
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

5-1-2000

Dynamically Resizable Instruction Cache: An
Energy-Efficient and High-Performance Deep-
Submicron Instruction Cache
Se-Hyun Yang
Purdue University School of Electrical and Computer Engineering

Michael Powell
Purdue University School of Electrical and Computer Engineering

Babak Falsafi
Purdue University School of Electrical and Computer Engineering

Kaushik Roy
Purdue University School of Electrical and Computer Engineering

T. N. Vijaykumar
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Yang, Se-Hyun ; Powell, Michael; Falsafi, Babak ; Roy, Kaushik ; and Vijaykumar, T. N., "Dynamically Resizable Instruction Cache: An
Energy-Efficient and High-Performance Deep-Submicron Instruction Cache" (2000). ECE Technical Reports. Paper 22.
http://docs.lib.purdue.edu/ecetr/22

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages

INSTRUCTION CACHE: AN ENERGY-
EFFICIENT AND HIGH-

TR-ECE 00-7
MAY 2000

SCHOOL OF ELECTRICAL
AND COMPUTER ENGINEERING
PuRDuEu~~v~Rsrry
WEST LAFAYETTE, INDIANA 47907-1285

Dynamically Resizable Instruction Cache:
An Energy-Efficient and High-Performance Deep-Submicron

Instruction Cache

Se-Hyun Yang, Michael Powell, Babak Falsafi, Kaushik Roy, and T.N. Vijaykumar

Purdue ICALP Project
School of Electrical and Computer Engineering

1285 Electrical Engineering Building
Purdue University

West Lafayette, IN 47907-1285
icalp@ecn.purdue.edu, http://www.ece.purdue.edu/-icalp

Table of Contents

... List of Tables .. ill
List of Figures .. iv

Abstract ... v

1 Introduction ... 1

2 DRI I-Cache: Reducing the Leakage in Deep-Submicron I-Caches 3
2.1 Basic DRI I-Cache Design .. 4
2.2 Implications on Block Lookups .. 5
2.3 Impact on Energy and Performance ... 6

3 Gated-Vdd: A Circuit-level Mechanism for Supply-Voltage Gating 8

4 Methodology .. 10

5 Results .. 11
5.1 Circuit Results ... 11
5.2 Energy Calculations Illustrating Leakage and Dynamic Energy Trade-off 12
5.3 DRI I-Cache Energy Savings .. 13
5.4 Effect of Miss-Bound and Size-Bound .. 16

5.4.1 Effect of Miss-Bound ... 16
5.4.2 Size-Bound ... 17

5.5 Effect of Conventional Cache Parameters .. 18
5.6 Effect of Adaptivity Parameters ... 20

6 Related Work .. 22

7 Conclusions ... 23

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:

Impact of resizing on leakage. miss rate. and L1 dynamic energy 7
Processor configuration parameters .. 10
Applications and input sets ... 10
Leakage Energy. read time. and area for gated-Vdd 11
Cache energy components .. 13
Miss-bound and size.bound .. 15

List of Figures

FIGURE 1:
F I G L . 2:
FIGURE 3:
FIGURE 4:
FIGL . 5:
FIGURE 6:
FIGURE 7:
FIGLTRE 8:
FIGURE 9:

Anatomy of a DRI i.cache ... 5
Block lookup and frame aliasing in a DRI i.cache 6
6-T SRAM cell schematics .. 8

... Layout of 64 SRAM cells 12
Performance-constrained and unconstrained best cases 14
Effect of varying the miss.bound ... 17

... Effect of varying the size.bound 18
Effect of varying conventional cache parameters 19

. . . .
Effect of varying the divis~bil~ty .. 20

Abstract

Increasing levels of on-chip integration have enabled steady improvements in modem microprocessor per-
formance, but have also resulted in high energy dissipation. Deep-submicron CMOS designs maintain high
transistor switching speeds by scaling down the supply voltage and proportionately reducing the transistor
threshold voltage. Lowering the threshold voltage increases leakage energy dissipation due to an exponential
increase in the leakage current flowing through a transistor even when the transistor is not switching. Esti-
mates from the VLSI circuit community suggest a five-fold increase in leakage energy dissipation in every
future generation. Modem microarchitectures aggravate the leakage energy problem by investing vast
resources in on-chip cache hierarchies because leakage energy grows with the number of transistors. While
demand on cache hierarchies varies both within and across applications, modem caches are designed to meet
the worst-case application demand, resulting in poor utilization of on-chip caches, which in turn leads to
energy inefficiency.

This paper explores an integrated architectural and circuit-level approach to reduce leakage energy dissipa-
tion in instruction caches (i-caches) while maintaining high performance. Using a simple adaptive scheme,
we exploit the variability in application demand in a novel cache design, the Dynamically Resizable i-cache
(DRI i-cache), by dynamically resizing the cache to the size required at any point in application execution.
At the circuit-level, the DRI i-cache employs a novel mechanism, called gatedmVdd, which effectively turns
off the supply voltage to the SRAM cells in the DRI i-cache's unused sections, virtually eliminating leakage
in these sections. Ow adaptive scheme gives DRI i-caches tight control over the number of extra misses
caused by resizing, enabling the DRI i-cache to contain both performance degradation and extra energy dis-
sipation due to increased number of accesses to lower cache levels. simulations using the SPEC95 bench-
marks show that a 64K DRI i-cache reduces, on average, both the leakage energy-delay product. and average
size by 62%, with less than 4% impact on execution time.

1 Introduction

The ever-increasing levels of onchip integration in the recent decade have enabled phenomenal increases
in computer system performance. Unfortunately, the performance improvement has been also accompanied
by an increase in chips' power and energy dissipation. Higher power and energy dissipation require more
expensive packaging and cooling technology, increase cost, and decrease reliability of products in all seg-
ments of computing market from portable systems to high-end servers [24]. Moreover, higher power and
energy dissipation significantly reduce battery life and diminish the utility of portable systems.

Historically, the primary source of energy dissipation in CMOS transistor devices has been the dynamic
energy due to chargingldischarging load capacitances when the device switches. Chip designers have relied
on scaling down the transistor supply voltage in subsequent generations to reduce the dynamic energy dis-
sipation due to a much larger number of on-chip transistors.

Maintaining high transistor switching speeds, however, requires a commensurate down-scaling of the tran-
sistor threshold voltage along with the supply voltage [22]. The International Technology Roadmap for
Semiconductors [23] predicts a steady scaling of supply voltage with a corresponding decrease in transistor
threshold voltage to maintain a 30% improvement in performance every generation. Transistor threshold
scaling, in turn, gives rise to a significant amount of leakage energy dissipation due to an exponential
increase in leakage current even when the transistor is not switching [7,32,28,20,26,14,11]. Borkar [7] esti-
mates a factor of 7.5 increase in leakage current and a five-fold increase in total leakage energy dissipation
in every chip generation.

State-of-the-art microprocessor designs devote a large fraction of the chip area to memory structures-
e.g., multiple levels of instruction (i-cache) caches and data (d-cache) caches, TLBs, and prediction tables.
For instance, 30% of Alpha 21264 and 60% of StrongARM are devoted to cache and memory structures
[18]. Unlike dynamic energy which depends on the number of actively switching transistors, leakage
energy is a function of the number of on-chip transistors, independent of their switching activity. As such,
caches account for a large (if not dominant) component of leakage energy dissipation in recent designs, and
will continue to do so in the future. Recent energy estimates for 0 . 1 3 ~ processes indicate that leakage
energy accounts for in excess of 50% of the total energy dissipated in cache memories [6]. Unfortunately,
current proposals for energy-efficient cache architectures [16,5,2] only target reducing dynamic energy and
do not impact leakage energy.

There are a myriad of circuit techniques to reduce leakage energy dissipation in transistorslcircuits (e.g.,
multi-threshold [30,26,20] or multi-supply [12,27] voltage design, dynamic threshold [29] or dynamic sup-
ply [9] voltage design, transistor stacking [32], and cooling [7]). These techniques, however, suffer from
three sigmficant shortcomings. First, they often impact circuit performance and are only applicable to cir-
cuit sections that are not performance-critical [13]. Second, they may require sophisticated fabrication pro-
cess and increase cost (e.g., dynamic supply- and threshold-voltage designs). Finally, the circuit techniques
apply low-level leakage energy reduction at all times without taking into account the application behavior
and the dynamic utilization of the circuits.

