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GLOSSARY

Within this document several terms are used that require definition; the

definitions of these terms are as follows:

CPU:  Central Processing Unit. Processes all non-graphics graphics 

commands in traditional computer architecture.

GPU: Graphics Processing Unit. The Computer Hardware used to render 

images to screen and perform graphics based calculations.

RAMS: Regional Atmospheric Modelling System

NACP: North American Carbon Program

Voxel:  A volume element part of a volumetric field - a “voxel” field – used 

to describe a complete volumetric space.

C02 Viz: The application containing the implementation of this research 

and previous work by Nathan Andrysco

Real-Time: A term taken in this research to define  an interactive 

experience that allows user controlled change with near 

Instantaneous graphical feedback. Near instantaneous being 

defined at running with image generation speeds lower than 33ms.

Dataset: The collection used throughout this research is combination of 

both geometric and 'real-world' data, that is, advected 
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measurements of carbon dioxide transmission within the earth's 

atmosphere.

Offline Rendering: Previous attempts at visualization the NCAP dataset 

are considered 'offline' rendering methods, that is, that they do not 

provide immediate and interactive results. The controls and images 

are produced on demand and take a generation time of greater 

than 33ms for each image, and the resultant experience is less 

than 30fps.

Pre-Process: Any function or program that performs its tasks prior to 

execution of the main rendering suite. A Pre-process is not 

considered part of rendering system of a real-time application.

Pixel: An element of a frame-buffer containing color information.

Normal: A vector defining a direction perpendicular to a surface.

Vertex: A collection of coordinates defining a position in space.

MB: (Megabytes) a measure of size often associated with data on disk.

PPM: Parts per Million, a measure of concentration.

Legacy Software: The previous visualization project completed in 2009 

(Andrysco, Gurney, Benes, & Corbin, 2009).

ASCII: American Standard Code for Information Interchange, used in this 

research to indicate data that is presented using regular characters 

and numbers that the data is readable to a human without machine 

decoding.
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ABSTRACT

Lambert, Jason B. M.S., Purdue University, May, 2010. Data Structures and 
Techniques for Visualization of Large Volumetric Carbon Dioxide Datasets in a 
Real Time Experience. Major Professor:  Bedrich Benes.

This thesis covers new research into real-time rendering of volumetric

carbon dioxide data collected in the Vulcan project. The Vulcan project, a multi-

disciplinary initiative to quantify carbon dioxide mass flux from residential, 

commercial and industrial sources headed by Gurney et al ( Gurney, K. R., 

Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., and 

de La Rue du Can, S. , 2009). The Vulcan datasets are a significant aid for policy 

makers, scientists and the general public alike as the collection was completed at 

a much finer space and time resolution than ever before.

A previous visualization attempt, completed in 2009 (Andrysco, Gurney, 

Benes, & Corbin, 2009) was able to visualize the data in an offline environment, 

noting constraints of data size and disk speed access as the most significant 

drawbacks for real-time visualization. 

This thesis presents research towards a new real-time visualization suite 

in the areas of compression, data representation and simplification. The research 

hypothesizes that the use of these techniques will enable sufficient speed of

rendering  and loading to enable real-time data exploration.

The results show that a combination of techniques used in compression 

and the use of optimized indexed geometric structures allows the dataset to be 

explored and rendered in real time.



1

CHAPTER 1. INTRODUCTION

This chapter introduces the research by presenting the problem statement

and associated research questions. The chapter concludes by defining the 

assumptions used as well the scope and significance of this particular research 

thesis.

1.1. Problem Statement

This research explores visualization and rendering data structures in order

to determine the effect of key visualization algorithms and compression 

techniques when creating real-time visualizations the atmospheric carbon dioxide 

(CO2) concentration fields, the Vulcan data. The Vulcan data is collected from 

commercial and federal data sources including airports, roads and domestic, 

commercial and industrial buildings is comprised of point, line and area mass flux 

data sources. The research will specifically explore the effects of compression 

and rendering algorithms on the size of the data on disk, and methods for loading 

and rendering the data at tune-time. Additionally this research helps scientific 

users to visualize one of the key carbon budget components of the North 

American Carbon Program (NACP); fossil fuel CO2 emissions and their transport 

within the atmosphere as a 3D real-time experience.

The Vulcan dataset is 5 dimensional data of CO2 concentration over time 

in volumetric space. With the complete dataset in the order of tens of gigabytes 

in size, there cannot be a real-time complete visualization of the true data source 

as indicated by Andrysco (2009). This is a problem traditionally solved with 

several strategies, data compression and blending between various discrete 
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levels of detail to simulate a continuous spectrum and changing the format of 

run-time rendering to a less data intensive format.

1.2. Research Question

This research focuses on a single primary question and breaks this down 

into several secondary research questions.

1.2.1. Primary Questions

What are the most appropriate methods of compression, loading and 

rendering for real-time visualization of atmospheric Vulcan CO2 

concentration data?

1.2.2. Secondary Questions

What is the effect of data representation optimization?

How can arbitrary surfaces be appropriately blended together to form a 

continuous spectrum across multiple ?

How can memory be most efficiently managed to provide the 

smoothest loading of new data in real-time?

What techniques offer an appropriate reduction in data size while 

maintaining integrity of the data

What is the most appropriate rendering method given the previous 

work?
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1.3. Scope

This research is limited to the Vulcan atmospheric CO2 volumetric dataset

used for previous research in 2009 (Andrysco, Gurney, Benes, & Corbin, 2009).

However many of the concepts presented generalize into generic volumetric-

over-time datasets. Additionally, the scope of this research is limited to creating a 

real-time visualization for the scientific community. As such, performance testing 

will be performed on a "high-end" computer work station, that is, a PC with 

advanced workstation hardware (for example a Quad-core CPU with more than 

3GB of RAM and a G80 or higher GPU)

1.4. Significance

This research expands knowledge in the field of real-time volumetric 

rendering, offering methods for effective visualization of atmospheric carbon 

dioxide data. By providing a best-practices approach to volumetric rendering in 

real-time, this research serves as a guide to others attempting to bring a dataset

traditionally viewed as "too large" into the real-time visualization domain. 

Additionally, by providing a novel interactive visualization of the Vulcan dataset,

the research will allow scientific researchers to gain greater understanding of the 

more subtle, yet extremely important, nuances present within the dataset that 

were previously not visible in visualizations.

Not only is the graphics research significant, but the carbon dioxide data 

visualization is significant for furthering scientific knowledge and public 

awareness of the study of emissions. Politically, the study of emissions will drive 

a new host of environmental legislation, and the insight from visualizations 

produced by CO2 Viz will be an invaluable tool to new policy makers, scientists 

and consumers alike.
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1.5. Assumptions

This research is performed and conclusions drawn using the following 

assumptions:

The latest Vulcan dataset is representative of both past and future Vulcan 

datasets in its data format and size.

Specific computer hardware and software used to implement solutions do 

not alter the generalization of the results unless specifically mentioned.

1.6. Delimitations

This research is performed acknowledging the following delimitations:

The research will not be tested on every graphics card configuration to 

identify driver nuance effect on implementation.

The pre-processing time is not included in the real-time performance 

evaluation.

Other classes beyond the degree of the Vulcan volumetric datasets are 

not considered.

The lighting and shading requirements for effective presentation to users 

of the software are not considered as variant.

No other users apart from scientific professionals are considered, that is 

the usability of the testing software is outside the scope of this research.
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1.7. Limitations

This research is limited by the following:

The real-time rendering implementation uses pre-processed data and thus 

not all calculations must be performed at run-time.

Performance is only considered on high-end consumer computer 

hardware.

1.8. Chapter Summary

This chapter introduced the research contained within this thesis, outlining 

the key research questions and variables. Additionally this chapter noted the 

limitations and delimitations of the chosen scope, and its contribution to  the body 

of knowledge by explaining the significance of the research.
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CHAPTER 2. LITERATURE REVIEW

This chapter provides a summary of recent research literature in the areas 

of volumetric visualization and the Vulcan project, providing both a base 

understanding of the methods in the subject area as well as motivation going 

forward to new methodology.

