescu, D., 1988, "Hierarchical pattern classification”, Fuzzy Sets
and Systems, val. 28, pp. 145-162.

Dubes, R and Jain, A., 1978, "Models and methodsin cluster validity",
Proc. IEEE Conf. on Pattern Recognition and Image Proc., Chicago, pp.
148-155.

Dubes, R. and Jain, A., 1979, "Validity studies in clustering
methdologies’, Pattern Recognition, val. 11, pp. 235-254.

Duda, Richard O. and Hart, Peter E., 1973, Partern Classification and
Scene Analysis, John Willey & Sonsinc.

Dunn, J, 1974, "A fuzzy relativeof the ISODATA processand its usein
detecting compact well-separated clusters’, J. Cybern., vol. 3, No. 3, pp.
32-57.

Gath, I. and Geva, A., 1989, "Unsupervised optimal fuzzy clustering”,
|EEE Transon Pattern Analysis and Machinelntelligence, vol. 11, No. 7,
pp. 773-781.

Gitman, |. and Levine, M., 1970, "An agorithm for detecting unimodal
fuzzy sets and its application as a clustering technique”, IEEE Trans.
Comput., val. c-19, pp. 583-593.

Kittler, J., 1976, "A locally sensitive method for cluster analysis®, Pattern
Recognition, vol. 8, pp. 23-33.




[Kitt88]

[Murt92]

[Rusp69]

[Rusp70]

[Parz62]

[Ther39]

[Xie91]

Kittler, J., 1988, "Optimality of reassignement rules; in dynamic
clustering”, Pattern Recognition, voi. 21, No, 2, pp. 169-174.

Murtag, F., 1992, "Comments on parallel algorithms for hierarchical
clustering and cluster validity”, IEEE Trans on Pattern Analysis and
Machine Inteliigence, vol. 14, No, 10, pp. 1056-1057.

Ruspini, E., 1969, "A new approach to clustering”, Inf. Control, val.
15, pp. 22-32.

Ruspini, E., 1970, "Numerical methods for fuzzy clustering”,
Information Sciences, vol. 2, pp 319-350.

Parzen, E., 1962, "On estimation of probability den§ty fiunction and a
mode", Ann. Math. Stat., vol. 33, pp. 1065-1076.

Therrien, C., 1989, Decision Estimate and Classification, John Willey &
Sons, NY.

Xie, X. and Beni, G., 1991, "A validity measure for fuzzy clustering”,
|EEE Transon Pattern Analysisand Machine Intelligence, val. 13, No. 8,
pp. 841-847.

36




	Purdue University
	Purdue e-Pubs
	11-1-1993

	A Fuzzy Locally Sensitive Method for Cluster Analysis
	Antonio G. Thome
	Manoel F. Tenorio