Current high-performance microprocessor designs incorporate multi-level cache hierarchies on chip to
reduce off-chip access frequency and improve performance. Modem cache hierarchies are designed to sat-
isfy the demands of the most memory-intensive applications or application phases. The actual utilization of
caches, however, varies widely both within and across applications. Recent studies on block frame utiliza-
tion in caches [21], for instance, show that at any given instance in an application's execution, on average
over half of the block frames are "dead - i.e., they miss upon a subsequent reference. These "dead block
frames continue dissipating leakage energy while not holding useful data.

This paper presents the first integrated architectural and circuit-level approach to reduce leakage energy
dissipation in deep-submicron cache memories. We propose a novel instruction cache (i-cache) design, the

Dynamically ResIzable instruction cache (DRI i-cache), which dynamically resizes itself to the size
required at any point during application execution and virtually turns off the supply voltage to the rest of
the cache's unused sections to eliminate leakage. At the architectural level, a DRI icache relies on simple
but effective techniques to exploit the variability in i-cache usage and reduce the i-cache size dynamically
to capture the application's primary instruction working set. At the circuit-level, a DM i-cache uses a
recently-proposed mechanism, gated-Vdd [I], which reduces leakage by effectively turning off the supply
voltage to the SRAM cells of the cache's unused block frames.

Using state-of-the-art cycle-accurate architectural simulation and energy estimation circuit tools, we show
the following.

There is a large variability in L1 icache utilization both within and across applications. Using a simple

adaptive hardware scheme, a DRI i-cache effectively exploits the variability by dynamically resizing the

cache to accurately fit the application's working set. Simulations using SPEC applications indicate that

a DRI i-cache reduces the average size of a 64K-cache by 62% with performance degradation con-

strained within 4%, and by 78% with higher performance degradation.

Previous resizing techniques coarsely vary associativity without controlling the extra misses incurred

due to resizing, resulting in performance degradation and extra energy dissipation to access lower cache

levels [2]. Our adaptive scheme gives DRI i-caches tight control over the number of extra misses by

constraining the miss rate to stay close to a preset value, enabling the DM i-cache to contain both per-
formance degradation and the extra lower-cache-level energy dissipation.

A DM i-cache effectively integrates architectural and the gated-Vdd circuit techniques to reduce leakage

in an L1 i-cache. Compared to a conventional i-cache, a DM i-cache reduces the leakage energy-delay

product by 62% with performance degradation constrained within 4%, and by 67% with higher perfor-

mance degradation.

Because higher set-associativities encourage more downsizing, and larger sizes imply larger relative

size reduction, DRI i-caches achieve even better energy-delay products with higher set-associativity and

larger size.

Our adaptive scheme is robust in that it is not sensitive to many of the adaptivity parameters, and per-

forms predictably without drastic reactions to varying the rest of the adaptivity parameters.

The rest of the paper is organized as follows. In Section 2, we describe the architectural techniques to
resize i-caches dynamically. In Section 3, we describe the gated-Vdd circuit-level mechanism to reduce
leakage in SRAM cells. In Section 4, we describe our experimental methodology. In Section 5, we present
experimental results. Section 6 and Section 7 present the related work and conclusions, respectively.

2 DRI I-Cache: Reducing the Leakage in Deep-Submicron I-Caches

This paper proposes the Dynamically ResIzable instruction cache (DRI i-cache). The key observation
behind a DRI i-cache is that there is a large variability in i-cache utilization both within and across pro-
grams leading to large energy inefficiency for conventional caches in deep-submicron designs; while the
memory cells in a cache's unused sections are not actively referenced, they leak current and dissipate
energy. A DRI i-cache's novelty is that it dynamically estimates and adapts to the required i-cache size, and
uses a novel circuit-level technique, gated Vdd [I], to turn off the supply voltage to the cache's unused
memory cells. In this section, we will describe the anatomy of a DRI i-cache. In the next section, we will
present the circuit technique to gate a memory cell's supply voltage.

The large variability in i-cache utilization is inherent to an application's execution. Application programs
often break down the computation into distinct phases. In each phase, an application typically iterates and
computes over a set of data. The code size executed in each phase dictates the required i-cache size for that
phase. Our ultimate goal is to exploit the variability in the code size and the required i-cache size across
application phases to save energy. The key to our leakage energy saving technique is to have a minimal
impact on performance and a minimal increase in dynamic energy dissipation.

To exploit the variability in icache utilization, hardware (or software) must provide accurate mechanisms
to determine a transition among two application phases and estimate the required new i-cache size. Inaccu-
rate cache resizing may significantly increase the access frequency to lower cache levels, increase the
dynamic energy dissipated, and degrade performance, offsetting the gains from leakage energy savings.
Resizing may also affect block placement in the cache requiring existing blocks to k moved to new
frames, incurring overhead. A mechanism is also required to determine how long an application phase exe-
cutes so as to select phases that have long enough execution times to amortize the resizing overhead.

In this paper, we use a simple and intuitive all-hardware design to resize an i-cache dynamically. Our
approach to cache resizing increases or decreases the number of active cache sets. Alternatively, we could
increaseldecrease associativity, as is proposed for reducing dynamic energy in [2]. This alternative, how-
ever, has several key shortcomings. First, it assumes that we start with a base set-associative cache and is
not applicable to direct-mapped caches, which are widely used due to their access latency advantages. Sec-
ond, changing associativity is a coarse-grained approach to resizing and may increase both capacity and
conflict miss rates in the cache. Such an approach increases the cache resizing overhead, significantly
reducing the opportunity for energy reduction.

While many of the ideas in this paper apply to both i-caches and dcaches, we focus on i-cache designs in
this paper. Our approach to resizing caches requires that upon downsizing, the cache's unused sections be
turned off to save energy. Because cache blocks in a d-cache may be modified, dynamically resizing d-
caches requires that either the modified data in the cache's unused sections be written back., potentially off-
setting the gains from saving energy [2] and incurring high writeback latency, or the modified cache blocks
remain "on". The latter complicates the cache design (Section 2.2) because accesses to the cache require
lookups in both the "on" and "off7 sections of the cache, incurring prohibitively high latency upon lookup.
This paper is the first step towards designing dynamically resizable caches, and as such we focus on i-
caches. Studying d-cache designs is beyond the scope of this paper.

In the rest of this section, we will first describe the mechanisms to detect phase transitions and cache resiz-
ing and discuss cache lookup and placement strategies for a DRI i-cache. Next, we will discuss the hard-
ware and software implications for our new design. Finally, we present the impact on dynamic energy
dissipation using our design.

2.1 Basic DRI I-Cache Design

Much like conventional adaptive computing frameworks, our cache uses a set of parameters to monitor,
react, and adapt to changes in application behavior and system requirements dynamically. A DRI i-cache
divides an application's execution time into fixed-length intervals (measured in the number of instructions
executed) to monitor the cache's performance, and decides at the end of every interval if a change in cache
size is necessary. We use miss rate as the primary metric for monitoring the cache's performance. The keys
to a successful DRI i-cache design are mechanisms to control the cache size accurately while preventing a
significant increase in the cache miss rate. A large miss rate increase may both prohibitively increase exe-
cution time and the dynamic energy dissipated in the lower level caches, offsetting the leakage energy sav-
ings. Therefore, the key parameters in our design are those that directly control the cache's miss rate.

Figure 1 depicts the anatomy of a direct-mapped DRI i-cache (the same design applies to set-associative
caches). The adaptive mechanism monitors the cache in fixed-length intervals, the sense interval, measured
in number of dynamic instructions (e.g., 1 million instructions). A miss counter counts the number of DM
i-cache misses in each sense interval. At the end of each sense interval, the cache upsizesldownsizes,
depending on whether the miss counter is lowerhigher than a preset value, the miss-bound. The factor by
which the cache resizes (up or down) is called the divisibility. For example, divisibility of two halves the
cache size upon every downsize and miss-bound set at 10,000 triggers a downsize if the cache incurs more
than 10,000 misses in a sense interval. If, however, the icache size would get smaller than EL preset size, the
size-bound (e.g., 1 K), the cache does not downsize and stays at the same size.

All the cache parameters - i.e., the interval length, the size-bound, the miss-bound, and the divisibility -
can be set either dynamically or statically. This paper is a first step towards understanding a resizable cache
design. As such, we focus on designs that statically set the values for the parameters prior to the start of
program execution.

