
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

4-27-2010

Large-Scale 3D Visualization of Doppler
Reflectivity Data
Peter Kristof
Computer Graphics Technology, pkristof@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Kristof, Peter, "Large-Scale 3D Visualization of Doppler Reflectivity Data" (2010). College of Technology Masters Theses. Paper 23.
http://docs.lib.purdue.edu/techmasters/23

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Peter Kristof

Large-Scale 3D Visualization of Doppler Reflectivity Data

Master of Science

Dr. Bedrich Benes Dr. Gary R. Bertoline

Dr. X. Carol Song

Dr. Bedrich Benes

Dr. James L. Mohler 4/23/2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Large-Scale 3D Visualization of Doppler Reflectivity Data

Master of Science

Peter Kristof

4/26/2010

LARGE-SCALE 3D VISUALIZATION OF DOPPLER REFLECTIVITY DATA

A Thesis

Submitted to the Faculty

of

Purdue University

by

Peter Kristof

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

West Lafayette, Indiana

ii

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Bedrich Benes for his close collaboration and support

throughout my graduate studies and for advising me on the computer graphics

methods.

My gratitude goes to my supervisors Dr. Carol X. Song and Lan Zhao at the Rosen

Center for Advanced Computing (RCAC) for their trust, help and financial support

through RCAC group. I am grateful to Dr. David Braun for his suggestions and

help with the application deployment and for providing me with hardware resources

at the Envision Center.

In addition, I would like to extend my thanks to Dr. Xavier Tricoche for the

discussions on the volumetric visualization techniques and rendering performance

optimizations.

I would like to thank Dr. Gary Bertoline for serving on my thesis committee.

I am also grateful to Dr. Jeff Trapp and other graduate students at the Earth and

Atmospheric Science department for participating in my user-study and engaging in

insightful discussions on how the 3D reflectivity visualization can be used for better

weather analysis.

Last, but not the least, I want to thank my family for their love, understanding and

strong support throughout my graduate studies at Purdue University.

iv

PREFACE

The Rosen Center for Advanced Computing (RCAC) research group together with

the Envision Center for Data Perceptualization at Purdue University is aiming at

providing high-quality rendering interface to enable multiple users interactively

access, analyze and visualize the reflectivity data from all the Doppler radars in 3D

to study near real-time weather events. The interface will be widely accessible to

users ranging from general public to educational and scientific research groups.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Severe Weather . 1

1.2 Background . 3

1.2.1 Doppler Radar . 3

1.2.2 Doppler Reflectivity . 5

1.3 Summary . 7

2 RELATED WORK . 9

2.1 Reflectivity Processing . 9

2.2 Reflectivity Visualization . 11

2.3 Large-scale Volumetric Visualization 15

3 PROBLEM STATEMENT AND PROPOSED SOLUTION OUTLINE . 17

3.1 Statement of the Research Problem 17

3.2 Outline of the Solution . 18

4 DATA PREPROCESSING . 19

4.1 Data Structure . 19

4.2 Building . 22

4.3 Summary . 24

vi

Page

5 VISUALIZATION . 25

5.1 Direct volume rendering . 26

5.2 Large-scale ray casting . 27

5.2.1 Tree traversal . 28

5.2.2 Data Management . 29

5.3 Transfer function . 30

5.4 Pre-integrated classification . 31

5.5 Performance strategies . 32

6 RESULTS . 34

6.1 Preprocessing performance . 34

6.2 Visualization . 36

7 CONCLUSIONS . 38

LIST OF REFERENCES . 40

vii

LIST OF TABLES

Table Page

4.1 The bit representation of a tree node. 21

6.1 The preprocessing details of constructing the data structure from 116 sites
at 12:50pm (GMT), 4/24/2010 and 12 sites at 7:10am (GMT), 9/13/2008,
during the Hurricane Ike event in Texas. 35

6.2 Visualization times. 36

viii

LIST OF FIGURES

Figure Page

1.1 Examples of severe weather events and their effect on the environment
(Images courtesy of NOAA). 2

1.2 NSSL’s first Doppler Weather Radar located in Norman, Oklahoma.
(Image courtesy of NOAA). 3

1.3 Doppler radar sites in the continental United States (Image courtesy of
NOAA). 4

1.4 Reflectivity visualization over the South Coast during the occurence of
Hurricane Ike on 9/13/2008 (Image courtesy of NWS). 5

1.5 WSR-88D volume scan structure (Image courtesy of Ru (2007)). 6

1.6 Doppler reflectivity resolutions provided by WSR-88D radars severe
weather events and their effect on the environment (Image courtesy of
North Carolina State University). 7

2.1 2D reflectivity visualization using GRAnalyst2 (Image courtesy of Gibson
(2010)). 11

2.2 3D visualization of reflectivity data from a single radar using GRAnalyst2
(Image courtesy of Gibson (2010)). 12

2.3 Volumetric reflectivity visualization using the technique by Ru (2007) at
different area scales. 13

2.4 3D visualization of reflectivity field using elliptical point splatting (Image
courtesy of Jang, Ribarsky, Sha, and Faust (2002)). 15

4.1 Multi-resolution hierarchical data structure for reflectivity data. 20

4.2 Data processing overview. 22

5.1 Visualization overview. 25

5.2 RGBA transfer function for the volume rendering of reflectivity data. . 31

ix

Figure Page

5.3 Volume visualization of ionization front data set using different transfer
function techniques. The ray stepping was set to 200 steps, which are
not enough for the post-classification method in this dataset and result in
strong aliasing artifacts, known as the wood-grain artifacts. 33

6.1 The large-scale visualization of Hurricane Ike over Galveston on 9/13/2008. 37

x

ABBREVIATIONS

2D two-dimensional

3D three-dimensional

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DVR Direct Volume Rendering

fps frames per second

GPGPU General-Purpose computation on Graphics Processing Units

GPU Graphics Processing Unit

LOD Level-of-detail

LRU Least recently used

NEXRAD Next Generation Radar

NOAA National Oceanic and Atmospheric Administration

NSSL National Severe Storms Laboratory

NWS National Weather Service

RGBA Color space of red, green and blue with opacity alpha

RLE Run-length encoding

TDWR Terminal Doppler Weather Radar

WSR-88D Weather Surveillance Radar, 1988, Doppler

xi

GLOSSARY

base reflectivity reflectivity value from a single elevation scan

brick a voxel grid of constant size M3 (usually with M = 32)

brick pool memory pool for storing bricks

composite reflectivity strongest reflectivity energy at all elevation scans

cone of silence the area above the radar’s maximum elevation where

the radar cannot see

mosaicking combining reflectivity data from two or more radars

node pool memory pool for storing tree nodes

out-of-core rendering visualization of data sets that are too big to fit to GPU

radial velocity velocity of particles moving relative to the radar

reflectivity echo intensity measured in dBZ (decibels) representing

the amount and type of precipitation

resolution sample a reflectivity sample storing the geographic distance

to the nearest non-equal reflectivity sample

spectrum width variance of the doppler signals (i.e. turbulence)

volume scan collection of radar data, repeated at regular time

intervals

xii

ABSTRACT

Kristof, Peter. M.S., Purdue University, May 2010. Large-Scale 3D Visualization of
Doppler Reflectivity Data. Major Professor: Bedrich Benes.

The super resolution NEXRAD Level II Doppler radar data provides critical

information on reflectivity, wind velocity and spectrum width for the entire United

States. The goal of this work is to develop a framework that enables multiple users

to interactively access, analyze and visualize the Doppler reflectivity data in 3D to

study near real-time weather events. To provide interactive high-quality volumetric

weather visualization, we combined two approaches dealing with large-scale storage

of global weather data and out-of-core volume rendering using CUDA ray casting.