2.1. Introduction and Motivation

This thesis defines a suite of new rendering data structures alongside a 

new visualization application that extends a previous study (Andrysco, Gurney, 

Benes & Corbin, 2009) into the visualization of the Vulcan fossil fuel CO2

emissions inventory as transformed by simulated atmospheric transport (Gurney, 

K. R., Mendoza, D. L., Zhou, Y., Fischer, M. L., Miller, C. C., Geethakumar, S., 

and de La Rue du Can, S. 2009)

The Vulcan project (Gurney, et al., 2009) accomplished quantification of 

fossil fuel CO2 emissions over the U.S. in much greater space/time detail than 

previously achieved. The Vulcan emissions data product was input as the 

surface flux field to a Regional Atmospheric Modeling System (RAMS), a 

mesoscale atmospheric transport model developed at Colorado State University.

Using RAMS, the project created a unique dataset (the “advected” data) of

volumetric CO2 emissions over the course of a full year in a much finer time-scale 

than ever achieved before. The atmospheric model showing the strong 

correlation of convection of the carbon dioxide along seasonal weather patterns 

raises important questions to many user-communities. As Andrysco (2009) states 

such interested user communities includes “educators, policymakers, 
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demographers and social scientists.” The purpose of exposing user groups to 

this data is to aid in indentifying the total American carbon ‘footprint’, noting 

subtle changes in the atmospheric concentration over  desired areas on the 

continental United States.

2.2. Previous Visualization project

Andrysco (2009) created a visualization suite, C02 Viz, for exploring the 

transport data created by Gurney (Gurney, et al., 2009). Taking into account the 

varied user base consisting of both scientific users and the general public, 

Andrysco transformed the 2D data points originating from the advected RAMS 

data into 3D visualizations through a newly developed computer application. The 

application developed chiefly by Andrysco, seen in fig. 2.1, presents users with 

the ability to create visualizations unique to their purpose by way of single 

location, time and viewing angle selection. However Andrysco notes significant 

limitations in the application‘s ability to run at interactive rates because of limiting 

computer architecture bottlenecks such as the high memory requirements of the 

large dataset and then subsequent slow memory and disk access rates. 

Andrysco states “the next step is to explore methods to facilitate interactivity” (p.

3) and this thesis presents a method of achieving this goal.

The most significant visualization present in the lagacy software for the 

purposes of continuing research into interactivity is the generation of an Iso-

surface of the advected CO2 in the atmosphere because of the increased insight 

into CO2 transport and weather phenomena that this iso-surface shows.  

Andrysco’s visualizations bring many of Gurney’s (Gurney, et al., 2009; Gurney 

et al., 2005) conclusions to light, such as the strong summertime transport of 

Southern Californian air across the Pacific Ocean the Gulf of Mexico.
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Figure .2.1 Legacy C02 Viz.

Andrysco’s application allows the generation of offline, non-interactive 

content, one example being a highly watched video seen on YouTube 

('Revolutionary' CO2 maps zoom in on greenhouse gas sources, 2008).

Andrysco's application generates many images, with rendering times often taking 

10 to 20 seconds per frame that may be linked to form a video. While this

generated multimedia is a strong tool for the user-base and scientific community,

the experience offered is far from the desired real-time exploration of this 

dataset. The videos generated are limited in information scope, lacking in visual 

fidelity, and take large amounts of time and processing power to produce. The 

geometric data produced by the legacy software is discarded after use, and any 

subsequent viewing of the data from a different viewing perspective requires re-

generation of the visual representation. Thus a new real-time rendering system 

will discard re-generation of the legacy software's data by storing and utilizing the 

data from disk. The entire scheme of data flow from raw data through the various 
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systems to the new system is explained in fig. 2.2. The final new element, 

colored green, is the culmination of this research's contributions, the new C02 

Viz and resides on the top of the data flow.

Figure 2.2 The Rendering system in context with previous systems.

2.3. User base

The results of the legacy software (Andrysco, et al., 2009) have already 

been circulated in the scientific community by releasing the visualizations on the 

internet via streaming video and Google Earth (Purdue University News, 2009).

Distribution of the video across the internet and the incredible number of views 

indicates the wide interested user base of the data. In order to best service the 

audience of this data, both scientific professionals and the general user must be 

taken into account with the presentation and interface design. 
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Hadwiger's research in volumetric rendering (Hadwiger, Ljung, Salama, & 

Ropinski, 2008), compared with Marsalek's research in the same field (Marsalek, 

Hauber, & Slusallek, 2008) noted that the advanced techniques required to 

produce real-time performance demand a significant level of consumer hardware. 

At the time of writing, this level of hardware translated into consumer terms 

means a GPU equivalent to an Nvidia GPU of the 8xxx series or higher. While 

this hardware is easily available and priced at fewer than 200 dollars at the time 

of writing, it is not in use by everyone outside the scientific community. Because 

considering penetration of such consumer hardware is out of the scope of this 

research, an additional research effort is required to effectively distribute the new 

visualization to general consumers. Such an effort might continue to use video 

presentations and internet media. Beyond the technology required, additional 

consideration must be given in the application design and usability. Noting the 

goals of the user base, to disseminate knowledge from the dataset, the 

application must expose this data at the correct level.

2.4. Iso-surfaces

The first exploration into interactivity would be to re-use the once 

discarded geometric data generated from C02 Viz (Andrysco, et al., 2009).

Because the geometric data present in a single frame is of a reasonable amount 

for real time rendering the entire set is not immediately suitable for real time. The 

data taken from C02 Viz must therefore be captured and stored using geometric 

compressing data structures. First published by Lorensen in 1987 (Lorensen, 

2006; Lorensen & Cline, 1987) a method for creating hardware-renderable 

geometric data from volumetric datasets is introduced and called marching 

cubes. The algorithm, now out of its copyrighted period is free for use and

Andrysco implemented the marching cubes algorithm for creation of the 

geometric representation of the advected Vulcan data. In order to compress the 

data from Lorensen’s algorithm, which voxelizes the advected dataset before 
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producing a surface polygonal patch, the voxelization parameters must be 

reconstructed and then the geometry may be recorded. Geometric 

correspondence produced by the marching cubes algorithm from frame to frame

is unpredictable. Thus the methods of compressing the actual marching cube 

produced geometry (the “triangles”) and compression of the parametric data (the 

“indexed” data) are contrasted.

Knowing that the geometric data from Andrysco’s application is of a four-

dimensional structure, covering volumetric space over time, Neophytou 

(Neophytou & Mueller, 2002) describes efficient methods for rendering such 

volumetric data. Utilizing point splatting 3D-data points over time, the GPU 

creates view dependant geometric data. Neophytou indicated that instead of 

storing geometry, a parametric point cloud dataset is stored; an efficient point 

based rendering technique can then be used to obtain an approximated 20% 

performance increase over polygonal (traditional) geometric renderer. Not only is 

the rendering speed increased, the parametric dataset is often a reduced 

dimensionality than geometry, and thus takes up far less data storage space.

Neophtou’s point rendering method is effective, but the final images it produces 

do not have as high visual quality as desired by C02 Viz, and as such are not a

candidate for the Vulcan CO2 Viz suite. However utilizing Neophytou’s ideas on 

data structures, better rendering solutions are discussed later.