Among these parameters, the key parameters that control the i-cache's size and performance are the miss-
bound and size-bound. The combination of these two key parameters provides accurate and tight control
over the cache's performance. Miss-bound allows the cache to react and adapt to an application's instruc-
tion working set by "bounding" the cache's miss rate in each monitoring interval. Thus, the miss-bound
provides a "fine-grain" resizing control between any two intervals independent of the cache size. Applica-
tions typically require a specific minimum cache capacity beyond which they incur a large number of
capacity misses and thrash. Size-bound provides a "coarse-grain" resizing control by preventing the cache
from thrashing by downsizing past a minimum size.

The other two parameters, the sense interval length and divisibility, are less-critical to DRI: i-cache perfor-
mance. Intuitively, the sense interval length allows selecting a sense interval length that best matches an
application's phase transition times, and the divisibility determines the rate at which the i-cache is resized.

Resizing the cache requires that we dynamically change the cache block lookup and placement function.
Conventional (direct-mapped or set-associative) i-caches use a fixed set of index bits from a memory refer-
ence to locate the set to which a block maps. Resizing the cache either reduces or increases the total num-
ber of cache sets thereby requiring a larger or smaller number of index bits to look up a set. Our design uses
a mask to find the right number of index bits used for a given cache size (Figure 1). Every time the cache
downsizes, the mask shifts to the right to use a smaller number of index bits and vice versa. Therefore,
downsizing removes the highest-numbered sets in the cache in groups of powers of two. The mask can be
folded into the address decoder trees of the data and tag arrays, so as to minimize the impact on the lookup
time.

Because smaller caches use a small number of index bits, they require a larger number of tag bits to distin-
guish data in block frames. Because a DRI i-cache dynamically changes its size, it requires a different

address: I tag + index I offset I
DRI I-CACHE

upsize
miss count > miss-bound?
mask shift left

miss

---.%% - .a -
end of interval?

FIGURE 1 : Anatomy of a DRI i-cache.

number of tag bits for each of the different sizes. To satisfy this requirement, our design maintains as many
tag bits as required by the smallest size to which the cache may downsize itself. Thus, we maintain more
tag bits than conventional caches of equal size. We define the extra tag bits to be the resizing tag bits. The
size-bound dictates the smallest allowed size and, hence, the corresponding number of resizing bits. For
instance, for a 64K DRI i-cache with a size-bound of lK, the tag array uses 16 (regular) tag bits and 6
resizing tag bits for a total of 22 tag bits to support downsizing to 1K. The resizing tag bits increase the
dynamic energy dissipated in the cache as compared to a conventional design. We will discuss the dynamic
energy implications of resizing tag bits in Section 2.3 and present results in Section 5 that indicate a DRI i-
cache has an overall minimal impact on the dynamic energy dissipated.

2.2 Implications on Block Lookups

Using the resizing tag bits, we ensure that the cache functions correctly at every individual size. However,
transitioning from one size to another may still cause problems in cache lookup. Because resizing modifies
the set-mapping function for blocks (by changing the index bits), it may result in an incorrect lookup if the
cache contents are not moved to appropriate places or flushed before resizing. For instance, a 64K cache
maintains only 16 tag bits whereas a 1K cache maintains 22 tag bits. As such, even though downsizing the
cache from 64K to 1K allows the cache to maintain the upper 1K contents, the tags are not comparable
(Figure 2 left). While a simple solution, flushing the cache or moving block frames to the appropriate
places may incur prohibitively large amounts of overhead. Our design does not resort to this solution
because we already maintain all the tag bits necessary for the smallest cache size at all times; i.e., a 64K
cache maintains the same 22 tag bits from the block address that a 1K cache would. This way, a tag com-
parison can proceed independent of the cache size obviating the need to move the blocks or flush the cache
after resizing.

Moreover, upsizing the cache may complicate lookup because blocks map to different sets in different
cache sizes. Figure 2 (right) illustrates an example in which block A maps to a different set when upsizing
the cache from 1K to 64K. Such a scenario creates two problems. A lookup for A after upsizing fails to find
A, and therefore fetches and places A into a new set. While the overhead of such (compulsory) misses after
upsizing may be negligible and can be amortized over the sense interval length, such an approach will
result in multiple aliases of A in the cache. Unlike d-caches, however, in the common case a processor only

16 taa bits
I

22 tag bits
4 b

I +-
FIGURE 2: Block lookup and frame aliasing in a DRI i-cache.

22 tag bits

index(A)

reads and fetches instructions from an i-cache and does not modify a block's contents. Therefore, allowing
multiple aliases does not interfere with processor lookups and instruction fetch in i-caches.

16 tag bits

1 Old index(A)

index(A)

There are scenarios, however, which require invalidating all aliases of a block in the i-cache. Unmapping
an instruction page (when swapping the page to the disk) requires invalidating all of the page's blocks in
the i-cache. Similarly, dynamic libraries require call sites which are typically placed in the heap and require
coherence between the icache and the d-cache. Conventional systems, however, often flush the icache or
d-cache to maintain coherence between them because the above operations are infrequent. Moreover, these
operations typically involve OS intervention and incur high overheads, amortizing the cache flush over-
head.

2.3 Impact on Energy and Performance

Cache resizing helps reduce leakage energy by allowing a DRI i-cache to turn off the cache's unused sec-
tions. Resizing, however, may adversely impact the miss rate (as compared to a conventional i-cache) and
the access frequency to the lower-level (L2) cache. The increase in L2 accesses may impact both execution
time and the dynamic energy dissipated in L2. While the impact on execution time depends on an applica-
tion's sensitivity to i-cache performance, the higher miss rate may significantly impact the dynamic energy
dissipated due to the growing size of on-chip L2 caches [2]. A DRI i-cache may also increase the dynamic
energy dissipated as compared to a conventional cache due to the extra resizing tag bits in the tag RAM.
The combined effect of the above may offset the gains in leakage energy. In this section, we qualitatively
analyze the impact on performance and energy dissipation of a DRI icache. In Section 5.3, we present
simulation results which indicate that a DRI i-cache can significantly reduce leakage energy with minimal
impact on execution time and dynamic energy.

There are two sources of increase in the miss rate when resizing. First, resizing may require remapping of
data into the cache and incur a large number of (compulsory) misses at the beginning of a sense interval.
The resizing overhead is dependent on both the resizing frequency and the sense interval length. Fortu-
nately, applications tend to have at most a small number of well-defined phase boundaries at which the i-
cache size requirements drastically change due to a change in the instruction working set size. Our results,
however, indicate that optimal interval lengths to match application phase transition times are long enough
to help amortize the overhead of moving blocks around at the beginning of an interval (Section 5.3).

Second, downsizing may be suboptimal and result in a significant increase in the miss rate when the
required cache size is slightly below a given size. Such a scenario will lead to both high miss rates for inter-
vals in which an application's working set does not fit in the cache, and frequent unnecessary switching
between two cache sizes. The impact on the miss rate is highest at very small cache sizes when the cache
begins to thrash. Much as other adaptive systems, a DRI i-cache incorporates a simple throttling mecha-

I,1 Tag Energy

aggressive

I I I I I I

Table 1: Impact of resizing on leakage, miss rate, and L1 dynamic energy.

M i rate Resuing I Parameters

conservative

nism (using a 3-bit saturating counter with resizing backoff) to prevent the system from unnecessary resiz-
ings. Moreover, the size-bound guarantees that the cache never resizes beyond a given size, preventing the
cache from thrashing.

Leakage

miss-bound >> conventional miss rate
size-bound low

Miss-bound and size-bound control a DRI i-cache's aggressiveness in reducing the cache size and leakage
energy. Table 1 depicts the impact of resizing on performance and energy. In an aggressive DRI i-cache
configuration with a large miss-bound and a small size-bound, the cache is allowed to resize more often
and to small cache sizes, thereby aggressively reducing leakage. Small cache sizes, however, may lead to
high miss rates, a high increase in dynamic energy dissipated in L2, and a high increase in dynamic energy
dissipated in L1 due to a large number of resizing tag bits. Depending on an application's performance sen-
sitivity to i-cache miss rates, the higher miss rates may increase execution time, indirectly increasing the
overall energy dissipated due to a higher execution time.

miss-bound - conventional miss rate
size-bound high

A conservative DRI i-cache configuration maintains a miss rate which is close to the miss rate of a conven-
tional icache of the same base size, and bounds the downsizing to higher cache sizes so as to prevent
thrashing and significantly increasing the miss rate. Such a configuration reduces leakage with minimal
impact on execution time and dynamic energy dissipated.