The results of our work show that the reflectivity data from multiple radars can be

preprocessed into data format that is efficient for large-scale volumetric visualization

of reflectivity data in near-real time and requires minimal run-time processing.

1

1. INTRODUCTION

1.1 Severe Weather

Severe weather is a dangerous meteorological or hydro-meteorological phenomena

that affects everyone on our planet. It often results in injuries, loss of human life

and significant damage to property. Severe weather events impact our social life,

economies, governments, wars - in fact, they affect the course of history itself. There

are many different forms of severe weather, such as tornadoes, hurricanes, lightning,

heavy precipitation and hailstorms. According to statistics (McNeill, n.d.) the

United States face up to 1,000 tornadoes every year which result in an annual

average of 1,500 injuries and 80 deaths. The strongest tornadoes can reach rotating

winds of more than 250 mph and travel as far as 50 miles leaving behind evidence of

its destructive force (Figure 1.1(b)). Figure 1.1(a) shows an example of a

Mesocyclone tornado. Another 70 deaths p.a. and collosal property damage are

caused by floods from thunderstorms and hurricanes. Hurricane Floyd (shown in

Figure 1.1(c)) drenched the U.S. East Coast with 15-20 inches of rain in 1999 and

resulted in property damage of estimated up to $6 billion Figure 1.1(d).

Weather forecasting can help reduce the pernicious effects of severe weather. If the

area to be affected is provided with weather warnings and alerts ahead of time,

people can take preemptive measures to protect their lives and properties. In order

to provide such warnings, weather forecasters and researchers have to analyze the

relevant atmospheric data (precipitation, temperature, wind speed, etc.) and make

projections about the atmosphere’s evolution. Nowadays, the weather forecasting

takes advantage of modern computing and of weather visualization tools in order to

achieve more accurate weather predictions. By providing better visualization tools,

2

(a) Mesocyclone tornado. (b) Tornado aftermath.

(c) Hurricane Floyd. (d) Aftermath of Hurricane Floyd.

Figure 1.1.: Examples of severe weather events and their effect on the environment
(Images courtesy of NOAA).

which either show new information or assist in gaining new insights into the

phenomena, we can enable researchers and forecasters to achieve a faster and more

accurate weather analysis.

3

Figure 1.2.: NSSL’s first Doppler Weather Radar located in Norman, Oklahoma.
(Image courtesy of NOAA).

1.2 Background

1.2.1 Doppler Radar

The Weather Surveillance Radar-1988 Doppler (WSR-88D) is a pulsed Doppler

radar used to detect meteorological and hydrological phenomena (Huber & Trapp,

2005). Figure 1.2 shows such a radar in the Oklahoma area. The Next Generation

Radar (NEXRAD) network counts 159 radars at approximately 230km spacings

across the continental United States (shown in Figure 1.3) and overseas areas. The

purpose of the NEXRAD network is to provide three dimensional (3D)

measurements of precipitation and winds at the highest temporal and spatial

resolution to improve the forecasting ability of severe weather events (e.g.

tornadoes, hurricanes and flash floods).

The output parameters of the radar data acquisition are discrete fields of:

reflectivity (precipitation), radial velocity (wind) and Doppler spectrum width

(turbulence). The radar data can be acquired from the National Weather Service

(NWS) network in a compressed format, specifically in BZIP2. New data is fed to

the NWS network at varying frequencies depending on the local weather conditions.

4

Figure 1.3.: Doppler radar sites in the continental United States (Image courtesy
of NOAA).

Specifically, the radar can operate in one of two modes - clear air mode with time

interval of 10 minutes or precipitation mode at which the images are updated every

four to six minutes. The clear air mode has an advantage of scanning the

atmosphere for longer time periods and, thus, enable the radar to scan with

increased sensitivity. The collection of radar data, repeated at regular time

intervals, is then referred to as a volume scan.

5

1.2.2 Doppler Reflectivity

The Doppler radar obtains the reflectivity information based on the returned

energy. The radar rotates around its axis and emits bursts of energy for each ray.

After each burst it listens for any scattered energy that is returned back to the

radar. The emitted energy is scattered in all directions if it strikes an object (rain

drop, hail, bird, building, mountain, etc.). The reflectivity is expressed in dBZ

(decibels of Z) and is computed based on the strength of the returned signal and the

time delay since it was emitted. The logarithmic scale of dBZ values is related to

the intensity of precipitation. Typically, the higher the dBZ, the stronger the rain

rate with the light rain occurring when the dBZ value reaches 20. Figure 1.4 shows

an example of reflectivity visualization during a severe weather event. A value of 60

to 65 dBZ is about the level where 3/4” hail can occur. However, values of 60 to 65

dBZ may not necessarily represent severe weather, because of various reasons such

as situations when the radar is out of calibration.

Figure 1.4.: Reflectivity visualization over the South Coast during the occurence
of Hurricane Ike on 9/13/2008 (Image courtesy of NWS).

6

Figure 1.5.: WSR-88D volume scan structure (Image courtesy of Ru (2007)).

The 3D NEXRAD level II data is stored in the radar’s spherical coordinates,

consisting of elevation sweeps, azimuth rays and gates along each ray. This radar

format is depicted in Figure 1.5. The number of sweeps per radar can be up to 14

with the elevation angle ranging from 0.5◦ to 19.5◦ depending on the local weather

conditions. Basically, the more severe the weather the more elevations are used and

the higher frequency the data is produced at. Some objects that do not reflect the

energy sent from the radar very well (such as snow) the radar may switch to operate

in clear air mode to scan with higher sensitivity.

The Legacy format of Doppler data has the following resolution setting. The range

resolution is 1km for reflectivity and 0.25km for radial velocity and spectrum width.

The radar’s antenna continuously rotates over 360◦ in azimuth and the sampling

angles are taken at elevation angles from 0.5◦ to 19.5◦. The azimuthal resolution for

all three parameters is one degree.

From 2008, the WSR-88D Doppler radars operate at higher super resolution at

”split cuts” (scans at or below 1.5◦) and thus the network provides higher 3D

7

spatial resolution than ever before. Specifically, the super resolution data provides

increased reflectivity data resolution with reduced gate spacing from 1km to

0.25km; increased azimuthal resolution of all three moments of data from 1◦ to 0.5◦;

and extended range of Doppler data from 230km to 300km. The difference in

resolution of reflectivity between the super-resolution and legacy format can be seen

in Figure 1.6.

(a) Legacy resolution. (b) Super resolution.

Figure 1.6.: Doppler reflectivity resolutions provided by WSR-88D radars severe
weather events and their effect on the environment (Image courtesy of North
Carolina State University).

1.3 Summary

Severe weather can have serious impact on our lives. One way to minimize its costs

is by providing people with accurate weather predictions ahead of time. Interactive

high-quality 3D weather visualization from multiple Doppler radars can help the

forecasters to analyze the weather better and faster.

8

The rest of this thesis is organized as follows. Chapter 2 discusses the related work

on doppler reflectivity processing, the methods for combining data from multiple

radars, the visualization of the data and the recent work in the field of large-scale

volumetric visualization.

In Chapter 3, we restate the problem and briefly outline our solution.

Chapter 4 contains explanation for the radar data preprocessing and transforming it

to a global large-scale data structure that is effective for rendering.