2.5. Methods for Optimization

Correa (Correa, Klosowski, Morris, & Jackmann, 2007) details an entire 

visualization framework for distributed computing dissemination of large datasets

in real time. Correa’s suit, while detailing important optimizations for rendering, 

applies them to a different subset of volumetric rendering than that within the 

research question  of this thesis, that of rendering a large amount of geometrical 

data in a distributed environment. Andrysco’s (Andrysco et al., 2009) application 

produces a “reasonable” amount of geometry for a given time step in the data, 
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and thus the raw amount of geometrical data generated does not overwhelm a

single CPU or GPU and thus require a distributed architecture. However many of 

the optimization techniques used on Correa’s application suite can enhance the 

use of the data structures present in this thesis. Correa lists  “spatialization, 

simplification, view-frustrum culling, occlusion culling, multithreading and 

prefetching” (p. 12) as being implemented within the suite.  Correa explains each 

listed technique, and spatialization, simplification, multithreading and prefetching 

are applicable for use with the Vulcan Data compression and rendering.

2.5.1. Data Compression

Noting a significant limiting factor in the performance of the previous 

visualization was the “memory access time” (p. 11) (Andrysco, et al., 2009) and 

thus to overcome that performance bottleneck the amount memory used by the 

data must be reduced without compromising the information contained therein. A 

field of research that addresses this problem is data compression. 

Fout (Fout, Ma, & Ahrens, 2005) postulates that while the analyst’s ability 

to create large scale numeric simulations increases, the data being produced is 

often occupying “hundreds of gigabytes and often several terabytes” (p. 1). This 

severely degrades the performance of computer application attempting to use 

this data, as memory sizes are often orders of magnitude less than this size and 

data read time from memory is prohibitively slow. This claim is reinforced by 

Andrysco, as file sizes of the Vulcan volumetric data, as read from the Vulcan 

public website (Department of Earth and Atmospheric Sciences, 2007) average 

file-size is approximately 5 gigabytes. Fout exploits correlation in volumetric data 

to produce strong compression in time-variant data. The data structures used for 

the Vulcan project must therefore establish frame to frame correspondence.

Combining time-variant volumetric compression with traditional geometric 

compression LOD models would require significant pre-processing of the large 
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volume datasets. The computation time is a variable to minimize when 

considering increasing application performance. Khodakovsky’s research into 

(Khodakovsky, Schröder, & Sweldens, 2000) progressive geometric 

compressions affords the final application high run-time efficiency and flexibility. 

Care must be taken in compression however, as Neophytou (Neophytou & 

Mueller, 2002) adds in final remarks to his research that a significant drawback of 

improving compression is the extra work that is required at run-time to 

decompress the data.

2.5.2. Level of Detail

Song (Song, Bai, & Wang, 2006) describes a method of geometrical 

metamorphosis used for compression of an object between levels of detail 

(stages of change, morph targets, within the transformation) from an acquired 

dataset. Song’s method is indicative of a class of methods that change a

polygonal representation of a surface (such as that resultant from Andrysco’s iso-

surface generation) to an implicit surface representation, in this case, a Bezier-

spline patch surface. With claimed data reduction of 90%, it would seem like an 

ideal technique for application with the Vulcan data. Song notes that finding 

geometrical correspondence, the process of identifying key characteristics of an 

object that give meaning to the surface between different representations, is very 

difficult on an arbitrary geometrical object. The geometrical data produced by the 

marching cubes algorithm used by Andrysco’s (Andrysco et al., 2009) application 

is indeed an arbitrary object with no apparent “features” and varies greatly 

depending on the parameters of time and CO2 atmospheric concentration. Song 

defines a unique method for finding correspondence in an arbitrary shape with no 

human input required, however the shapes and surfaces used an input into 

Song’s method are 3D scans of real objects, which can be approximated by a 

continuous surface. As such the Vulcan data would require up to hundreds of 

such surface approximations. This exemplifies a common problem with 
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implementing an implicit surface reconstruction; the Vulcan data is too chaotic for 

“regular” or “orderly” techniques, as such techniques would fail to wrap the 

complete dataset. Thus, while Song notes that the results are “aesthetically 

pleasing”, the expected error rate in use of Song’s method or techniques of the 

same class on the chaotic Vulcan geometry would be too high.

To improve the performance of the CO2 Viz system to real-time 

standards (that of reproducing images at speeds greater than 30hz) discrete 

LOD methods such as those discussed by Luebke (Luebke, Reddy, Cohen, 

Varshney, Watson, Huebner, 2002) are used. Luebke notes that LOD details are 

done as a pre-process and that the users viewpoint into the data cannot be 

predicted, thus the Vulcan data must be uniformly reduced across the sample 

space (a desired parts-per-million). Luebke notes that this approach is the most 

amicable to modern graphics hardware as the rendering process and data 

simplification are decoupled, and the decoupled simplification process can then 

be performed in as much time as desired. 

2.6. Terrain Visualization

The new Vulcan visualization requires not only direct rendering of the CO2

data, but additionally the images that place the Vulcan data in context, satellite 

imagery of the United States. Andrysco (Andrysco et al., 2009) utilized 

Geographical Information System (GIS) data in his visualizations and in turn the 

same GIS data is of use to the new visualization. In Polack’s book (Polack, 2002)

he outlines several methods for real-time large scale terrain visualization, the 

most robust and effective of these methods is an improvement on an older 

algorithm entitled “Real-Time Optimally Adapting Mesh” (ROAM). ROAM 2.0, the 

improved version of the original ROAM algorithm was updated by Seamus 

McNally and is covered in research by Turner (Turner, 2000). McNally’s 

improvements to the ROAM algorithm involve eliminating data redundancy by 

establishing coherence between render frames and only applying slight 
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modifications to the ROAM structures at any given time step. The effect of these 

changes reducing the need to recreate the data structure every frame 

significantly boosts the performance of the algorithm, to the point at which run-

time use of the algorithm is almost unnoticeable on modern computing systems. 

ROAM has been used successfully by Hwa (Hwa, 2005) in his research 

regarding planetary terrain geometry and texturing, proving the algorithm is both 

usable and scalable for larger terrain sets like those used in Andrysco’s 

application.

2.7. Rendering System

Two competing rendering system types are contrasted: Direct Volume 

Raycasting and Boundary Surface Representation by either points or polygons 

(triangles, quadrilaterals).

Using the compressed volumetric data across all levels of detail the 

advantages of a point based rendering system as described by Neophytou 

(Neophytou & Mueller, 2002). Neophytou’s rendering system, however, is not 

interactive, as it does not use any GPU acceleration. Any rendering system 

wishing to be interactive would require GPU implementation given such a large 

dataset. Neophytou’s point based rendering system can be contrasted against 

other leading volume rendering techniques as Hadwiger (Hadwiger et al., 2008)

states that volume ray-casting is the "state of the art technique for interactive

volume rendering.” (p. 2). Hadwiger describes GPU implemented rendering 

techniques for volume ray casting that provide not only convincing images, but 

provide a basis for advanced illumination techniques such as ambient occlusion 

and soft shadowing. In Hadwigers 2008 course notes, he states that experts 

agree that direct volume ray-tracing (DVR) can be superior to polygonal

boundary representation as any DVR algorithm does not have to calculate a 

surface representation. The results of Hadwiger prove to be superior to that of 

both polygonal surface representation and point based rendering systems yet 
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contain a much higher memory footprint of operation as the source data is 

required for rendering. This claim is backed by Marsalek’s (Marsalek et al., 2008)

research into high speed ray-casting using Nvidia’s CUDA programming 

language. Marsalek’s results show that using the latest graphics hardware, direct 

ray casting can be implemented with performance results equal to that of 

previous techniques of volumetric rendering but with greater visual fidelity. 

Storing all the data and performing the ray casting algorithm in parallel directly on 

GPU affords this increased performance. Volumetric ray-tracing as Hadwiger

(Hadwiger et al., 2008) explains, contains two key elements: the volumetric data 

and the transfer function. The transfer function can be modified by the user in 

real time to create a unique visualization that is visually stunning and affords the 

user a far greater perception of the data than a surface polygonal representation 

ever could.