-1

The adaptivity parameters, sense interval length and divisibility, may also affect a DRI i-cache's ability to
adapt to the required i-cache size accurately and timely. While a larger divisibility favors applications with
drastic changes in icache requirements, it makes size transitions more coarse reducing a DRI icache's
opportunity to adapt to a size closest to the required size. Similarly, while longer sense intervals may span
over multiple application phases reducing opportunity for resizing, shorter intervals may result in a high
resizing overhead due to a large number of compulsory misses after resizing. Our results, however, indicate
that the sense interval length and divisibility are less critical than the miss-bound and size-bound to con-
trolling the extra misses in a DRI i-cache (Section 5.6).

7'

7' -l. -1

(a) Conventional 6-T cell (b) NMOS gated-Vdd cell

wordline 1
1 dv~A bitline

virtual Gnd I
-
wordline

Gnd

FIGURE 3: 6-T SRAM cell schematics: (a) conventional, (b) with NMOS gatedm\ldd.

3 Gated-Vdd: A Circuit-level Mechanism for Supply-Voltage Gating

Current technology scaling trends [7] require aggressive scaling down of the threshold voltage (V,) to
maintain transistor switching speeds. At low V,, however, there is a subthreshold leakage current through
transistors, even when operating in the "cut-off' region, i.e., when the transistor is "off' [22]. The leakage
current increases exponentially with decreasing threshold voltage, resulting in a significant amount of leak-
age energy dissipation at low V,.

To prevent the leakage energy dissipation in a DRI i-cache from limiting aggressive threshold-voltage seal-
ing, we use a circuit-level mechanism called gated-Vdd [I]. Gated-Vdd enables a DRI i-cache to turn off
effectively the supply voltage and eliminate virtually all the leakage energy dissipation in the cache's
unused sections. The key idea is to introduce an extra transistor in the leakage path from the supply voltage
(Vdd) to the ground (Gnd) of the cache's SRAM cells; the extra transistor is turned on in the used and
turned off in the unused sections, essentially "gating" the cell's supply voltage. Gated-Vdd maintains the
performance advantages of lower supply and threshold voltages while reducing the leakage.

The fundamental reason for gated-Vdd achieving exponentially lower leakage is that two "off' transistors
connected in series incur an order of magnitude lower leakage; this effect is due to self reverse-biasing of
the stacked transistors, and is called the stacking efect [32]. Gated-Vdd9s extra transistor connected in
series with the SRAM cell transistors produces the stacking effect when the gated-Vdd transistor is turned
off, resulting in a high reduction in leakage. When the gated-Vdd transistor is turned "on", the cell is said to
be in "active" mode and when turned "off', the cell is said to be in "standby" mode. In the interests of lim-
iting the number of terms defined in the paper, we will continue to use "on" and "off' modes.

Figure 3 (a) depicts the anatomy of a conventional 6-T SRAM cell with dual-bitline architecture we
assume in this paper. On a cache access, the corresponding row's wordline is activated by the address
decode logic, causing the cells to read their values out to the precharged bitlines or to write the values from
the bitlines into the cells. The two inverters in Figure 3 (a) each have a Vdd to Gnd leakage path going
through an NMOS or a PMOS transistor connected in series. Depending on the bit value (of 0 or 1) held in
the cell, the PMOS transistor of one and the corresponding NMOS transistor of the other inverter are "off'.
Figure 3 (b) shows a DRI i-cache SRAM cell using an NMOS gated-Vdd transistor. When the gated-Vdd
transistor is "off ', it is in series with the "off' transistors of the inverters, producing the stacking effect. The
DRI i-cache resizing circuitry keeps the gated-Vdd transistors of the used sections turned on and the unused
sections turned off.

Much as conventional gating techniques, the gated-Vdd transistor can be shared among multiple circuit
blocks to amortize the overhead of the extra transistor. For example, in a DRI i-cache, a single gated-Vdd
transistor can be shared among the SRAM cells of one or more cache blocks. To reduce the impact on
SRAM cell speed, the gated-Vdd transistor must be carefully sized with respect to the SRAM cell transis-
tors it is gating. While the gated-vdd transistor must be made large enough to sink the current flowing
through the SRAM cells during a readwrite operation in the "on" mode, too large a gated-vdd transistor
may reduce the stacking effect, thereby diminishing the power savings. Moreover, large: transistors also
increase the area of overhead due to gating.

Gated-Vdd may be implemented using either an NMOS transistor connected between the SRAM cell and
Gnd or a PMOS transistor connected between Vdd and the cell. Using a PMOS or an NMOS gated-Vdd
transistor presents a trade-off between area overhead, leakage reduction, and impact on performance [I].
Moreover, gated-Vdd can be coupled with a dual-threshold voltage (dual-V,) process technology 1281 to
achieve even larger reductions in leakage. Dual-V, technology allows integrating transistors with two dif-
ferent threshold voltages. With dual-V, technology, the SRAM cells use low-V, transistors to maintain high
speed and the gated-Vdd transistors use high-V, to achieve additional leakage reduction. h this paper, we
assume NMOS gated-Vdd transistors with dual-Vt for optimal performance, energy, and a-ea results [I].

I Processor Parameters I

Ll i-cache/ I I 64K, direct-mapped
L1 DRI i-cache 1 cycle latency

Instruction issue
& decode band-
width

L1 d-cache

8 issues per cycle

I I 64K, 2-way (LRU)
1 cycle latency

L2 cache I I lM, 4-way, unified
12 cycle latency

Memory access 80 cycles + 4cycles per
latency (8 bytes

I Reorder buffer 1 1 128 I

I Branch predictor I I 2-level hybrid 1
I I I I

Table 2: Processor configuration
parameters.

name 11 input (#of inst(bil1ions)
Integer benchmarks

4 Methodology

compress

gCC
go
tipeg
Ii
m88ksim
per1

Floating

~ P P ~ U

apsi

~ P P P P
hydro2d
mgrid
su2cor
swim
tomcatv

We use Simplescalar-2.0 [lo] to simulate an L1 DRI i-cache in the context of an out-of-order microproces-
sor. Table 2 shows the base configuration for the simulated system. Table 3 presents the benchmarks we
use in this study, the corresponding input data sets, and the number of dynamic instructions executed. We
run all of SPEC95 with the exception of two floating-point benchmarks and one integer benchmark (in the
interests of reduced simulation turnaround time).

To determine the energy usage of a DRI i-cache, we use geometry and layout information from CACTI
[31]. Using spice information from CACTI to model the 0 . 1 8 ~ SRAM cells and related capacitances, we
determine the leakage energy of a single SRAM cell and the dynamic energy of read and write activities on
single rows and columns. This information is used to determine energy dissipation for appropriate cache
configurations. Area estimates are from a Mentor Graphics IC-Station layout of a single cache line.

able 3: Applications and input sets.

test
train
train
test
train
test
train

point
train
train
train
test
test
test
test
test

All simulations use a power supply of 1.0 volt. We estimate cell access time and energy dissipation using
Hspice transient analog analysis. The worst case read time is the time to lower the bitline: to 75% of Vdd
after the wordline is asserted. We compute "off' and "on" mode energy dissipation by measuring average
energy dissipated by a steady state cache cells with the gated-Vdd transistor in the correct mode. We ensure
that the SRAM cells are all initialized to a stable state before measuring read time or "on" mode leakage
energy.

0.035
1.276
0.955
0.553
0.183
0.490
0.040

benchmarks
0.288
2.349
0.331
0.974
4.422
1.054
0.849
2.798

Cell Vt
Technique

no gated-Vdd,

Table 4: Leakage Energy, read time, and area for gated-Vdd.

"On" Cell-
Leakage per

high V,

no gated-Vdd,
low v,
gated-Vdd,
low v,

5 Results

(v)

0.30

In this section, we present experimental results on the performance and energy trade-off of a DRI i-cache,
compared to a conventional i-cache. First we briefly present circuit results indicating the energy savings of
gated-Vdd. Then we present energy savings achieved for the benchmarks, demonstrating a DRI i-cache's
effectiveness at reducing average cache size and energy dissipation. Then we present the impact of DRI i-
cache parameters on dynamic energy dissipation: effect of the number of extra tag bits on L1 dynamic
energy, and effect of the miss-bound on L2 dynamic energy. Next we show performance and energy results
while varying DRI i-cache size and associativity. Finally, we present the effect of varying the DRI i-cache
adaptivity parameters: divisibility and sense interval length.