Chapter 5 describes the visualization utilizing level-of-detail (LOD) techniques and

Graphics Processing Units (GPUs).

In Chapters 6 and 7, we present results and additional techniques which can be

implemented to either improve or extend the current visualization capabilities.

9

2. RELATED WORK

This chapter describes the work that has previously been done on the processing

and visualization of Doppler reflectivity data. In addition, it provides details on the

latest techniques for real-time large-scale volume visualizations using hierarchical

data representation on GPUs.

2.1 Reflectivity Processing

Doppler radar weather data is stored in the radar’s spherical coordinates. This is,

however, inconvenient for combining the data from multiple radars (Xiao, Liu, &

Shi, 2008). In addition, effective volume visualizations have been proposed for data

sets stored in rectilinear coordinates (Crassin, Neyret, Lefebvre, & Eisemann, 2009).

Jang et al. (2002) transformed and stored the reflectivity data in a geographic

space. Although the reflectivity data has rectilinear arrangement in the spherical

coordinates, conversion to geographic coordinates results in an inconvenient conical

structure, as shown in Figure 1.5. This is due to beam spreading, which makes the

reflectivity samples dense at the base of the radar and more spread with an

increasing range resulting in ever larger data voids. One would have to undersample

the data substantially to avoid data voids in a uniform 3D grid.

The missing data in data voids between elevation scans can be generated using one

of the interpolation schemes (Mohr & Vaughan, 1979; Jorgensen et al., 1983;

Jay Miller et al., 1986; Askelson et al., 2000; Weygandt et al., 2002; Shapiro et al.,

2003). Creation of 3D multiple-radar grids using several interpolation methods was

examined by Trapp and Doswell (2000); Askelson et al. (2000); Zhang, Howard, and

10

Gourley (2005); Xiao et al. (2008). Zhang et al. (2005) analyzed four interpolation

schemes, including the nearest neighbor bin mapping technique and linear

interpolation in either vertical, horizontal or in both directions. The authors

summarized the choice of the interpolation scheme to be application-dependent and

suggested vertical interpolation for convective storms and both vertical and

horizontal interpolation with distance-weighted mosaicking scheme for general

Cartesian grid mapping. In addition to these interpolation schemes, Xiao et al.

(2008) evaluated a method using linear interpolation in all three dimensions, i.e.

range, azimuth and elevation. The authors concluded the vertical interpolation with

the nearest neighbor mapping on the range-azimuth plane results in the data most

comparable to that of the raw data.

Furthermore, the structure of the Doppler radar scan has some other inherent

problems such as beam height increasing due to the curvature of Earth and missing

data acquisition below the lowest beam (e.g. at angle 0.5◦) and above the highest

beam (e.g. at angle 19.5◦), which is referred to as the ”cone of silence”. These issues

can be alleviated to some extent by way of combining the radar data from multiple

sites of the NEXRAD network (Lakshmanan, Smith, Hondl, Stumpf, & Witt, 2006).

In addition, the resolution can be potentially increased by using data from the FAA

Terminal Doppler Weather Radar (TDWR) network, which covers areas around

major airports (Vasiloff, 2001). There have been several methods proposed for

creating mosaics from multiple radars, such as the nearest neighbor mapping,

maximum value and by applying a distance weighted function (Zhang et al., 2005;

Xiao et al., 2008). Xiao et al. (2008) suggested applying the distance weighted

approach using an exponentially decaying function for the analysis of reflectivity

data.

11

2.2 Reflectivity Visualization

The two-dimensional (2D) visualization has been used as the main means of

rendering the Doppler reflectivity data. This is done by projecting a single

reflectivity value onto a horizontal plane (as used in Figures 1.4, 1.6 and 2.1(a)).

The projected reflectivity value can represent either a base reflectivity, which is a

value from a single elevation scan, or a composite reflectivity accounting for the

strongest reflectivity from any elevation angle at every range.

However, the weather data may contain additional information, such as formation of

deep convection and 3D tornado structure, in the vertical domain that is of interest

to researchers and forecasters in the context of weather analysis. The simplest way

to visualize the vertical domain (i.e. altitude) is by sampling the reflectivity field

with a single vertical plane. This is depicted in Figure 2.1(b). The volumetric

(a) 2D visualization. (b) 2D visualization with a vertical slice.

Figure 2.1.: 2D reflectivity visualization using GRAnalyst2 (Image courtesy of
Gibson (2010)).

visualization of Doppler radar data has predominantly been done only for a single

radar in order to minimize the size of the input data. Second reason for this is to

avoid computation of combining radar values from overlapping radars. Djurcilov

12

and Pang (1999) created a 3D visualization of Doppler reflectivity using

isosurfacing. GRAnalyst2 software (Gibson, 2010) used the texture slicing method

to visualize volume of a single radar station (shown in Figure 2.2).

Figure 2.2.: 3D visualization of reflectivity data from a single radar using
GRAnalyst2 (Image courtesy of Gibson (2010)).

Ru (2007) combined reflectivity data into a pre-defined 3D rectilinear grid and

displayed it using the texture-slicing with a post-interpolative transfer function on

the GPU. The 3D grid is created by way of merging the radar data from radar sites

that are within the user selected area. Although, the visualization can be of

acceptable quality in some cases, such as for visualization of a small area depicted

Figure 2.3(a), in general, the approach suffers heavily in alias caused by

undersampling, data resolution, and run-time performance in general. First, the 3D

grid is merged at run-time and, thus, has to be recomputed for every new selection

of area, in which the reflectivity is to be displayed, and as a result the computation

can take up to tens of minutes on a single machine. Second, the visualization quality

is heavily dependent on the grid’s uniform resolution, which is limited by memory

constraints and does not account for the vast empty regions. This is especially true

for displaying mid to large areas, when the resolution of the grid is not fine enough,

as shown in Figure 2.3(b). The resolution problem is further exacerbated on zoomed

13

views. Third, the post-interpolative classification for volume rendering requires a

high sampling rate whenever there are high frequencies either in the actual data or

in the transfer function. If the sampling rate is not high enough, distracting aliasing

artifacts may appear. These are shown in Figure 5.3(a).

(a) A small region.

(b) The whole U.S. area.

Figure 2.3.: Volumetric reflectivity visualization using the technique by Ru (2007)
at different area scales.

Lakshmanan et al. (2006), similarly to the work of Ru (2007), employed a merging

technique by way of using intelligent agents, which act as autonomous particles

14

within the system and are advected by storm motion estimates. These agents are

created at radar gates and are used for more physically accurate computations of

reflectivity values in the final 3D grid. But again, the merging is done at run-time

and it requires substantial computational resources to provide data in a reasonable

time.

To render the reflectivity volumes from all the radars interactively, using a 3D grid

representation is not efficient, considering that the weather data is usually sparse

and large. A grid of reflectivity values covering the whole continental U.S. at the

resolution equal to the gate size (i.e. 250m) of super-resolution scans by Doppler

radars would require tens of gigabytes of data. Moreover, even this resolution may

not be sufficient to capture all the details in the measured data set because of the

conical structure of volume scans, in which the reflectivity samples can be as close

as few meters.

To provide interactive exploration of the radar data, Jang et al. (2002) applied a

LOD technique by way of using multi-level hierarchical data structure. The data

structure matches the geographic nature of the thin coverage of reflectivity data

around the globe. The authors employed elliptical point-splatting to do volumetric

visualization, which is shown in Figure 2.4(a). However, the visualization suffers

from gaps between the reflectivity samples at the highest resolution (see Figure

2.4(b)). Ribarsky, Faust, Wartell, Shaw, and Jang (2002) further developed this

method to create a framework capable of capturing multiple time steps and other

types of data, such as satellite imagery, within the same data structure.