Yet the images that DVR techniques create are at the price of memory. As 

there is significant preprocessing (done at application run-time) and these 

techniques still operate directly into the source data-set. Comparatively;

boundary surface rendering systems such as QSplat and traditional triangular 

based meshes require the least amount of memory per frame. As described in 

the research by Rusinkiewicz and Levoy (Rusinkiewicz, S. and Levoy, M. 2000)

documenting QSplat (2000) the authors describe how with larger data, like that of 

the Vulcan dataset, the size per-surface can be greatly reduced with triangle 

based representation, and even further by point based representation and 

rendering. By ignoring connectivity information the data is reduced, theoretically, 

by 33%, and as described by Rusinkiewicz and Levoy by still retaining normal 

data for the points, the splats can be rotated to maintain boundary lines, and 

filling algorithms can be used to ensure close to full coverage in a particular 

image. The run-time rendering complexity of the system is explored and the 

results suggest suitability for application with the Vulcan system. However QSplat 

techniques as described by Rusinkiewicz are not implemented for time varying

meshes/surfaces like the Vulcan data set and additional novel techniques will 
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need to be introduced to cover the full functionality required for real-time 

rendering of the full Vulcan dataset.

2.8. Lighting and Shading Techniques

Beyond the initial rendering system, there exists a class of algorithms 

dedicated to improving the visual quality of a single image, referred to in this 

thesis, as lighting and shading techniques. The implementation of key shading 

techniques will greatly enhance the final image, and thus the speed of 

information dissemination by the target user-base of the visualization. However 

additional processing time must be devoted to the techniques, and the additional 

processing time required by each new technique must be evaluated against the 

potential gain in quality.

Neophytou’s (Neophytou & Mueller, 2002) research into point based 

rendering states that an important effect for blending between levels of detail of 

animated data is motion blur, blurring the transitional effects. By blurring the data 

with motion blur, each frame further emphasizes the time dimension of the data. 

An additional advantage of motion blur as Potmesil (Potmesil & Chakravarty, 

1983) describes is that it removes the appearance of aliasing in animated 

transitions for any given object. Because the Vulcan data will operate on several 

levels of detail, and is inherently “data in motion”, that is that the CO2 is

volumetric particles in motion in the atmosphere, motion blur is an important 

effect for inclusion. Potmesil describes a new method of motion blur synthesis by 

way of a camera synthesis model, using cascaded optical transfer function that 

can express time dependant changes of an object position and direction. Both 

position and direction play important roles in the meaning of the Vulcan advected 

data, and emphasizing these effects will enhance the experience.
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To further help the user distinguish the nuances of the surfaces

generated, there exist several advanced illumination algorithms that approximate 

the global illumination algorithms present in high fidelity low-performance offline 

rendering systems. Ambient occlusion is one such illumination algorithm that 

estimates the global visibility across the rendered surface. Hadwiger (Hadwiger 

et al., 2008) details a method for computing ambient occlusion with direct volume 

raytracing that includes semi-transparent samples and translucency. Hadwiger’s 

methods simulate key visual features such as “direct lighting, shadows and 

interreflections” (p. 79). Hadwiger’s algorithms are suitable for implementation 

with a direct volume rendering system and not for a boundary surface system.

2.9. Conclusions

The previous Vulcan visualization paved the way for this thesis, however 

many new steps and techniques will be applied to achieve interactivity. Utilizing 

methods used by Andrysco in data generation, a new compressed and optimized 

series of levels of detail of the Vulcan dataset must be created used principles 

found in Luebke (Luebke et al., 2002) and Neophytou (Neophytou & Mueller, 

2002). Principles such as data simplification, compression and representation.

2.10. Chapter Summary

This chapter summarized existing literature on the subject of volumetric 

visualizations and the methods used by others for improving such visualizations 

for real time experience of large data-sets. The main rendering methods of 

rendering systems were compared and contrasted, as well as providing a brief 

summary of the suitability of other key components for a complete visualization of 

the Vulcan data set, such as terrain visualization. Additionally the chapter 

covered previous work in the Vulcan project, and how this provides a motivation 

for new research in the volumetric visualization research field.
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CHAPTER 3. METHODOLOGY

This chapter will cover the implementation of the Vulcan real-time 

rendering system and also research framework, sample set and testing 

methodology used in this thesis.

3.1. New C02 Viz Rendering System Introduction

The combination of compression, rendering system data structures, layer 

interpolation, terrain rendering and lighting and shading techniques that are 

tested in this research creates a complete new real time rendering system. The 

data flow diagram of this system that relates these research areas is shown in 

fig. 3.1.

The new C02 Viz is a C++ application suite that is capable of testing 

rendering and compression algorithms and data structures for their suitability in 

rendering the Vulcan Data in real-time. The application suite consists of two 

independent C++ applications; a compression pre-process application and a real-

time loading and rendering application.

3.2. Triconverter, A simplification and data sorting application

The first application in the C02 Viz suite is named Triconverter and is 

chiefly responsible for transforming the data from the format used in previous 

visualization attempts and compressing the data accordingly into a format that 

may be quickly read by the real-time loading and rendering application.
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Figure 3.1 General Data Flow Diagram for a real-time C02 Viz.

Triconverter was developed iteratively, initially using a indexing method to 

reduce the data size, and outputting data in ASCII format for rendering testing. 

This method proved useful for getting initial prototypes of the rendering system 

running, but did not provide adequate compression ratios. Initial compression 

ratios were in the magnitude of only 10-25% with indexing alone. Once the data 

was converted into binary format (that is data unreadable to a human being but 

readable quickly in bulk into computer memory) and simplification algorithms 

employed the compression ratio became much more desirable, the results of this 

application are outlined in section 4.2.

The application is without a GUI and is run in the command line for 

increased speed and easier batching. The program first asks for a host directory, 

and then begins to scan this directory for all suitable geometric data files written 

by the legacy software.
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Figure 3.2 Triconverter Behavior.

To transform the data, as indicated by fig. 3.2 Triconverter employs a  

dynamic grid across the data volumetric space and then indexes this grid as a list 

of geometric primitives are read in from the input data.  As a primitive is read, its 

constituent vertices are checked against the database of existing vertices in the 

grid, with duplicates being removed and final indices into the database stored. 

The simplification algorithm in pseudo code is shown in table 3.1.

To test the effectiveness of this algorithm, Triconverter would be 

executed twice on the data provided by the legacy software at varying PPM 

levels.  Triconverter would be an invisible application to the final user of the

software suite, and is only run a few times to create the compressed data sets 

used by the rendering application at a later time. Triconverter would only need to 

be run again once new Vulcan data sets are collected.
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Table 3.1
Simplification Algorithm

Step Description

1 Take Point p1 from Data

2 Check Point p1 against every other point px in the dictionary

test using simplification threshold

3 If p1 is unique, that is, is it greater than length dl from all px add 

it to dictionary : else discard p1

4 If there are still uncategorized points, go to step 1 else finish

The algorithm is implemented using the search functions within the C++

standard templates library (STL) which allows easy change of the simplification 

tolerance, and maximized execution speed. In addition to the algorithm outlined 

in table 3.1, there are several other switches which may be toggled to change the 

final outcome (often for testing purposes). The switchable flags include; removal 

of degenerate triangles; process points only, points and normals or full polygonal 

representation. The output of the software is then up to 3 binary files containing 

geometric information and a single ASCII header file used to index the geometric 

data. The file types are summarized in table 3.2. The specific testing variables 

are discussed in section 3.4, 3.5 and 3.6.

3.3. Loading and Rendering Application

The final run-time, and program presented to general users is an 

application in the new C02 Viz suite that is responsible for loading the data 

generated by Triconverter and rendering it in real-time. This behavior is 

summarized in fig. 3.3.
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Table 3.2
Triconverter File Types

Extension Description

Head.ivh ASCII header file containing index locations for each frame 

present in the data series

I.bin Binary format containing polygon index information for all 

frames in a series

V.bin Binary format containing vertex information  for all frames in a 

series

N.bin Binary format containing normal information for all frames in a 

series

This application would be chief entry point of the "users" of the  application suite, 

and be the "face" of the Vulcan dataset as it has a graphical user interface (GUI) 

more suitable for user interaction than a rapid terminal.