"Off' Cell-
Leakage Energy

0.20

0.20

5.1 Circuit Results

Cycle (nJ)

50

As transistor threshold voltages decrease, we expect read time to improve but leakage energy to increase
drastically. In this section we will show that gated-Vdd virtually eliminates the leakage while maintaining
fast read times. Table 4 shows leakage energy per cycle, relative read time, and the area overhead associ-
ated with gated-Vdd. We assume a dual-V, technology, with a 0.4 V V, for the gated-Vdd transistor, and a
0.2 V V, for the SRAM cell transistors.

Energy
Savings

1740

1740

The "on" Leakage Cell Energy and "off' Leakage Cell Energy columns indicates leakage energy dissipated
per cycle when the cell is in "on" and "off' mode, respectively. From the first two rows, we see that lower-
ing the cache V, from 0.3 to 0.2 V reduces the read time by over half but increases the leakage energy by
more than a factor of 30. From the third row we see that using gated-Vdd, the leakage energy can be
reduced by 97% in "off' mode, confining the leakage to high-V, levels while maintaining low-V, speeds.
This large reduction in leakage is key to ensuring that unused sections of the cache put in "off' mode dissi-
pate little leakage energy.

perCycle(RJ)

NIA

If a gated-Vdd transistor is shared among an entire cache block's SRAM cells, the transistor needs to be
wide enough to sink the current through the block's SRAM cells to prevent excessive degradation in read
time. The width of the gated-Vdd transistor needs to be equivalent to the maximum number of cell transis-
tors that can simultaneously switch in the cache block. Figure 4 shows a layout of 64 SRAM cells on the
left and an adjoining NMOS gated-Vdd transistor connected to them. By constructing the gated-Vdd tran-
sistor such that the transistor width expands along the length of the cache line, only the width of the array
increases with the addition of such a transistor, without increasing the array's height. The total increase in
data array area due to the addition of the gated-Vdd transistor is about 3%.

Relative
Read

N/A

53

Area
Increase

(9%)

N/ A

N/A

97

Time

2.22

(9%)

N/ A

1 .OO

1.01 ~
I

N/A

3%

FIGURE 4: Layout of 64 SRAM cells connected to a single gated-Vdd NMOS transistor.

5.2 Energy Calculations Illustrating Leakage and Dynamic Energy Trade-off

. A DRI i-cache decreases leakage energy by gating Vdd to cache sections in "off' mode but increases both
L1 dynamic energy due to the extra resizing tag bits and L2 dynamic energy due to extra L1 misses. To
account for both the decrease in leakage energy and increase in dynamic energy, we compute the Effective
Ll leakage energy using three components, the L1 leakage energy, extra L1 dynamic energy, and extra L2
dynamic energy as follows:

Effective L1 DRI i-cache leakage energy = L1 leakage energy + extra L1 dynamic energy + Extra L2 dynamic energy
L1 leakage energy = Leakage energy of "onw portion + Leakage energy of "off" portion
Leakage energy of 'onn portion = ('On" portion size as fraction) x (Leakage energy of conventional cache per cycle) x (cycles)
Leakage energy of "off portion -= 0
Extra L1 dynamic energy = (resizing tag bits) x (Dynamic energy of 1 bitline per L1 access) x (L1 accesses)
Extra L2 dynamic energy = (Dynamic energy per l2 access) x (extra L2 accesses)

We now explain the equations. The Effective L1 leakage energy is the effective leakage energy dissipated
by the DRI i-cache during the course of the application execution. The first component, the L1 leakage
energy, is the leakage energy of the "on" and "off" portions of the DRI i-cache dissipated during the execu-
tion. We compute DRI i-cache's "on" portion leakage energy as the leakage energy dissipated by a conven-
tional i-cache in one cycle times the DRI i-cache "on" portion size expressed as a fraction of the total size
times the number of cycles. We obtain the average "on" portion size and the number of cycles from Sim-
plescalar simulations. Using the low-V, "on" Cell-Leakage energy in Table 4, we compute the leakage
energy for a conventional i-cache. Because the "off' mode energy is a factor of 30 smaller than the "on"
mode energy in Table 4, we set the "off' mode term to zero.

The second component is the extra L1 dynamic energy dissipated due to the extra resizing tag bits during
the application execution. We compute this component as the number of resizing tag bits used by the pro-
gram times the dynamic energy dissipated in one access of one resizing tag bitline in the L1 cache times
the number of L1 accesses made in the program. The third component is the extra L2 dynamic energy dis-
sipated in accessing the L2 cache due to the extra L1 misses during the application execution. We compute
this component as the dynamic energy dissipated in one access of the L2 cache times the number of extra
L2 accesses. To estimate the dynamic energy of one access of one resizing tag bitline and of one L2 access,
we modify the Spice files supplied by CACTI and use the calculations for cache access energy in [15].We
tabulate the results of our calculations in Table 5, which simplifies the energy expressions as follows:

Effective L1 DRI i-cache leakage energy = L1 leakage energy + L1 extra dynamic energy + L2 extra
dynamic energy

L1 leakage energy = ('0n"ortion size as fraction) x 0.91 x (cycles)
Extra L1 dynamic energy = (resizing tag bits) x 0.0022 x (L1 accesses)
Extra l2 dynamic energy = 3.6 x (extra L2 accesses)
Energy savings = Conventional cache leakage - Effective L1 DRI i-cache leakage energy

If the extra L1 and L2 dynamic energy components do not significantly add to L1 leakage energy, a DRI i-
cache's energy savings will not be outweighed by extra (Ll+L2) dynamic energy, as forecasted in

Energy component
Dynamic energy per L2 access
Dynamic energy of 1 resizing tag bit per L1 access

Section 2.3. To demonstrate that the components do not significantly add to L1 leakage energy, we com-
pare each of the components to the L1 leakage energy and show that the components are much smaller than
the leakage energy.

Energy (d)
3.6

0.0022
Conventional L1 cache leakage energy per cycle
Ratio of L1 leakage energyper cycle to L2 dynamic energy per access

(Extra L1 dynamic energy) 1 (L1 leakage energy) = [(resizing bits) x 0.0022 x (Ll accesses)] 1 [('On-action) x 0.91 x (cycles)]
- [(resizing bits) x 0.00221 1 [('On' fraction) x 0.911
- 0.024 (if resizing == 5, "on" fraction = 0.25)

0.9 1

We compare the extra L1 dynamic energy against the L l leakage energy by computing their ratio. We sim-
plify the ratio by approximating the number of L1 accesses to be equal to the number of cycles (i.e., an L1
access is made every cycle L1 accesses and cycles), and cancelling the two in the ratio. I:f the number of
resizing tag bits is 5 (i.e., the size-bound is a factor of 32 smaller than the original size), and the "on" por-
tion is as small as half the original size, the ratio reduces to 0.024, implying that the extra L1 dynamic
energy is about 3% of the L1 leakage energy, under these extreme assumptions. This assertion implies that
if a DRI i-cache achieves sizable savings in leakage, the extra L1 dynamic energy will n.ot outweigh the
savings.

Table 5: Cache energy components.

(Extra L2 dynamic energy) / (Ll leakage energy) = [3.6 x (exha L2 accesses)] 1 [('On' fraction) x 0.91 x (cycles)]
- [(3.95 / ('On" fraction)] x [(extra L2 accesses) / (cycles)]
- [(3.95 / ("Onn fraction)] x (extra L1 miss rate)
- 0.16 (if "on" fraction == 0.25, extra L1 miss rate = 1%)

Now we compare the extra L2 dynamic energy against the L1 leakage energy by computing their ratio. As,
before, we simplify this ratio by approximating the number of cycles to be equal to the total number of L1
accesses, which allows us to express the ratio as a function of the absolute increase in the L.1 miss rate (i.e.,
number of extra L1 misses divided by the total number of L1 accesses). If the "on" portitw is as small as
half the original size, and the absolute increase in L1 miss rate is as high as 1% (e.g., L1 miss rate increases
from 5% to 6%), the ratio reduces to 0.16, implying that the extra L2 dynamic energy is about 16% of the
L1 leakage energy, under these extreme assumptions. This assertion implies that if a DRI icache achieves
sizable savings in leakage, the extra L2 dynamic energy will not outweigh the savings.