In climate research, there are several visualizations which are commonly used, such

as IDV, GrADs, Vis5D+, Cave5D, GMT, ODV, NCAR Graphics, GMT, Avizo,

GRAnalyst2, etc. An overview of these tools can be found in Ru (2007); Nocke,

Sterzel, Bttinger, and Wrobel (2008).

15

(a) Visualization over North Georgia. (b) Close-up view.

Figure 2.4.: 3D visualization of reflectivity field using elliptical point splatting
(Image courtesy of Jang et al. (2002)).

2.3 Large-scale Volumetric Visualization

The direct volume rendering (DVR) was described by Kajiya and Von Herzen

(1984) more than 25 years ago. Since then, the volumetric rendering has been a

subject of active research in computer graphics and various methods have been

introduced. The DVR methods fall into two categories: object-order methods

(splatting (Westover, 1990), shear-warp (Lacroute & Levoy, 1994), 3D texture

slicing (Wilson, VanGelder, & Wilhelms, 1994)) and image-order methods (e.g.

ray-casting (Levoy, 1988)). Too much work has been done on developing real-time

algorithms from these base methods to be covered in this thesis. We refer the reader

to a recent overview of real-time volumetric visualization techniques by Hadwiger,

Kniss, Rezk-salama, Weiskopf, and Engel (2006).

Interactive methods for large-scale volume visualizations have become possible with

the introduction of programmable graphics hardware. The first implementations of

GPU ray casting (Kruger & Westermann, 2003; Roettger, Guthe, Weiskopf, Ertl, &

16

Strasser, 2003) were published in 2003. Kaehler, Abel, and Hege (2007) applied

GPU ray casting to do near-interactive visualization of medium-scale datasets by

using ray casting on the GPU. With further advancement in the computer graphics

hardware and application of LOD techniques and multi-resolution octrees or N3

trees it was shown that the volume rendering of large data sets can now be done in

real-time on current GPUs (Gobbetti, Marton, & Guitian, 2008; Lux & Fröhlich,

2009; Crassin et al., 2009). Crassin et al. (2009) presented an efficient streaming of

data to the GPU with a low computational demand on the CPU. The streaming is

guided by the information computed during ray casting. The authors used the

KD-restart algorithm (Foley & Sugerman, 2005), which starts at root node for each

node lookup, for octree traversal.

Traditional stack-based tree traversal algorithms adapt poorly to GPUs due to the

stack’s memory requirements for each thread (Foley & Sugerman, 2005). Instead,

the KD-restart can be performed very fast and the hardware texture cache

sufficiently hides the penalty for repetitive node lookups in the memory (Crassin et

al., 2009). In addition to the KD-restart algorithm, Foley and Sugerman (2005)

introduced another stack-less traversal algorithm for kd-trees on GPUs, called the

KD-backtrack. The KD-backtrack method requires an additional pointer to a

parent at each node and allows for a faster traversal at the cost of increased memory

requirements. More efficient kd-tree traversal algorithms for ray casting on GPUs

were presented by Horn, Sugerman, Houston, and Hanrahan (2007). In contrast to

Foley and Sugerman (2005), they proposed a Short-Stack based algorithm, which

gives a 1.5 to 3 times increase in ray throughput at an additional small memory

requirement. They also described two additional algorithms: Packets and

Push-Down, both of which are slightly slower than the Short-Stack algorithm.

17

3. PROBLEM STATEMENT AND PROPOSED

SOLUTION OUTLINE

3.1 Statement of the Research Problem

Developing an interactive 3D visualization of Doppler reflectivity data from all the

radar sites and for multiple users presents the following problems:

1. Displaying the 3D reflectivity data from multiple radar sites simultaneously is

problematic (Ru, 2007). This is because the WSR-88D Doppler radars at

different locations operate at dissimilar paces and the radar data is generated

asynchronously.

2. The radar’s native spherical coordinates are impractical for visualization of

multiple radar sites. The data should be pre-processed and converted into a

data structure that supports effective 3D visualization. This requires heavy

computational load, which if done on run-time, substantially limits the

interactivity and number of users that can be supported at once.

3. The conical arrangement (shown in Figure 1.5) of the measured radar data

makes the data very dense close to the radar and sparse at the end of rays in

the geographic coordinates. It is non-trivial to create an adaptive data

structure which is capable of capturing the high resolutions and which is

effective for the purposes of the visualization at the same time.

4. Visualization of large volumetric data remains a challenging problem in many

scientific applications.

18

In view of these technical difficulties, the purpose of our study is to provide a

high-quality 3D visualization which enables multiple users to interactively access,

analyze and visualize the reflectivity data from all the Doppler radars in 3D in order

to study near real-time weather events.

3.2 Outline of the Solution

The proposed high-quality 3D visualization of Doppler reflectivity data from

multiple radars can be displayed at interactive frame rates by storing the data in a

global multi-resolution hierarchical data structure (Jang et al., 2002) and by

applying efficient GPU rendering (Crassin et al., 2009) that utilizes LOD support of

the data structure.

The advantage of using a hierarchical data structure is that it can adapt to the

input data and focus processing and high-resolution sampling merely on the

non-empty regions. Nodes, storing a small constant-sized 3D grids will be used for

storing the volume data so as to utilize efficient hardware-based data filtering

during rendering. Even though this may result in some oversampling of the input

data due to the grid representation being the lowest building block, any empty cells

will be filled out using the vertical interpolation with the nearest neighbor mapping

for the range-azimuthal plane (Xiao et al., 2008). Furthermore, the overlapping data

from multiple radars will be combined together using the distance weighted function

(Xiao et al., 2008).

The new radar data will be pre-processed into the hierarchical data structure at

regular time intervals. Then multiple users can be provided with data in near

real-time by directly streaming the pre-generated data from the data repository to

the clients. Last but not least, the heavy pre-processing can be easily parallelized

thanks to the multi-level layout of the hierarchical data structure (Jang et al., 2002).

19

4. DATA PREPROCESSING

This chapter describes the algorithm used for preprocessing of the input reflectivity

data into a global data structure, which is then used for interactive volumetric

visualization. The data structure is based on a hierarchical data structure for global

3D atmospheric data (Ribarsky et al., 2002). We introduce a resolution estimation

method for adaptive sampling of the input data in order to retain the high

frequencies in the input data while keeping the size of the stored data to a minimum.

4.1 Data Structure

The radar reflectivity data is stored in a hierarchical data structure in Geographic

coordinates to provide LOD functionality. Considering the fact that the Doppler

radars scan as far as 230km at the highest elevation of 19.5◦, the altitude is sampled

merely up to approximately 75km. This makes the data coverage very thin in the

altitude dimension around the globe. Therefore, sampling such 3D space in a

uniform manner would result in oversampling the altitude dimension to match

desired resolution in the remaining dimensions, namely longitude and latitutde. In

addition, the reflectivity data is sparse and uniform storage would result in an

unnecessarily high memory footprint. Therefore, we chose to store the atmospheric

data in a multi-level hierarchical data structure similar to the one presented by Jang

et al. (2002).

In the authors’ approach, the top level structure is a forest of quadtrees covering the

entire earth. However, in the present study, we process the reflectivity data from

Doppler radars across the continental United States covering smaller geographic

20

area and, thus, we do not use the forest of quadtrees. The whole hierarchy is

depicted in Figure 4.1 below and has the following multi-level layout.