3.3.1.1. Loading

The rendering application covers the bulk of the behaviors outlined in fig. 

3.3. It is therefore most important that this application has satisfactory run-time 

performance that allows users to manipulate their view into the Vulcan dataset 

minimizing stuttering or delays. The results of the applications performance and 

the techniques used are covered in sections of 4.3, 4.4 and 4.5 of this chapter.
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Figure 3.3 Real-Time Application Behavior.

Using the reverse operations of binary reading, the run-time application 

caches the entire header file into RAM, which is only a small file in the order of 1-

2KB. Using the file index, the run-time application can load a set number of 

frames at once into a rendering container . The specific parameters of loading, 

frame number, data type and operating thread can be controlled for testing. All of 

this CPU code handling file operations is implemented in the C++.Net 

Framework, using managed C++ to control the GUI and event framework (such 

as buttons and folder browsers), while retaining elements of unmanaged C++ for 

lower level file operations and graphics API communication.

3.3.1.2. Lighting and Shading

To visualize the data once it is loaded into RAM, the data may be 

rendered using the GPU and the OpenGL Shading Language (GLSL)  to control 

the final vertex and pixel positions. Depending on which  geometric 

representation the data is stored in (point, point/normal or polygon) the rendering 
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method employs a different shader set. The top objectives of the shaders are as 

follows:

Maximize data visibility with information available

Maximize rendering speed

Maximize data coverage when working with reduced data representations

For point based representation, the vertex shader controls the size of the 

point sprite based on the  distance from the camera. As the point is found to be 

closer to the virtual camera the point size increases, thus pixel holes are mostly 

filled in this way.

For polygonal representation, the vertex shader does not use point sprites, 

but instead performs the standard transformations.

For all geometric representations, the fragment shader applies a ramp 

texture to the final result, varying the color by height, so as to maximize the data 

perception.

3.3.1.3. Layer Interpolation

Once the data is loaded in memory and ready to be rendered in a 

continuous blend from known data points to produce a full spectrum of 

information approximating the source dataset. This feature is a novel method 

that in psedo code is as follows in table 3.3 - this method is executed at tun time 

each frame.

This method does not require a particular input representation, but is 

sensitive to holes in the textures generated in step 1 - therefore is best used with 

Triangle based meshes or dense point clouds.
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Table 3.3
Interpolation Algorithms

Step Description

1 Render target objects (two known sufaces) to floating-point 

textures, storing normal and position information. 

2 Render a full-screen quad to texture, sampling the four 

textures generated in step 1 to interpolate between the two 

points in space defined by a unique texture coordinate. This is 

done by sampling the two positions and normals, and using a 

bezier cubic equation, and a desired interpolation percentage.

3 Render to the window, sampling the texture generated in step 

two to find new vertex positions.

4 Transform and shade these new points using the point based 

rendering system described earlier.

The algorithm in C02 Viz is implemented in GLSL in order to remain 

platform independant and expose the highest possible API possible on a given 

graphics card. The algorithm requires 3 framebuffer OpenGL objects ( alongside 

the standard window framebuffer) and the vertex texture fetch extension from the  

graphics card driver. 

3.4. Research Framework

This thesis presents a quantitative study on the most appropriate methods 

for real-time visualization of the atmospheric Vulcan data. The research follows 

an experimental model that will manipulate several key independent variables:

Method of geometric data compression
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Method of data representation

Method of run-time data buffering

Use of lighting and shading techniques

Use of layer interpolation techniques

The effect of these variables will be measured across four performance areas:

Data reduction, measured in percentage reduction of both file size on disk, 

and size in memory.

Run-time loading time (primary interest), measured in milliseconds per 

data frame.

Rendering complexity (primary interest), measured in the milliseconds per 

image frame generation.

Pre-Processing Time, measured in milliseconds per data frame.

The research will focus on testing several null form hypotheses, identifying 

each correlation as specific to the Vulcan data, if Hax is proven.

Ho1 There is no effect of data compression on run-time rendering complexity 

and loading time.

Ha1 There is an (positive) effect of data compression on run-time rendering 

complexity and loading time.

Ho2 There is no effect of the method of data representation on the run-time 

rendering complexity, loading time, and data reduction.

Ha2 There is an (positive) effect of data representation on run-time rendering 

complexity and loading time.
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Ho3 There is no effect of loading method on run-time rendering complexity and

loading time.

Ha3 There is a (positive) effect of loading method on the run-time rendering 

complexity, loading time, and data reduction.

3.5. Sample set

The research will use Regional Atmospheric Modeling System (RAMS) 

advected datasets. At the time of writing the most recent set available is the 2007 

power plant-residential air data collection for the atmospheric carbon dioxide 

across the continental United States of America. The dataset was originally used 

in the legacy software (Andrysco et al., 2009) and is used with permission from 

the Vulcan project for the new research.

3.6. Testing Methodology

The experimental design involves implementing a visualization application 

capable of determining the effect of the independent variables (method 

choice/inclusion) on the dependant variables (performance). This implementation 

is a software suite called "CO2 Viz". The tests will be conducted in a 'laboratory' 

style test computer system, utilizing several methods of data collection.

The implementation of the rendering system will consist of a Microsoft 

Windows application using the following significant libraries:

C++.Net language for CPU code

OpenGL library for GPU code

The dependant variables will be measured using well accepted scientific

computer clock measurement. Using the C++ library computer clock 
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measurement to calculate processing and rendering time, the rendering process 

was measured at all stages of execution in isolation, so as to minimize the effect 

of measurement on the results. Additionally, run-time graphical performance is

measured both by computer clock speeds and high performance graphics 

benchmarking software. The program that is used to benchmark rendering is 

beepa FRAPS (Fraps 2010). The benchmarking software is run as an additional 

process to the C02 Viz software running in a separate thread. A detailed 

spreadsheet is created on the rendering benchmark and is analyzed after 

program execution.

The laboratory test computer is operated under the following specifications 

and conditions:

Core i7 architecture CPU 920

NVIDIA GeForce GTX275 896MB GPU

6GB System RAM DDR3-1066

NVIDIA Graphics Drivers (185.5) (latest as of writing)

Defragmented 7200RPM Hard-drive

Fresh start-up Windows 7 64bit operating system with bare-bones process 

set in operation.

The test will be performed in the following order:

Compression

o This suite of tests will determine the effects of the independent 

compression variables (simplification tolerance, representation 

format) on the  dependant variable of size on disk. Secondary 

dependant variables include compression time.

Loading



30

o This suite of tests will determine the effects of the independent  

loading variables (threaded loading, burst loading) on the 

dependant variable of loading time.

Rendering

o This final suite of tests will determine the effects of the independent 

rendering variables (representation format, simplification tolerance, 

burst loading) on the dependant variables of rendering time.

3.7. Data Sources

From the previous testing methodology, several data sources are generated:

Primary:

System Clock Measurements (quantitative tabulated numerical data)

Rendering Performance Measurements (quantitative  tabulated numeral 

data)

3.8. Data Analysis

Three identical pre-determined sequence testing routines are completed 

independently from each other for each hypothesis (section 3.1)

Computer Start-up

C02 Viz Start-up

Initial loading of Vulcan Data-Set 

Then the quantitative measurement takes place for each rendering 

component.
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The quantitative data is statistically analyzed for establishing the 

correlation between the key independent and dependant variables.

3.9. Chapter Summary

This chapter covered the key variables for scientific investigation and the 

testing conditions for which the implementation application, C02 Viz, will be 

tested under. Additionally, the data collected from the three identical testing 

sessions was outlined in both type and method of analysis.
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CHAPTER 4. RESULTS

This chapter will cover the results generated by applying the testing 

methodology detailed in chapter 3 of this thesis. The chapter begins by delving 

into each component outlined in the process overview. Initially the compression 

ratio results are detailed, followed by results from method of geometric data 

compression and the amortized loading times and then finally ending with run 

time rendering analysis of the loading, lighting,  shading and interpolation 

techniques.