5.3 DRI I-Cache Energy Savings

In this section, we present the overall energy-savings achieved by a DRI i-cache. Because a DRI icache's
energy dissipation depends on the miss-bound and size-bound, we show the best-case energy-savings
achieved for each benchmark under various combinations of the miss-bound and size-bound. We determine
the best case via simulation by empirically searching the combination space. We present the energy-delay
product because it is a well-established metric used in low-power research. The energy-delay product
ensures that both reduction in energy and accompanying degradation in performance are taken into consid-
eration together, and not separately. But because the best-case energy-delay in some cases amounts to con-
siderable performance degradation, which may be unacceptable in certain domains, we include
performance-constrained, best-case energy-delay product by limiting overall performance degradation to
under 4%, compared to a conventional i-cache.

C: Performance Constrained U: Unconstrained

-1.0
a -
4 0.8
h

F 0.6
E
a, 0.4 > .- - +' 0.2
cc

0.0

1.0 -
W DRI i-cache miss rate
0.8 -

a r
8 0.6 -
0

5 0.4 -
5 0.2 - a 3.2
0.0 - mm I

\ 5 % .b .@ & Q 0 . Q & & b @ 9 d d
.QQ 8 4 5 3 %Q & %.*' Q 4 *oZ .* +$!@&
\GO / \ d 93 5 \o

Class 1 Class 2 Class 3
1

FIGURE 5: Performance-constrained and unconstrained best cases.

We compute the energy-delay product by multiplying the effective DRI i-cache leakage energy numbers
from Section 5.2 with the execution time reported by Simplescalar. Figure 5 (top graph) shows the effec-
tive energy-delay product normalized with respect to the conventional i-cache leakage energydelay prod-
uct. We present the empirically-obtained best cases with performance degradation constrained to be within
4% relative to the conventional i-cache as well as unconstrained degradation. The stacked bars show the
breakdown between the leakage and extra dynamic (Ll and L2) components. For the unconstrained case,
we show the percentage increase in execution time relative to a conventional i-cache above the bars when-
ever performance degradation is worse than 4%.

Figure 5 (bottom graph) shows the DRI i-cache size averaged over the benchmark execution time, as a
fraction of the conventional i-cache size. We show the miss rates under the unconstrained case above the
bars whenever the miss rates are higher than 1 %. Note that for the performance-constrained case, the DRI
i-cache miss rates are all below 1 %, except for perl at 1.1 %. The conventional i-cache miss rate is less than
1% for all the benchmarks (highest being 0.7% for perl), indicating that a 64K-cache captures most of the
working set of these benchmarks.

From the top graph, we see that a DRI i-cache achieves large reductions in the energy-delay product as per-
formance degradation is constrained to be within 4%, demonstrating the effectiveness of our adaptive resiz-
ing scheme. In fact, out of the 15 benchmarks, 9 stay within 2% degradation. The reduction ranges from as
much as 80% for applu, compress, ijpeg, and mgrid, to 60% for apsi, hydro2d, li, and swim, 40% for
m88ksim, perl, and s d c o r , and 10% for gcc, go, and tomcatv. Fpppp is the only benchmark with no reduc-
tion. The dynamic (extra Ll+L2) component of the energy-delay product is small for all the benchmarks,
implying that the extra L2 accesses are few enough not to increase the dynamic component significantly, as
forecasted in Section 2.3 and Section 5.3.

For the unconstrained case, the best-case is identical to the perfonnance-constrained case for many bench-
marks. However, a few benchmarks (gcc, go, m88ksim, and tomcatv) have significantly lower energy-delay.

Table 6: Miss-bound and size-bound for performance-constrained (c) and unconstrained (u) cases.

For all these benchmarks, performance of the unconstrained best-case is considerably worse than that of
the conventional icache (e.g., gcc by 26% go by 30%, tomcatv by 21%), indicating that the lower energy-
delay product is achieved at the cost of performance. This observation is borne out by the fact that the
dynamic component for these benchmarks is significantly larger, implying that the unc:onstrained case
reduces leakage by downsizing the cache incurring numerous extra Ll misses.

miss-bound
(c)
size-bound in
Kl3 (c)
miss-bound
(u)
size-bound in
Kl3 (u)

From the bottom graph, we see that the average DRI i-cache size is significantly smaller than the conven-
tional i-cache in the performance-constrained case, confirming our hypothesis that i-cache requirements
vary both within and across applications. The average cache size reduction ranges from as much as 80% for
applu, compress, ijpeg, li, and mgrid, to 60% for m88ksim,perl, and suZcor, and 20% for gcc, go, and tom-
catv. For all the benchmarks, the miss rates continue to be less than 1%, staying close to those of the con-
ventional i-cache, demonstrating the success of our adaptive scheme in downsizing to the required size
while keeping the extra L1 misses in check. The only cases where the DRI i-cache miss rates are much
higher than those of the conventional i-cache are under the unconstrained case for gcc, go, perl, and tom-
cam which downsize the cache to the extent of incurring numerous extra L1 misses.

In Table 6, we list the combinations of the miss-bound and size-bound corresponding to the bestcase under
performance-constrained and unconstrained cases for each benchmark. Because each benchmark's level of
sensitivity to the miss-bound and size-bound is different, requiring different miss-bounds and size-bounds
to determine the best-case. Even for the performance-constrained case (and more so for the constrained
case), the miss-bounds ("miss-bound(c)" row) are one or two orders of magnitude higher than the conven-
tional miss rates ("reference miss rate" row), encouraging miss rates higher than the conventional i-cache.

l x
10-3

8

3x
10-3

8

l x
10-2

4 8 2

l x
10-2

4 8 2

DRI i-cache's simple adaptive scheme enables the cache to downsize without causing the miss rate ("miss-
rate(c)" row) to exceed the miss-bound, except for the relatively small excesses in the case of gcc and
su2cor. Because the absolute differences between the conventional and DRI i-cache miss rates are still
small in magnitude, the actual number of extra L1 misses is small and the performance loss is minimal.
The largest miss-rate difference is 0.004 for gcc and from the calculations done in Section 5.3, we know
that the this miss rate difference contributes only a small amount of extra L2 dynamic energy.This observa-
tion makes it profitable to trade off extra L2 dynamic energy for L l leakage energy savings.

6x
lo4

6x
10-4

To understand the average i-cache size requirements better, we categorize the benchmarks into three
classes. Benchmarks in the first class primarily require a small i-cache throughout their execution. Mostly,
they execute tight loops allowing a DRI i-cache to stay at the size-bound, causing the unconstrained and the
performance-constrained best-cases to match. Applu, compress, li, mgrid and swim fall in this class, and
they almost always stay at the minimum size allowed by the size-bound. The dynamic component is a large

4x
10-3

4x
10-3

6x
10-3

4x
10-

9x
1 r 3

2

2x
10-2

5x
10-3

4

5x
10-3

4

2x
10-3

1 6 6 4 3 2 3 2 3 2 8

7x
10-3

l x
10-2

8

l x
10-2

4x
10-2

5x
10-2

2x
lom2

5x
10-2

8 6 4 8 1 6 1 6 8 2 4 4 8

O

O

5x
10-3

l x
10-

IX
10"

4

3x
10-3

l x
10-3

8

IX
1 r 2

fraction of the DRI i-cache energy in these benchmarks because much of the L1 leakage energy is elimi-
nated through size reduction and a large number of resizing tag bits are used to allow a small size-bound.

The second class consists of the benchmarks that primarily require a large i-cache throughout their execu-
tion and do not benefit much from downsizing. Apsi,fpppp, go, m88ksim and per1 fall under this class, and
fpppp is an extreme example of this class. If these benchmarks are encouraged to downsize via high miss-
bounds, they incur a large number of extra L1 misses, resulting in significant performance loss. Conse-
quently, the performance-constrained case uses a small number of resizing tag bits, forcing the size-bound
to be reasonably large. Fpppp requires the full-sized i-cache, so reducing the size dramatically increases
the miss rate, canceling out any leakage energy savings. Therefore, fpppp is disallowed from downsizing
the cache by having a 64K size-bound. The rest of the applications are not as extreme asfpppp. At the per-
formance-constrained best-case, the dynamic energy overhead is much less than the leakage energy sav-
ings, and allowing more downsizing is still beneficial. However, due to their large i-cache size
requirements, the unconstrained best-case, obtained by downsizing beyond the performance-constrained
best-case, falls outside the acceptable performance range.