Brick

Brick

Brick

Averaging

Highest
resolution

1st level
(lon & lat) >> alt

2nd level
lon ~ lat ~ alt

Quadtree

3rd level
volume data

Averaging

Lowest
resolution

Q QQQQQQQQQQQQQQQQQQQ

QQ

O O

O

O

O

O

OOOO
O

O

Octree
leaves

Quadtree
leaves

Octree

Figure 4.1.: Multi-resolution hierarchical data structure for reflectivity data.

The first level is formed by a lat/lon quadtree, which is refined until the lat/lon

dimensions are of the same magnitude as the altitude dimension. This way each

non-empty quadtree leaf essentially represents an almost cubical volume space and

is very suitable for uniform subdivision in all three axes. In particular, the second

level is represented by an octree and is further subdivided until a desired data

resolution is met. Each Octree leaf stores a pointer to a brick, which is a small 3D

grid of predefined size M3 (generally M = 32). The bricks in the octree leaves

represent the highest resolution of the stored volume data. The idea behind using

small constant sized 3D grids is to allow for fast grid-based ray casting over these

small volumes and utilize hardware accelerated data interpolation (Crassin et al.,

2009). In view of the fact that we want to be able to sample various resolutions

during the visualization, all the parent nodes in the octree and quadtree have a

21

brick associated with them as well. These bricks represent lower resolutions of the

volume data and are built per node by averaging the bricks of the node’s children.

The desired resolution for an octree leaf is such that the brick cell contains at most

one reflectivity sample and it is estimated by analyzing the data resolution locally

around each reflectivity sample. In particular, the resolution is computed based on

the geographic distance to the nearest neighbor that has a different reflectivity value

than the source sample. To avoid finding the neighbors and computing distances for

every resolution query, we generate a resolution sample for every non-zero

reflectivity sample during the initial stage of the preprocessing.

Similarly to Crassin et al. (2009), we store the tree nodes in a 3D texture, referred

to as the node pool. The data in the nodes are repartitioned to take only 64 bits so

as to lower the memory requirements and improve the data coherence, which in turn

helps the texture caching. The bit structure of a node is explained in Table 4.1.

Each node either contain a brick or a single data value and stores a pointer only to

the first child. The remaining children are stored right after the first child, so that

no more pointers are necessary.

Total bits Description
29 pointer to a first child
1 whether node is a leaf
1 Indicates whether the node is refined to maximum, or the original

volume still contains more data:
- For Quadtree node, Octree node/leaf: whether the brick has been
loaded
- For Quadtree leaf: whether the octree has been loaded

1 Stores whether the content is a single reflectivity value or described by
a brick

18 Brick index or single reflectivity value
7 Minimum reflectivity value in the subtree of the node
7 Maximum reflectivity value in the subtree of the node

Table 4.1: The bit representation of a tree node.

22

Bit encoding Limitations

4.2 Building

An overview of the whole preprocessing step is shown in Figure 4.2.

Build Octrees

Finalize

Quadtree

inaliz
Compress bricks

Raw radar

data

Build

Quadtree

hierarchy

Store the

tree on

the disk

Interpolation

between time

stamps

Store

bricks on

the disk

e the

Figure 4.2.: Data processing overview.

First, the raw radar data has to be synchronized, because the radars operate at

different time intervals and different scanning speeds. Thus, each radar is

interpolated in time to provide data at the same time stamp. Then, we generate a

file containing the resolution samples for each radar.

Next, the data structure described in Section 4.1 is built in three stages as depicted

in Figure 4.2. In the first stage, the quadtree is built over all the radar sites and

each quadtree leaf then stores a reference to radars that are within the radar radius

from the leaf. In the second stage, the octrees and their bricks are built. In

particular, an octree is built using all the resolution samples that are within its

23

bounding box. The octree is subdivided until the maximum data resolution for a

brick has been met. The data resolution is evaluated by finding the resolution

sample with shortest distance. Then a brick is built for the leaf by computing

reflectivity values for each cell from all the contributing radars. After all the leaf

bricks are computed, the bricks for parent octree nodes are built by averaging the

children bricks in a bottom-up fashion. This is then repeated for the quadtree nodes

after the all the octree nodes have been built.

The most computationally demanding part of the tree building process is building

the leaves’ bricks. For each brick, we have to compute reflectivity values from

contributing radars for M3 (i.e. for M = 32 that is 32768) brick cells. The

computation per brick cell include converting the cell’s geographic position to the

radar’s spherical coordinates (computed by using several computationally expensive

trigonometry and squared root functions) and interpolating the neighboring values

using the vertical interpolation with nearest neighbor mapping in the azimuth-range

plane as suggested by Xiao et al. (2008). Contributions from multiple radars are

resolved using the distance weighted function (Xiao et al., 2008). Postponing the

interpolation up to the latest stage results in higher data accuracy then in the

technique by Ru (2007), who first mapped the reflectivity samples to a grid

introducing a numerical error, because the reflectivity samples may not be

completely aligned with the center of a grid cell and then interpolated missing

values from these grid cells.

Last, before the bricks are stored to a hard-disk, they are compressed using the

Run-length encoding (RLE). This compression technique has proved to be very

efficient for compressing 3D memory blocks of reflectivity data (Ru, 2007).

24

4.3 Summary

In this chapter, we described the multi-level tree-like data structure to store the

reflectivity data from multiple radars. The leaves of the tree structure contain

bricks, which provide the highest resolution of the input data. The nodes, in

contrast, store bricks that represent lower resolutions of the data, so as to provide

multiple resolutions.

The building process of the data structure is split into three stages, namely

construction of the quadtree hierarchy, complete build of all the octrees and

finalization of the quadtree, which includes linking of the octree data generated in

the second stage. After the data structure is built, the brick data is compressed

using RLE and stored on a disk.

Next chapter presents a way how this data structure can be utilized for effective

volume visualization.

25

5. VISUALIZATION

This chapter describes our method for large-scale interactive 3D visualization of

reflectivity data using the multi-resolution hierarchical data structure introduced in

Chapter 4. The key to a successful interactive large-scale visualization is using LOD

techniques to limit the loaded data to fit the memory constraints, also referred to as

out-of-core rendering. The data management is guided by the Least recently used

(LRU) algorithm on the CPU. The LRU table is updated with the tree nodes’ usage

information collected during GPU ray casting. The whole rendering pipeline is

described in Figure 5.1.

Copy tree

structure and

bricks to GPU

CUDA Ray

casting on GPU

DA R
Collect information

about missing data

from GPU

Load Quadtree

and Octrees

from the disk

Update Tree

structure on CPU

opy tr

C

ab

Load

missing

bricks

Missing

data?

Render the

image

nder

No

Yes

Decompress

bricks

Update LRU

table

U

i f

ricks

Figure 5.1.: Visualization overview.

26

To create high-quality interactive visualization we have decided to employ volume

ray casting. Our visualization approach is based on the recent technique presented

by Crassin et al. (2009) using large-scale GPU ray-guided ray casting. The next

section shall briefly explain the volume rendering and will provide details on ray

casting in the hierarchical data structure described in Section 4.1.