4.1. Compression Results Related to Size on Disk

The first results are obtained from passing the full collection geometric 

data, outputted from the legacy software into Triconverter, and measuring both 

the size on disk per data frame, and compression and simplification ratios. The 

results, utilizing the system clock to measure time differences, and the operating 

system to measure data sizes are detailed in tables 4.1 ,4.2 and 4.3 and fig. 4.5, 

4.6 and 4.7.

Table 4.1 shows the results of the compression process, which is the 

combination of data representation and simplification. The simplification process 

implemented removes degenerate data as well as reducing data complexity. 
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Table 4.1
Simplification File Size Reductions

File File Size Pre 
Simplification
(MB / frame)

File Size Post 
Simplification
(MB / frame)

Amortized 
Compression 
Ratio

No Of 
Frames

PPM 1 Set
(380.5 PPM)

7.033 0.2400 96.6% 3679

PPM 2 Set
(381.5 PPM)

5.919 0.2044 96.6% 2229

PPM 3 Set 
(382.5PPM)

4.072 0.1420 96.5% 1481

The results of compression show a very satisfactory compression ratio, 

averaging 96.6% compression from the original data when converted down to a 

point representation. The level of data compression per frame can be explored 

across the whole data series of a particular PPM level to show that it is indeed 

constant. Seen in fig. 1 and fig. 2 the compression ratio is uniform across the 

whole series, varying by only .10%.

Figure 4.1 Graph of Relative Frame Sizes and Trend @ 380.5 PPM.
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The effect of varying simplification tolerance is shown in table 4.2. The 

sample set used in this test was a representative 100 frames taken from the 

Vulcan dataset. The 100 samples were  tested three times then averaged. The 

zero tolerance sample with no duplicates removed is provided as a control.

Figure 4.2 Compression Ratio Graph Across Series @ 381.5 PPM.

From table 4.2 it can be seen that the a significant factor contributing to 

94% of the data size reduction is the removal of duplicate  entries generated from 

the marching cubes algorithm (shown in the rightmost column). Further reduction

of the data size is observed as the tolerance is increased from 0 to 0.035, but this 

only removes at most an additional 1% file size reduction. This indicates the 

structure of the source dataset contains mostly duplicate entries and 

comparatively little useful information, and why there is a significant bottleneck in 

previous attempts, a great amount of data redundancy.

In addition to removing duplicates and simplification, the representation 

reduction, shown in table 4.3, shows test cases of varying data size reduction 

based on geometric representation. These test cases are run at 0.001 

simplification tolerance with degenerate triangle removal.
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It is clear that the number of duplicate entries in the vertex field means 

that the number of primitives (and possible degenerate primitives) greatly 

increases the file size on disk. A further test can then be performed to determine 

if degenerate triangles will reduce the file size.

Table 4.2
Simplification Tolerance Reductions

Tolerance Processing 
Time
(Average) 
(s/frame)

File size
(Average) 
(MB /frame)

Vertex Count
(Average 
/frame)

Duplicates 
Removed
(Average 
/frame)

0
(No Duplicates)

34.248
(100%)

2.13
(100%)

184348
(100%)

0

0 1.244
(100%)

0.1250
(100%)

10896
(100%)

139571

0.0000001 1.301
(104.6%)

0.1250
(5.87%)

10896
(5.91%)

139571

0.0001 1.310
(105.3%)

0.1250
(5.86%)

10893
(5.91%)

139572

0.001 1.300
(104.5%)

0.1220
(5.72%)

10616
(5.76%)

139646

0.002 1.286
(103.4%)

0.1190
(5.59%)

10339
(5.60%)

139732

0.003 1.282
(103.0%)

0.1160
(5.44%)

10068
(5.46%)

139815

0.01 1.138
(91.5%)

0.0977
(4.59%)

8457
(4.59%)

140397

0.015 1.164
(93.6%)

0.0864
(4.05%)

7484
(4.06%)

140980

0.025 1.067
(85.8%)

0.0669
(3.14%)

5790
(3.14%)

142325

0.035 1.002
(80.6%)

0.0507
(2.38%)

4393
(2.38%)

143501
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Table 4.3
Representation File Size Reductions

File Compressed Full 
Data (MB)

Triangles
(MB)

Point-Normal
(MB)

Point
(MB)

PPM 1 Set
(380PPM)

460 460
(100%)

236
(48.7%)

118
(24.4%)

A test was performed with a representative 100 frame random sample 

taken from the Vulcan data to determine the amount of degenerate triangles 

present in the Vulcan data, the results are summarized in table 4.4. With only a 

8.27% reduction on top of the normal compression methods used earlier, 

degenerate information is proven to not a significant portion of the Vulcan data, 

however since it only adds on average a 0.25s pre-processing time increase 

each frame, it can be a matter of preference to include this technique or not.

Table 4.4
Degenerate Triangle Removal

Technique Mean time
(s)

Total 
Degenerates

Total 
Elements

Reduction

Removal 1.552s 55518 
removed

671111 8.27%

No removal
(control)

1.307s 0 removed 689617 0.00%

4.2. Compression Results Related to Run-time Loading

After compression, the data is loaded on-demand at run-time into RAM in 

sections appropriate for a 32bit windows process which is limited to using approx 

1.2GB of RAM. The run time rendering application was used to test the effects of 

compression on the run time results. By using the system clock to measure the 

difference in time between beginning loading and finishing loading a sample the 

loading time can be measured closely. By recording the number of  bytes read in 
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a single data transfer session the data transfer rates, measured in MB/s can be 

calculated using the formula shown on the next page.

 =   
There are two types of processes measured; both in-thread and 

multithreaded loading. In in-thread loading, the data is loaded as the rendering 

thread detects it reaches the final frame of the current set in memory. Conversely

in multithread loading, the data is triggered to load in a separate process on the 

CPU, which is often advantageous on multi-core CPU like the test machine. 

However this possible performance increase is lessened by the RAM bottleneck. 

In the multithreaded environment all processes will be reading and writing to 

RAM simultaneously, which inevitably causes read/write locks on the data.

Slowing both threads below optimal results.

As tables 4.5 and 4.6 show, both in-thread and multithreaded processes 

experience similar memory bandwidth from disk to data structure transfer rates.

The key statistic of the disk loading is the "Mean Load Time". This value should 

ideally be below that of  what it would take the GPU to render one frame, so that 

no visible interruption is detected - this means below 0.016s for a 60fps 

experience, or 0.033s for a 30fps experience. From this we can determine that 

loading either in-thread or multi-threaded are acceptable loading methods, 

however the frame limits per load must be below 76. While mean transfer rates 

across the entire execution are a useful statistic, the peak times are a key 

consideration when controlling the entire experience.

Note how in Table 4.6 there are no values listed for the test performed at 

16 frame sets - this is because the loads were completed so fast, the computer 

did not have sufficient accuracy to measure it, that is that the event occurred in 

less than 0.001s.
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Table 4.5
Multithreaded Bulk Loading Results

Frames
(at once)

Mean Load Time 
(s)

Mean Delete 
Time (s)

Verts
(average)

Mean Data 
Transfer
(MB/s)

16 0.0054 0.0015 794182 2944
26 0.0094 0.0023 1639032 3318
76 0.0195 0.0024 3976904 2280
101 0.0358 0.0076 6254136 3344
201 0.2830 0.0160 12179108 2963

The loading times across an execution follow a logarithmic pattern, as 

shown by the trend line in fig. 3. This can be analyzed against hard drive 

execution patterns knowing that hard drives have 'spin up' times and cache build 

up. The sustained transfer rate that could be expected for real world use is on the 

tail of the trend, showing an evening-out to 3700Mb/s. Knowing that a vertex has 

3 x 4 bytes ( the size of a floating point number) we can conclude that the hard 

drive is capable of supporting 308,000 vertices transferred per second.