The last class of applications exhibit distinct phases with diverse i-cache size requirements. Gcc, hydro2d,
ijpeg, s d c o r and tomcatv belong to this class of applications. A DRI i-cache's effectiveness to adapt to the
required i-cache size is dependent on its ability to detect the program phase transitions and resize appropri-
ately. Hydro2d and Qpeg fall into the group that have relatively clear phase transitions. After the initializa-
tion phase requiring the full size of i-cache, hydro2d consists mainly of small loops requiring only 2K of i-
cache. Zjpeg follows this pattern. Therefore, a DRI i-cache adapts to the phases of hydro2d and ijpeg well,
achieving small average sizes with little performance loss. The phase transitions in gcc, su2cor and tom-
catv are not as clearly defined, resulting in a DRI i-cache not adapting as well as it did for hiydro2d or ijpeg.
Consequently, these benchmarks' best-case average sizes under both the performance-<:onstrained and
unconstrained case are relatively large.

5.4 Effect of Miss-Bound and Size-Bound

In this section, we present the effect of varying the miss-bound and size-bound on the energy-delay prod-
uct. The miss-bound and size-bound are key parameters which determine the L2 and extra L1 dynamic
energy, respectively.

5.4.1 Effect of Miss-Bound

The miss-bound controls the number of extra L1 misses caused by downsizing and directly affects the extra
L2 dynamic energy dissipated to service the extra L1 misses. A higher miss-bound encourages a DRI i-
cache to downsize despite a larger number of L1 misses at the current size.

Figure 6 shows the result of varying the miss-bound around the value corresponding to the performance-
constrained best-case in Table 6. The size-bound is fixed at the same value as the performance-constrained
best-case from Table 6. The center bar corresponds to the best-case miss-bound; the left and right bars cor-
respond to half and twice of the center bar's miss-bound, respectively. Varying the miss-bounds at half and
twice the best-case miss-bound keeps the resulting miss-bounds at reasonable values. The top graph shows
the effective energy-delay product normalized to the conventional i-cache leakage energy-delay, and also
the percentage performance-degradation for the cases which are 4% worse than the conventional i-cache.
The bottom graph shows average cache size as a fraction of the conventional i-cache size and also the miss
rate for the cases which are above 1%.

The energy-delay graph shows that despite varying the miss-bound over a factor of four range (i.e., from
0 . 5 ~ to 2x), most of the benchmarks' energy-delay product does not change significantly. Even when the
miss-bound is doubled (right bars), the L1 miss rates stay within 1% and the L2 dynamic energy-delay

17

A: 0.5 x best-case miss-bound B: 1 x best-case miss-bound C: 2 x best-case miss-bound

L1 Leakage O Extra L1 Dynamic
1 .o Extra L2 Dynamic

-
0.8

2 g' 0.6
s % 0.4
>
m 0.2 w
LT

0.0
ABC

1 .O DRI i-cache miss rate
8 .,- 0.8
w 2 0.6
0
g 0.4
E
aJ 0.2 3

0.0
+ 5 a +b .+ +

8 8 +, ++\ 8 xQQ~Q &+++ eG +G ++% Go' 8 4
GO +@ + io

Class 1
/u-

Class 2 Class 3

FIGURE 6: Effect of varying the miss-bound.

component does not increase much for most of the benchmarks. This behavior indicates that our adaptive
scheme is fairly robust with respect to a reasonable range of miss-bounds. The exceptions are gcc, go, perl,
and tomcah: which need large i-caches but allow more downsizing under higher miss-bounds, as can be
seen from the average size graph, because the application phase transitions are not readily identified by a
DRI i-cache. These benchmarks achieve average sizes smaller than those of the best-cases, but incur more
than 4%, albeit less than lo%, performance degradation, compared to the conventional i-cache.

5.4.2 Size-Bound

The number of resizing tag bits determines the size-bound to which the cache may be downsized, indirectly
controlling the number of extra L1 misses and the extra L2 dynamic energy. The resizing tag bits directly
incur extra L1 dynamic energy because the bits require charging and discharging additional bitlines (as dis-
cussed in Section 2.3). Each additional resizing tag bit decreases the size-bound by half, and is beneficial
only if the leakage energy savings achieved by downsizing to the next half size is more than the extra L1
energy for the resizing tag bitlines and the extra L2 energy due to the extra L1 misses caused by such
downsizing.

Figure 7 shows the effect of varying the size-bound to be double and half the value of the performance-
constrained best-case in Table 6. The miss-bound is set at the value of the performance-constrained best-
case in Table 6. The center bar for each benchmark exceptfpppp, corresponds to the best-case size-bound;
the left and right bars correspond to double and half that size-bound, respectively. Fpppp 's best-case size-
bound is 64K, and therefore there is no left bar. The top graph shows the effective energydelay product
normalized to the conventional i-cache leakage energy-delay and also the percentage slowdown for the
cases which are 4% worse than the conventional i-cache. The bottom graph shows average cache size as a
fraction of the conventional i-cache size and also the miss rate for the cases which are above 1%.

18

+: 2 x bestcase size-bound b: 1 x best-case size-bound -: 0.5 x best-case size-bound

L1 Leakage O Extra L1 Dynamic Extra L2 Dynamic
h

1 .o

+ 0.8
?. g 0.6

5 0.4
> .-
V 0.2 -
i?

0.0
+ b -

1 .o
0)

$j 0.8
0) DRI i-cache miss rate 2 0.6
0 g 0.4
s 2 0.2
a

0.0
\ 5 \ 4 - b + + ,QQQ "." .@ & .qeq5$d8&'

&Q &\
\ 6' #5

/ \ 8 / \
* 9

Class 1 Class 2 Class 3

FIGURE 7: Effect of varying the size-bound.

For all benchmarks, a smaller size-bound results in larger reduction in the average cache size, but the effect
on the energy-delay varies depending on the class to which the benchmark belongs. The first class of appli-
cations, applu, compress, li, mgrid, and swim, incur little performance degradation with the best-case size-
bound because the benchmarks' i-cache requirements are small. Throughout the benchmarks' execution, a
DRI i-cache stays at the minimum size allowed by the size-bound. Doubling the size-bound of the best-
case (left bars) results in worse energy-delay than the best-case, corroborated by the fact that the average
size is almost double that of the best-case. Halving the size-bound of the best-case (right bars), causes
numerous extra L l misses and increased extra L2 dynamic energy, which results in worse energy-delay.

Decreasing the size-bound for the second class, apsi, go, m88ksim, perl, which has relatively large i-cache
requirements, encourages downsizing at the expense of performance. With a smaller size-bound, this class
achieves lower energy-delay than the best-case by downsizing more, but incurs performance degradation
beyond 4%. For the third class of applications, gcc, hydro2d, ijpeg, sdcor, and tomcaw, andndfppp, the
extra L1 dynamic energy incurred by decreasing the size-bound beyond the best-case outstrips the leakage
energy savings, resulting in higher energy-delay than the best-case. Using a 32K size-bound, Fpppp has
worse energy-delay than a conventional i-cache, indicating that poor choice of parameters may result in a
DRI i-cache having worse energy-delay than a conventional i-cache.

5.5 Effect of Conventional Cache Parameters

In this section, we investigate the impact of conventional cache parameters, size and associativity, on a DRI
i-cache. Intuitively, higher associativity reduces conflict misses, making the miss rate less sensitive to
cache size. Consequently, a DRI i-cache should be more effective in reducing the cache size without incur-
ring many extra L1 misses and additional L2 dynamic energy. Because a DRI i-cache downsizes to the
working set size of the application independent of the original size of the cache, increasing the size should
result in larger energy savings.

I .V
P -

0.8
A
g 0.6
c
W
2 0.4
.-
2 0.2
a

0.0
ABC

A: 64K &way B: 64K direct-mapped C: 128K direct-mapped

bb .Cr\ & 2. 0 Cr\
Cr\! 8 6' \Q~Q t85'

/ \ Cr\

Class 1 Class2 Class 3

4 n

FIGURE 8: Effect of varying conventional cache parameters.

L1 Leakage O Extra L1 Dynamic Extra L2 Dynamic

Figure 8 displays the results for a 64K, 4-way associative DRI i-cache, a 64K, direct-mapped DRI i-cache
(as in Section 5.3), and a 128K, direct-mapped DRI i-cache, shown from left to right. The miss-bound is
set to be the same as that of the performance-constrained best-case in Table 6. The size-bound is also as in
the performance-constrained best-case in Table 6. The128K direct-mapped case uses one more resizing tag
bit so that the size-bound is the same as the 64K direct-mapped case. Energy-delay, average size, and per-
formance degradation shown in the figures are all relative to a conventional i-cache of equivalent size and
associativity. Thus, each bar is normalized with respect to a different conventional cache, and the left and
center barsc~rres~ond to the same size (64K) but different associativities. The center and right bars corre-
spond to the same associativity (direct-mapped) but different sizes. Note that the right-most bar and left-
most bars are not directly comparable.