5.1 Direct volume rendering

The DVR seeks to visually extract information from the 3D discrete data, where

each sample has a potential to contribute to the final image. The volume data is

considered to consist of density particles, in which the light gets absorbed and

emitted depending on the assigned optical properties. In the simplest case the

optical properties consist of color C and opacity α. This emission-absorption model

is expressed by a volume rendering integral (Hadwiger et al., 2006), which has the

following form:

I(D) = I0e
− ∫D

s0
κ(t)dt

+

∫ D

s0

q(s)e−
∫D
s κ(t)dtds (5.1)

where I0 is the initial intensity at s0, κ is the absorption coefficient and q is the

source term describing emission. The first term represents the attenuation of the

incoming light while the second interprets the emitted light (including self

attenuation). The discretized volume-rendering integral is computed by an iterative

method with a front-to-back (from the eye point to the volume) compositing scheme

(Hadwiger et al., 2006), which is generally used for the ray casting method:

C
′
dst ← Cdst + (1− αdst)Csrc (5.2a)

αdst ← αdst + (1− αdst)αsrc (5.2b)

where the dst is the value at current location and src is the previous composited

value.

27

5.2 Large-scale ray casting

Ray casting is an image-based DVR method (Levoy, 1988). The heart of this

method lies in casting independent rays into the volume from each pixel in the

image and accumulating color and opacity. Its main advantage lies in the ability to

treat rays independently. Many times, large parts of a volume data set may not

even contribute to the final image due to either being completely transparent or not

visible (Hadwiger et al., 2006). In view of the fact that each ray can be computed

independently with regard to the other rays it is possible to employ optimization

strategies, such as adaptive sampling, empty space skipping and early ray

termination. Another advantage of this method is that it allows for precise

floating-based blending operations to create high-quality volume composites. In

addition, if need be, ray casting is flexible enough to be extended for the

visualization of other phenomena, such as scattering.

The algorithm for large-scale ray casting on GPU is performed in a loop until the

ray leaves the volume. First, each ray is initialized and then the volume integration

is done in the loop consisting of following steps:

Traverse the tree The tree hierarchy is traversed until the node providing desired

resolution for the current position p is found.

Convert ray into the node’s space Ray’s position p is converted into position

pB, which is relative to the node’s brick space, so that pB ∈ [0, 1]3.

Do volume ray casting in the brick The ray is casted through the [0, 1]3

volume of the brick until it leaves its space. The color and opacities are

collected along the integrated ray inside the brick based on the used transfer

function classification.

28

Update the ray position The integrated distance in the brick is converted to the

tree root’s space and the ray’s position p is updated. This position then serves

as the input position to the next iteration.

Check for ray termination The ray is terminated when it leaves the tree’s

volume. Also to avoid negligible computations, the ray is terminated when the

accumulated opacity reaches a satisfactory value, such as α = 0.95, for which

any further volume integration would have a minimal effect on the final color,

because the assigned color is already almost opaque at 0.95.

5.2.1 Tree traversal

Similarly to Crassin et al. (2009), the ray traversal of the hierarchical data structure

is done from the tree root by kd-restart algorithm (Foley & Sugerman, 2005). The

tree traversal is computationally efficient because the point coordinate p can be

directly used to locate it within a node. Let p ∈ [0, 1]3 be the point’s local

coordinates in the quadtree’s bounding box, c be the pointer to the first child of the

root and assuming the tree hierarchy is stored in a 3D texture. The offset to a child,

to which the p falls, is (int)(p ∗ 2) (read integer part of multiplication p ∗ 2) for px
and py coordinates within a quadtree node and px, py and pz within an octree node.

Then, pointer to the child is simply c+ (int)(p ∗ 2).

The descent is iterated until either a leaf or a node with the desired resolution is

reached. The criterion for the resolution is that one voxel projects to at most one

pixel. If the node represents a single color the volume integral is computed

analytically for the volume of the node. Otherwise, the node has a brick associated

with it and standard ray marching is applied until we leave the node. However, it

should be noted that the ray direction d changes as we descend within the quadtree

because it is only x and y dimensions that are subdivided. In an octree, where all

the dimensions are subdivided at the same time, the d is constant. The integrated

29

distance, which is expressed in the node’s local space [0, 1]3, for the ray is

transformed into the quadtree’s root local volume space and the p is moved

according to that distance along the ray. The new p then constitutes an input to the

next descent.

5.2.2 Data Management

What we said about ray casting in the previous section should be done a bit

differently to allow for out-of-core rendering.

Specifically, during a ray casting pass we collect information on which nodes have

been used or need to be loaded. In our case, the tree hierarchy is small enough to be

kept constant during rendering and therefore the whole tree hierarchy is loaded at

the beginning. However, the bricks, which store the actual volume data, can take up

to tens of gigabytes in uncompressed format and have to be loaded only when they

are required. For this purpose, we keep an array of flags with a flag for each node.

The flag can have three states. First, the node was not reached during ray casting.

Second, the node was reached but the brick is missing from the working set on the

GPU. When this happens during ray casting we move the position p on the ray out

of the node and continue with the rendering. Third, the node was reached and the

brick is available. After the ray casting is finished, we copy the 2D array of node

flags to the CPU and update the LRU table accordingly. If the node was visited, its

priority is increased in the LRU table. After that, the missing bricks are loaded and

if the brick pool is full we remove the bricks with lowest priorities from the LRU

table.

It should also be noted that both the node pool, which contains the all the nodes of

the tree, and the brick pool on the GPU are transformed into 3D layout and stored

stored in 3D textures on the GPU. This is to improve the locality of the data on the

GPU and, thus, make the caching more effective.

30

5.3 Transfer function

Mapping of volume data to optical properties (such as color and opacity) is

expressed by a transfer function, which is also referred to as a color map or color

table. Essentially, it guides the volumetric visualization to hide unimportant

features or highlight the data of interest in the final image. Two of the inherent

problems of volume rendering are visual clutter and data occlusion, both of which

can be addressed to some extent by defining an appropriate opacity function. In the

former method, Ru (2007) developed a transfer function interface (shown in Figure

5.2(a)), where the function is defined by modifying the control points of the cubic

Hermite spline.

The cubic spline approach removes the burdensome task of specifying every point

on the x-axis and allows for easy definition of complex high-frequency transfer

functions. To make the interface even more user-friendly, we have introduced two

changes. First, the axes had a proper name assigned and had the grey background

of the opacity function changed to the color of the remaining RGB functions (to see

the end result we refer to Figure 5.2(c)). These changes make the modification of

the opacity function much more intuitive and interpretive. This is especially true for

a first time user. Secondly, we added an interface for storing and retrieving

predefined functions. These functions may be used to speed-up analysis of the

volume data. The visualization is also dependent on the actual volume data and,

thus, it is difficult to generalize the perfect transfer function. However, the desired

function may be tuned from a predefined function relating to what the user seeks to

achieve faster.

31

(a) Transfer function interface using cubic Hermite splines for opacity
(Image courtesy of Ru (2007)).

(b) Reflectivity to RGB color mapping (Image courtesy of Ru (2007)).

(c) Our transfer function GUI interface. It enables to set opacity value on the vertical axis for each
reflectivity value on the horizontal axis. The inside area of the function is colored according to the
set colors for each reflectivity value.

Figure 5.2.: RGBA transfer function for the volume rendering of reflectivity data.

5.4 Pre-integrated classification

The transfer function may contain high frequencies, for which a high sampling rate

would be necessary so as to avoid visual artifacts (shown in Figure 5.3). Engel,

Kraus, and Ertl (2001) presented a way to account for high frequencies in a transfer

function without increasing the volume sampling rate. The authors introduce a

preprocessing step for texture-slicing based volume rendering. In particular, this is

32

achieved by way of computing all possible combinations of the transfer function

integrations between two samples for the used transfer function. The result is then

stored in a texture and is subsequently sampled by the ray caster in a rendering

pass. In this manner, the ray integration accounts for higher frequencies that would

otherwise be missed or aliased due to a low sampling rate of a transfer function.