Table 4.6
In thread Bulk Loading Results

Frames
(at once)

Mean Load Time
(s)

Mean Delete 
Time (s)

Verts
(average)

Mean Data 
Transfer
(MB/s)

16 - - 861642 -
26 0.0048 0.0016 1577606 2961
76 0.0145 0.0045 4784983 2948
101 0.0361 0.0084 6335434 3314
201 0.0426 0.0143 10836738 2179
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Figure 4.3 Graph of Transfer Rates across an execution.

4.3. Lighting and Shading Results

Two key factors influence the final image produced by the loading and 

rendering program - compression factor and method of data representation. The 

amount of data being pushed to the GPU each frame influences the possible 

speed of rendering. By having more vertices/points/normals being sent to the 

GPU this will negatively impact the rendering speed. Additionally, how 

compressed the data is impacts on the final image quality. A more sparsely 

(highly compressed) populated frame will require more interpolation and 'hole 

filling' algorithms to produce a high quality image. This is true for both parts of the 

rendering system in the case of C02 Viz, the terrain and the volume data.

Additionally, the rendering is influenced by data access locks. While the 

rendering system is somewhat independent of the CPU, the effects of loading are 

still seen in the frame-times, a frame may be delayed as it waits for new data to 

be loaded from the disk.
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4.3.1. Terrain Rendering

While more of a minor element  of the research contained in the thesis the 

terrain is still a required component for providing scale and scope to the Vulcan 

data. C02 Viz implements a ROAM 2.0 (Polack, T. 2002) method (detailed in 

Chapter 2, section 2.6) to integrate the terrain into the final image. C02 Viz is

able to independently measure the rendering times of both the volumetric and 

terrain data for scientific comparison. The terrain data results shown in fig. 4.4,

measured with the benchmarking tool in Fraps (Fraps, 2010) show the rendering 

of the terrain system during standard camera movements, a 360 degree rotation 

around the Y axis and several zoom operations.

Figure 4.4 Graph of Rendering Times for Terrain Rendering.

The entire test process takes 1150 frames, or 19 seconds (with extra time 

for slow renders) to complete. Table 4.7 summarizes these results with 99% 

confidence intervals. It is clear that with a frame-time averaging 15.6ms, that 

obtaining a desired 60fps is easily achievable with this method. 
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Table 4.7
Summary of Terrain Rendering using ROAM 2.0

Technique Max
Frametime
(ms/FPS)

Min
Frametime
(ms/FPS)

Mean 
Frametime
(ms/FPS)

99% CI
(ms/FPS)

ROAM 2.0 26.6/37.6 7.18/139.3 15.6 / 66.3 15.6 ± 0.215 / 66.3 ± 0.993

4.3.2. Volume Rendering

After the volumetric data is loaded into RAM, it is able to be rendered in 

real time, and the resultant rendering times are measured using beepa Fraps

(Fraps, 2010). To test the rendering times, a view is chosen that displays the full 

extents of the frame and the data is allowed to play forward in time, automatically 

loading new data sets. Several variables are tested in this section, including 

method of geometrical representation; simplification tolerance ratio and in-

thread/multithreaded loading. Finally the section concludes with a full frame-by-

frame breakdown of results  from optimal settings chosen using conclusions 

drawn from previous sections in this chapter.

4.3.2.1. Effect of Loading Method

The important results from figures 4.5 through 4.9 , summarized in table 

4.8, are min and max frame-times and average FPS. The frametime/FPS isn't 

significantly affected by the loading technique as a whole. With a difference in 

means of less than 2 milliseconds (about 2 FPS) at the 60+ FPS margin there is 

no significant change, confirmed by a T test on the only differing values notable 

at 75 load and 15 load coming out at P = 0.95 (1 tail, type 2 test) .
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Table 4.8
Summary of Loading Rendering Results

Technique Max 
Frametime
(ms/FPS)

Min 
Frametime
(ms/FPS)

Mean 
Frametime
(ms/FPS)

99% CI
(ms/FPS)

75 Load 398 / 2.5 0.776/ 1288.7 16.4 / 70.5 16.4 ± 0.410 / 70.5 ± 1.587
50 Load 46.2/ 21.7 0.702/ 1424.5 15.6 / 72.6 15.6 ± 0.101 / 72.6 ± 1.845
25 Load 44.3/ 22.6 0.856/ 1168.0 15.6 / 68.95 15.6 ± 0.088 / 68.9 ± 1.116
15 Load 42.2/ 23.6 0.859/ 1164.0 15.6 / 68.5 15.6 ± 0.089 / 68.5 ± 0.901

Figure 4.5 Graph of Render times from loading 75 frames at a time.

Figure 4.6 Graph of Render times from loading 50 frames at a time.
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Figure 4.7 Graph of Render times from loading 25 frames at a time.

Figure 4.8 Graph of Render times form loading 25 frames at a time.

The "interruptions" to rendering are clearly visible on the graphs (figures 

4.5 through 4.9 ) as peaks of noise.  The noise is significant at loading levels 75 

and 50 and by 15 frame bursts the loading is not visible outside the regular 

rendering times.
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4.3.2.2. Effect of Data Representation

Next, examining the results shown in table 4.9 and fig. 4.9 , the effect of data 

representation on rendering time and loading can be observed. Table 4.9

summarizes fig. 4. 9 , showing that it is that while the population means are 

almost identical, the outliers (periods of loading) even under the smallest 

buffering period, in this case of this test, 15 frames at a time, are much greater 

and provide a much more disjoint ("stuttery") experience as the application is 

seen to freeze for up to half a second as the data is loaded from disk.

Figure 4.9 Comparative Graph of Triangle vs. Point Rendering on the Same 

sample.
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Table 4.9
Summary of Geometric Representation Results

Technique Max 
Frametime
(ms/FPS)

Min 
Frametime
(ms/FPS)

Mean 
Frametime
(ms/FPS)

99% CI
(ms/FPS)

Triangles 398 / 2.5 0.776/ 1288.7 16.4 / 70.5 16.4 ± 0.410 / 70.5 ± 1.587
Points 46.2/ 21.7 0.702/ 1424.5 15.6 / 72.6 15.6 ± 0.101 / 72.6 ± 1.845

With a statistical T test, there is a direct effect on the FPS on the rendering 

speed as a whole ( P = 0.0000005, 2 Tails, Type 2). Triangles requiring more 

bandwidth to load (and thus taking more time to load in the equivalent amount of 

frames) and rendering statistically slower (but of little difference in the scope of a 

60fps experience) are a poorer choice for a real-time rendering system. 

Figure 4.10 Graphically similar Point representation and Triangle representation.
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The two methods of data representation, triangle and point, require two 

slightly difference rendering methods. The point based rendering system requires 

implementation of a point-size adjusting shader in GLSL to fill the holes between 

data points on the surface. However the triangle based rendering system can be 

simply run through a simple shader that does obligatory transforms and a ramp 

texture lookup. Analyzing the images produced by both triangle and point 

representation rendering techniques, seen side-by-side in fig. 4.10 reveal, that 

with triangle and point based representation, there is little visual difference, the 

only notable change being on the outer edges of the data.

4.3.2.3. Effect of Layer Interpolation Method

The performance of this run-time method can be measured by beepa 

Fraps (Fraps, 2010) as well and the results of testing are summarized in fig. 4.11

and table 4.10.

To test interpolation, the viewport was moved in a similar way to the test 

performed in section 4.4.1 for evaluating the terrain performance.

Figure 4.11 Graph of Render times from two layer interpolation using Triangle 
representation.
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This method is chiefly dependant on the viewport size, and to simulate 

real-world use, the viewport was kept to 512x512 pixels the closest available 

match to the C02 Viz default size.