Thus the benefit of pre-integrated classification is precise integration even during

undersampling of the volume. Moreover, it is also much better to use for the empty

space skipping algorithm, described in Section 5.5.

The volume ray integration is done by way of using a pre-integrated classification.

The only drawback of the pre-integrated classification is that the sampling step size

has to be known for computing the pre-integrated table. Therefore, to allow for

adaptive sampling it is necessary to create pre-integrated tables for each sampling

step size size.

Comparison of the traditional post-interpolative (Hadwiger et al. (2006)), which was

also used in the previous method of Ru (2007), and the applied pre-integrated

classification can be seen in Figure (5.3). Further improvement could be achieved by

stochastic jittering (Hadwiger et al., 2006) in order to hide the slice artifacts due to

resulting from the synchronized ray stepping for all rays. I found the slicing

artifacts to be minimal after applying the pre-integrated classification.

5.5 Performance strategies

By using hierarchical data structure we are implicitly skipping the empty space,

because the data structure is not refined in the empty regions. We can skip the

regions with data that is of no interest to us as well. Such data is defined by setting

its opacity to zero in the transfer function. Thus, we can use the transfer function

to speed up rendering by skipping the subtrees that do not contribute to the final

visualization. For this purpose, we added min/max reflectivity variables to the node

33

(a) Post-interpolative classification. (b) Pre-integrated classification.

Figure 5.3.: Volume visualization of ionization front data set using different
transfer function techniques. The ray stepping was set to 200 steps, which are
not enough for the post-classification method in this dataset and result in strong
aliasing artifacts, known as the wood-grain artifacts.

structure (shown in Figure 4.1) accounting for the lowest and maximum reflectivity

within the subtree. Then, during the tree traversal, we sample the transfer function

using the min/max values of a node and if the integral is zero we can safely skip the

area. Note that this algorithm strongly benefits from using the pre-integrated tables

as we can evaluate the integral exactly with one single texture fetch.

34

6. RESULTS

The present chapter shows the timings of the data structure build and the

visualization of reflectivity data using ray casting described in the previous chapter.

The tests were performed on a laptop computer with an Intel Core i7 Q820

processor, the NVIDIA GeForce 280m GTX graphics card, 4GB of system memory,

Intel X25-M G2 SSD and the Windows 7 OS.

6.1 Preprocessing performance

The data structure build was tested on two data sets. The first data set consists of

reflectivity data from 12 radar sites during the Hurricane Ike event in September 9th

2008, when it entered the area of Galveston, Texas. Specifically, two radar sites

KHGX and KLCH in the area near Galveston and 10 other sites across the

continental U.S were selected.The second data set consists of data from 116 sites

across the continental U.S. scanned at 12:50pm UTC on April, 24th, 2010.

The memory and performance requirements of processing the two data sets are

summarized in Results:Preprocessing. The processing of 116 radar sites took almost

70 minutes, from which the 43 minutes were spent on building bricks from radar

data for each octree leaf and 20 minutes were taken by creating resolution samples

for each radar.

On average each brick takes around 10 ms to compute the reflectivity data for all the

323 cells of the brick. This includes conversion from geographic to radar’s spherical

coordinates and interpolation from eight reflectivity samples. For the Hurricane Ike

data set, 218 octrees were built with an average of 2s computational time required

35

Task Whole U.S. Hurricane Ike

Number of sites 116 12

Generate resolution samples 20m 3.5m

Build Quadtree Hierarchy 3.4s 0.2s

Build Octree hierarchy 3.3m 0.9m

Build bricks for Octree leaves 43m 7.4m

Finalize Quadtree 27.5s 2.3s

Total time 69m 12m

Maximum resolution [meters] 3 2

Number of built octrees 892 218

Number of bricks in octree leaves 264, 985 40, 089

Number of all bricks 341, 161 52, 102

Node pool size 4.8 MB 0.8 MB

Compressed brick pool size 2.65 GB 0.6 GB

Uncompressed brick pool size 10.35 GB 1.62 GB

Table 6.1: The preprocessing details of constructing the data structure from 116
sites at 12:50pm (GMT), 4/24/2010 and 12 sites at 7:10am (GMT), 9/13/2008,
during the Hurricane Ike event in Texas.

for each octree. It can be seen the most performance demanding part is the octree

construction, consisting of building the octree hierarchy and its bricks, and

computation of resolution markers. Both of these tasks can be easily parallelized

and we believe the whole preprocessing time can be then done within few minutes

and allow for periodic construction of updated radar data every ten minutes in

order to provide the preprocessed data in near-real time. Because our data structure

samples data adaptively at the appropriate resolution, the brick compression is only

three to four which is much lower than the 100 times compression of Ru (2007).

36

6.2 Visualization

The visualization has been implemented to the extent it supports the data sets of

size that fits into the system memory. Therefore, we tested the visualization

performance only over the data set of Hurricane Ike described in the previous

section. The visualization has been tested by zooming in from the view of whole

United States to a close up view at the center of the KHGX radar site, where the

severe weather event takes place, in Galveston. The generated images are shown in

Figure 6.1 and the rendering times are summarized in Table 6.2. The main

bottleneck of the visualization is due to loading bricks. Although the compressed

bricks have been pre-cached to the system memory it still takes up to almost 2s

depending on the amount of bricks that need to be loaded. Another important

factor is also whether the bricks are loaded from the same tree file or not, because

the bricks are compressed per file. To improve the interactivity of the visualization

during the camera manipulation, the resolution of the output image is decreased

four times in width and height.

Average Maximum

Ray casting 0.06s 0.12s

Brick decompression 0.6s 1.7s

Node pool copy to GPU 0.02s 0.02s

Brick pool copy to GPU 0.12s 0.12s

Table 6.2: Visualization times.

37

(a) Top view.

(b) Medium view.

(c) Zoomed in view.

Figure 6.1.: The large-scale visualization of Hurricane Ike over Galveston on
9/13/2008.

38

7. CONCLUSIONS

In this thesis, we have presented a new approach for large-scale volumetric

visualization of reflectivity data from multiple Doppler radars. We reached our main

goal that is to preprocess the data in a way that promotes effective and high quality

large-scale volumetric visualization with minimal run-time data processing so as to

support for multiple users. Although the implementation is not yet optimized it

already provides acceptable interactivity. But there are still several ways how to

improve the visualization performance and quality further. Specifically, the

rendering algorithm should provide a fall back to a lower resolution brick that is

available in the working set on GPU while the higher resolution brick is loaded. The

contribution from bricks along the ray have to be filtered to provide smooth

transitions between different resolution levels or noticeable artifacts occur when

there is a change of resolution.

The transfer function user interface we developed provides a good way to define a

transfer function. However, the visualization can still result in visual clutter which

can be difficult to remove. This could be alleviated by allowing volume clipping

feature using clipping primitives, such as plane or box, which would allow for

further removal of occluding data.

Using the resolution samples and interpolation within each radar’s coordinates we

managed to capture even the highest frequencies in the data set. The data

resolution and coverage could be further improved by including data from TDWR

radars at airports near major cities in the U.S.

39

Last, to provide even better tool for weather analysis, the visualization should

combine and display other types of data, such as wind velocity, spectrum width,

temperature field and warnings.

LIST OF REFERENCES

40

LIST OF REFERENCES

Askelson, M. A., Aubagnac, J.-P., & Straka, J. M. (2000). An adaptation of the
barnes filter applied to the objective analysis of radar data. Monthly Weather
Review , 128 (9), 3050-3082.

Crassin, C., Neyret, F., Lefebvre, S., & Eisemann, E. (2009, feb). Gigavoxels :
Ray-guided streaming for efficient and detailed voxel rendering. In Acm siggraph
symposium on interactive 3d graphics and games (i3d). Boston, MA, Etats-Unis:
ACM Press. Available from http://artis.imag.fr/Publications/2009/CNLE09
(to appear)

Djurcilov, S., & Pang, A. (1999). Visualizing gridded datasets with large number
of missing values (case study). In Vis ’99: Proceedings of the conference on
visualization ’99 (pp. 405–408). Los Alamitos, CA, USA: IEEE Computer Society
Press.

Engel, K., Kraus, M., & Ertl, T. (2001). High-quality pre-integrated volume
rendering using hardware-accelerated pixel shading. In Hwws ’01: Proceedings of
the acm siggraph/eurographics workshop on graphics hardware (pp. 9–16). New
York, NY, USA: ACM.

Foley, T., & Sugerman, J. (2005). Kd-tree acceleration structures for a gpu
raytracer. In Hwws ’05: Proceedings of the acm siggraph/eurographics conference
on graphics hardware (pp. 15–22). New York, NY, USA: ACM.

Gibson, M. S. (2010). Gr2 analyst web pages. Available from
http://www.grlevelx.com/

Gobbetti, E., Marton, F., & Guitian, J. A. I. (2008). A single-pass gpu ray casting
framework for interactive out-of-core rendering of massive volumetric datasets.
Vis. Comput., 24 (7), 797–806.

Hadwiger, M., Kniss, J. M., Rezk-salama, C., Weiskopf, D., & Engel, K. (2006).
Real-time volume graphics. Natick, MA, USA: A. K. Peters, Ltd.

Horn, D. R., Sugerman, J., Houston, M., & Hanrahan, P. (2007). Interactive k-d
tree gpu raytracing. In I3d ’07: Proceedings of the 2007 symposium on interactive
3d graphics and games. New York, NY, USA: ACM.

Huber, M., & Trapp, J. (2005). A review of nexrad level ii: Data, distribution, and
applications. Journal of Terrestrial Observation.

Jang, J., Ribarsky, W., Sha, C. D., & Faust, N. (2002). View-dependent
multiresolution splatting of non-uniform data. In Vissym ’02: Proceedings of the
symposium on data visualisation (pp. 125–ff). Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association.

41

Jay Miller, L., Mohr, C. G., & Weinheimer, A. J. (1986). The simple rectification
to cartesian space of folded radial velocities from doppler radar sampling. Journal
of Atmospheric and Oceanic Technology , 3 (1), 162-174.

Jorgensen, D. P., Hildebrand, P. H., & Frush, C. L. (1983). Feasibility test of an
airborne pulse-doppler meteorological radar. Journal of Climate and Applied
Meteorology , 22 (5), 744-757.

Kaehler, R., Abel, T., & Hege, H. C. (2007, September). Simultaneous gpu-assisted
ray casting of unstructured point sets and volumetric grid data. In (pp. 49–56).

Kajiya, J. T., & Von Herzen, B. P. (1984). Ray tracing volume densities.
SIGGRAPH Comput. Graph., 18 (3), 165–174.

Kruger, J., & Westermann, R. (2003). Acceleration techniques for gpu-based
volume rendering. In Vis ’03: Proceedings of the 14th ieee visualization 2003
(vis’03) (p. 38). Washington, DC, USA: IEEE Computer Society.

Lacroute, P., & Levoy, M. (1994). Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Siggraph ’94: Proceedings of the
21st annual conference on computer graphics and interactive techniques (pp.
451–458). New York, NY, USA: ACM.

Lakshmanan, V., Smith, T., Hondl, K., Stumpf, G. J., & Witt, A. (2006). A
real-time, three-dimensional, rapidly updating, heterogeneous radar merger
technique for reflectivity, velocity, and derived products. Weather and Forecasting ,
802–823.

Levoy, M. (1988). Display of surfaces from volume data. IEEE Comput. Graph.
Appl., 8 (3), 29–37.

Lux, C., & Fröhlich, B. (2009). Gpu-based ray casting of multiple multi-resolution
volume datasets. In Isvc ’09: Proceedings of the 5th international symposium on
advances in visual computing (pp. 104–116). Berlin, Heidelberg: Springer-Verlag.

McNeill, A. (n.d.). Annual disaster/death statistics for us storms. Available from
http://www.depts.ttu.edu/weweb/Research/DebrisImpact/Reports/DDS.pdf

Mohr, C. G., & Vaughan, R. L. (1979). An economical procedure for cartesian
interpolation and display of reflectivity factor data in three-dimensional space.
Journal of Applied Meteorology , 18 (5), 661-670.

Nocke, T., Sterzel, T., Bttinger, M., & Wrobel, M. (2008, November). Visualization
of climate and climate change data: An overview. Digital Earth Summit on
Geoinformatics 2008: Tools for Global Change Research (ISDE’08), 226–232.

Ribarsky, W., Faust, N., Wartell, Z., Shaw, C., & Jang, J. (2002). Visual query of
time-dependent 3d weather in a global geospatial environment.

Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., & Strasser, W. (2003). Smart
hardware-accelerated volume rendering. In Vissym ’03: Proceedings of the
symposium on data visualisation 2003 (pp. 231–238). Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association.

42

Ru, Y. (2007). Volumetric visualization of nexrad level ii doppler weather data
from multiple sites. Unpublished master’s thesis, Purdue University, West
Lafayette, Indiana, USA.

Shapiro, A., Robinson, P., Wurman, J., & Gao, J. (2003). Single-doppler velocity
retrieval with rapid-scan radar data. Journal of Atmospheric and Oceanic
Technology , 20 (12), 1758-1775.

Trapp, R. J., & Doswell, C. A. (2000). Radar data objective analysis. Journal of
Atmospheric and Oceanic Technology , 17 (2), 105-120.

Vasiloff, S. V. (2001). Improving tornado warnings with the federal aviation
administration’s terminal doppler weather radar. Bulletin of the American
Meteorological Society , 82 (5), 861-874.

Westover, L. (1990). Footprint evaluation for volume rendering. In Siggraph ’90:
Proceedings of the 17th annual conference on computer graphics and interactive
techniques (pp. 367–376). New York, NY, USA: ACM.

Weygandt, S. S., Shapiro, A., & Droegemeier, K. K. (2002). Retrieval of model
initial fields from single-doppler observations of a supercell thunderstorm. part i:
Single-doppler velocity retrieval. Monthly Weather Review , 130 (3), 433-453.

Wilson, O., VanGelder, A., & Wilhelms, J. (1994). Direct volume rendering via 3d
textures (Tech. Rep.). Santa Cruz, CA, USA.

Xiao, Y., Liu, L., & Shi, Y. (2008). Study of methods for three-dimensional
multiple-radar reflectivity mosaics. SCI Meteorological Journal .

Zhang, J., Howard, K., & Gourley, J. J. (2005). Constructing three-dimensional
multiple-radar reflectivity mosaics: Examples of convective storms and stratiform
rain echoes. Journal of Atmospheric and Oceanic Technology , 22 .

	Purdue University
	Purdue e-Pubs
	4-27-2010

	Large-Scale 3D Visualization of Doppler Reflectivity Data
	Peter Kristof