Table 4.10
Summary of Layer Interpolation Results

Technique Max 
Frametime
(ms/FPS)

Min 
Frametime
(ms/FPS)

Mean 
Frametime
(ms/FPS)

99% CI
(ms/FPS)

Interpolation 175.6 / 
5.69

24.9/ 40.2 36.1 / 28.9 36.1 ± 1.129 / 28.9 ± 0.430

As seen in table 4.11, the method has a significant impact on FPS, 

doubling the mean frame rendering time, and causing the system to run at 

approximately 30FPS. The difference between the results produced by layer 

interpolation and displaying the real data can be tested by rendering the same 

view of an interpolated mesh displaying position and normal information to 

texture and comparing these textures with the same information from the real 

data, and calculating the numerical difference. A sample interpolated view is 

shown in figures 4.12, 4.14 , 4.15 . In fig. 4.13 the common rendering errors are 

shown, geometry broken up by lines and floating "islands" of data in space.

4.4. Final Analysis

Taking an end-to-end approach across the entire software suite, a 

summary set of numbers, derived from results in previous sections can be 

analyzed in chain to determine the significant links in the image generation 

process. These summary results are shown in table 4.11

The optimal solution yields 96.6% compression on disk with loading times on 

average less than 1 rendered frame (16ms) long.
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Table 4.11
End-to-end Results

Technique Simplification Representation Loading Interpolation
Optimal YES ~0.01, 

duplicates 
removed

Points 15 burst, in 
thread

None

Continuing final analysis, the testing examines the full integration of the 

optimal solution. Sample executions of the optimal solutions are shown in figures 

4.16 , 4.17 _x and 4.18 . Fig. 4.16 shows the terminal output of Triconverter,

while figures 4.17 _x and 4.18 show two shots of execution taken from two 

positions from within a data series.

..
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Figure 4.12 Interpolation Level 0.

Figure 4.13 Common Artifacts in 
Interpolation.

Figure 4.14 Interpolation Level 1.

Figure 4.15 50% Interpolation 
between fig. 4.12  and fig. 4.14.



50

Figure 4.16 Sample Triconverter Execution.

Figure 4.17 Sample Rendering Output A
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Figure 4.18 Sample Rendering Output B.

4.5. Chapter Summary

This chapter covered the results generated by testing the thesis research 

by implementation within a C++/OpenGL application and measurement across 

data on disk sizes and compression and rendering times. The algorithms were 

defined in pseudo code, detailing the results of each method/structure on the 

dependant variables indentified in the methodology.

Referencing the original hypotheses outlined in chapter 3, the following 

hypothesis have been proved true:

Ha1 There is an (positive) effect of data compression on run-time rendering 

complexity and loading time.

There is a positive effect of data compression, as indicated in sections 4.1

and 4.2. By removing duplicate and degenerate entries and using binary 

representation thus reducing the data sizes by 96.6% reduces the spikes of 
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rendering time when loading and makes the loading of new frames invisible 

within regular rendering times

Ha2 There is an (positive) effect of data representation on run-time rendering 

complexity and loading time.

By using point based representation, certain layer interpolation models are 

disabled, but loading times are significantly reduced, as shown in section 4.3.2.2.

Ha3 There is a (positive) effect of loading method on  the run-time rendering 

complexity, loading time, and data reduction.

This issue was explored in section 4.3.2.1, showing that loading either in 

thread or multi-threaded does not significantly change loading times, however by 

limiting the number of frames loaded at once to 15 or less, the loading times 

become invisible within regular rendering times.
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CHAPTER 5. DISCUSSION

This chapter will discuss the results and side issues to methodological 

elements detailed in chapter 4 as well as postulate theories based on the data for 

volumetric rendering as applied to the Vulcan dataset. This chapter will begin 

with discussing the compression techniques and dealing with data on disk, then 

moving to loading methods and rendering data structures and finishing with 

lighting and shading and terrain techniques. In each section, additional details on 

the implementation process are discussed, in reference to results obtained.

Finally the chapter is concluded by describing issues on further research that 

might take place to further the research continued within this thesis.

5.1. Data on Disk and Compression

The techniques chiefly responsible for modifying data on disk, that is the 

compression by simplification and data clean-up, had to be specially designed to 

work within strict memory limits. Initially, several compression methods not 

described in the results chapter were tried, including off-the-shelf software, both 

free and commercial that claimed to be able to reduce mesh sizes by many of the 

methods described in the literature review (surface approximation among others). 

The chief failing of many of these methods, that is, why they were not built into 

Triconverter or the rendering application, was that the individual frames exported 

from the Legacy application were too large. This would often result in application 

crashes, as these tools were designed for far smaller data sets. Triconverter

succeeds because of its simplicity - simply removing wasted and degenerate 

data and moving it into a binary format provides the greatest reduction in file 
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sizes - and was the biggest factor in achieving real-time rendering performance 

after the compacted data was read into RAM.

5.2. Loading Methods

The final techniques chosen for rendering data, both multithreaded 

threaded and in-thread evolved after initially desiring to fit the entire dataset into 

memory at one time. Initially, iterative loading methods were implemented, 

hoping to load in partial representations of the data, and then refining the model 

over short periods of time. However as the number of frames present in a data 

series grew, from initial coarse tests of 700 frames to moving to the desired 

5000+ frame series density, these methods became less and less effective, 

requiring significant pre-processing time at run-time application start-up. The final 

methods, of breaking up the data into small enough chunks that rapid binary 

reading of the data (streaming) could occur in such a short time that the overall 

data uptake was not noticed when analyzing the rendering frame-time results.

5.3. Rendering Data Structure

When considering the trade-off between triangles (polygonal) and points 

based rendering systems initially only a fixed function (OpenGL without GLSL) 

pipeline was considered. However, after implementation of a programmable 

shader assisted pipeline, one that included GLSL, the point based rendering 

system, with its drastically reduced memory requirements, showed to be the 

stronger method of the two. 

5.4. Layer Interpolation

Blending two arbitrary surfaces is still an area of active research, and 

while this thesis presents a novel approach to solving this issue, it still requires 
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additional refinement. Subtle artifacts can occur when using the method with 

non-square viewports. 

5.5. Lighting and Shading

This area of the research is open to additional human subjects testing. 

While this thesis attempts to quantifiable prove the effects of the use of a 

standard set of rendering techniques through rendering time analysis, there is a 

whole other hypothesis and testing regimen when the lighting and shading 

requirements are not taken as constant non-varying . 

5.6. Terrain Rendering

A smaller portion of the research in this thesis, used mainly to provide 

spatial context for the Vulcan volumes - the ROAM 2.0 method with its 0.1s 

startup time and almost invisible effect on rendering times is a strong and stable 

algorithm used for the entire duration of the research. However, if this project 

were to be "scaled up" and used beyond North American carbon research -

perhaps in the modeling of global carbon emissions- additional research would 

be required in the terrain rendering area. Geo-mip-mapping, in a style similar to 

that found in other atlas type packages could be an appropriate technique.

5.7. Further Work

The implementation used for testing was written in GLSL and was not fully 

optimized. There is room for additional research into the lighting and shading 

techniques available to boundary surface models rendering in real-time. For 

example implementing a global illumination model, complete with shadows is a 

starting technique change.  
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The implementation of rendering point-normal based representations was 

unable to be implemented during the timeframe of the research. While point 

based solutions were sufficient for real-time rendering, additional 

The layer interpolation technique discussed in this thesis worked best for 

solid polygonal models. This technique could be expanded, or new techniques 

formulated for efficient blending of point-normal meshes. Additionally new testing 

of the error rates of these algorithms should be applied.

The Vulcan project has the capability to move to a global scale. There is a 

new research area in extending the work in this thesis to cover multiple 

geographical areas at once.

5.8. Chapter Summary

This chapter covered the main sections of work and research outlined 

previously in chapter four, but mentioning outside methods and techniques that 

did not make the final testing. Additionally the further work section outlined the 

possible continued research areas in new lighting and shading techniques and 

layer interpolation algorithms and how the Vulcan data could be extended for 

global geographical areas.
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