For applu, apsi, compress,fippp, ijpeg, li, and mgrid, varying the associativity (left and center bars) does
not impact the relative energy-delay product or the average cache size. The reason for this behavior is that
the direct-mapped DRI i-cache miss rates are not high to start with, making added associativity insignifi-
cant. Consequently, the direct-mapped DRI i-cache achieves the same average size as the 4-way associative
DRI i-cache, resulting in identical energy-delay products. For the rest of the benchmarks, gcc, go, hydro2d,
su2cor, swim and tomcatv, the direct-mapped DRI i-cache miss rates range from 0.17% for su2cor to
0.92% for gcc, giving the 4-way cache an opportunity to absorb some of the conflict misses. Thus, the 4-
way associative DRI i-cache achieves smaller average size and lower energydelay for these benchmarks
using the same miss-bound as the direct-mapped DRI icache. Using the same miss-bour~d for the 4-way
associative DRI i-cache as the direct-mapped DRI i-cache encourages more extra misses in the 4-way asso-
ciative DRI i-cache compared to a conventional 4-way associative cache. Consequently, for gcc, hydro2d,
and tomcah: however, the smaller average size comes at the cost of performance degradation beyond 4%.

Increasing the size from 64K (center bars) to 128 K (right bars) while allowing the same size-bound (i.e.,
one extra resizing tag bit for the 128K cache) gives higher savings in energy-delay, because a larger frac-
tion of the cache is turned "off'. In all cases, except forfippp and gcc, the 128K cache is downsized to the

A: divisibility of 2 B: divisibility of 8

L1 Leakage U Extra L1 Dynamic Extra L2 Dynamic

1 .O DRI i-cache miss rate W .-
2 0.8
r

8 0.6 0

g 0.4
Q)

Z 0.2

0.0
b *. Q @ * . Q& 6' F.&b .*a%%+~d+- +& ,&+ a

@*
/ \ / \

* 9

Class 1 Class 2 Class 3
FIGLIRE 9: Effect of varying the divisibility.

same absolute magnitude as the 64K cache; when expressed as a fraction of the original size, the average
size for the 128K DRI i-cache is half that for the 64K DRI i-cache. Fpppp and gcc are different because
their working set sizes are larger than 64K in some (for gcc) or all (forfpppp) application phases, and so
the 128K DRI i-cache does not downsize to 64K in those phases. Hence, the 128K DFU i-cache's average
size is not half that of the 64K DRI icache. This shows that ,the DFU icache downsizes to the working set
size of the application, regardless of the original cache size. For perl, gcc, and hydro2d, using the same
miss-bound for the 128K cache as the 64K cache causes relatively more L1 misses in the 12% cache than
the 64K cache, when compared with the respective equivalent conventional caches. The additional misses
result in higher extra L2 dynamic energy and performance degradation worse than 4%, as indicated.

5.6 Effect of Adaptivity Parameters

A DRI i-cache is an adaptive system using the parameters: miss-bound, size-bound, interval length, and
divisibility, and we have already evaluated the impact of the miss-bound and size-bound in the previous
sections. Now, we look at the effect of interval length and divisibility on DRI i-cache behavior.

Ideally, we want the monitoring interval length to correspond to program phases, allowing the cache to
resize before entering a new phase. Because we do not know the length of the phases, we approximate
using a fixed monitoring interval length. Our experiments show that in almost all cases, a DRI i-cache is
reasonably robust to interval length. More precisely, varying the interval length from 250K to 4M i-cache
accesses, the energy-delay product varies by less than 1% except for go which shows a 5% difference.

Divisibility is used to control the rate of resizing by setting the factor by which the cache size changes per
resizing. Large divisibility is favorable for both performance and energy consumption when the cache rap-
idly switches between large and small working sets. In that case, large divisibility reduces the time spent in
the intermediate cache sizes. However, larger divisibility makes it difficult for the cache to adapt to the
optimal size because larger divisibility makes the granularity of the resizing process coarser. Figure 9

shows that divisibility of 8 always exhibits worse energydelay products than those of divisibility of 2. For
all the benchmarks, the coarser granularity prevents the cache from downsizing to the next one-eighth size
either because of exceeding the miss-bound or because of exhausting the resizing tag bits.

6 Related Work
There are a number of previous studies focusing on reducing the dynamic power and energy dissipation in
processors and cache memories. Manne, et al., [18] propose gating the processor pipeline stages to reduce
the processor's dynamic energy dissipation. Brooks and Martonosi [8] propose exploiting; narrow-width
operands to reduce the processor's dynamic power. Toburen, et al., [19] reduce processor dynamic power
via instruction scheduling.

To reduce dynamic power of caches, Albonesi [2] proposes Selective Cache Ways, a mechanism to vary
cache associativity dynamically by activating and deactivating cache banks in set-associative caches. There
are several key differences between this technique and ours. This technique does not work for direct-
mapped caches which are widely used due to their access speed advantages. Because this technique can
vary the associativity and size only together, and not separately, this technique results in a greater number
of extra misses than our technique, which varies only the size. While our adaptive scheme gives DRI i-
caches tight control over the number of extra misses, this technique varies associativity which is a coarse-
grained resizing approach that increases both capacity and conflict misses in the cache.

Kin, et al., [16] propose the Filter Cache, small (e.g., 256-byte) direct-mapped LO caches, that filter
accesses to L1 I- and D-Caches and reduce power. Filter caches trade-off potentially significant degrees of
performance loss for power savings. Similarly, Bellas, et al., propose the Loop-Cache and use the compiler
[4,5] or hardware [4,5] to detect and place small loops in it to reduce the access frequency to the L1 i-
cache. None of the previous studies have focused on reducing the leakage power in deep-submicron
caches.

There are a number of previous studies that have focused on circuit-level only techniques to reduce leakage
power. Several circuit techniques such as multiple transistor threshold voltages [20,17,25,30] and transistor
stacking [32,30] have been used to reduce leakage power dissipation while maintaining high performance.
More recently, dynamic transistor threshold control to achieve high performance when the transistor is
"on" and low leakage current when the transistor is "off' [3,29] has been used for both bulk Silicon and
Silicon on Insulator (SOI) technology. Multiple supply voltages with multiple transistor threshold voltages
can also be used to achieve both dynamic and leakage power reduction [12,27]. However, circuit-level
techniques that apply leakage reduction ignore applicationkirchitectural behavior and circuit utilization.
Instead, we propose an integrated architectural and circuit-level approach to maximize opportunity for
leakage reduction with minimal impact on performance.

7 Conclusions

This paper explored an integrated architectural and circuit-level approach to reduce leakage energy dissipa-
tion in deep-submicron cache memories while maintaining high performance. The key observation in this
paper is that the demand on cache memory capacity varies both within and across applications. Modem
caches, however, are designed to meet the worst-case application demand, resulting in poor utilization of
onchip caches, and consequently 3 energy inefficiency. We introduced a novel cache called the Dynami-
cally Resizable i-cache @RI i-cache) that dynamically reacts to application demand and adapts to the
required cache size during an application's execution. At the circuit-level, the DRI i-cache employs a novel
mechanism, called gated-Vdd, which effectively turns off the supply voltage to the SRAM cells in the DRI
i-cache's unused sections, virtually eliminating leakage in these sections. Our adaptive scheme gives DRI i-
caches tight control over the number of extra misses caused by resizing, enabling the DRI icache to con-
tain both performance degradation and extra energy dissipation due to increased number of accesses to
lower cache levels.

We evaluated and presented detailed simulation results from running the SPEC95 applications on a Sim-
plescalar model of a DRI i-cache used in an out-of-order engine. The results indicated that our adaptive
scheme closely captures the application's working set size accurately, enabling a 64K DRI i-cache to
reduce, on average, the size by 62% with performance degradation constrained within 48 , and by 78%
with higher performance degradation. Compared to a conventional i-cache, a DRI i-cache reduces the leak-
age energy-delay product by 62% with performance degradation constrained within 4%' and by 67% with
higher performance degradation. Because higher associativities encourage more downsizing, and larger
sizes imply larger relative size reduction, DRI i-caches achieve even better energydelay products with
higher associativity and larger size. We also showed that our adaptive scheme is robust in that it is not sen-
sitive to many of the adaptivity parameters and perfoms predictably without drastic reactions to varying
the rest of the adaptivity parameters.

References
Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T.N. Vijaykumar. Gated-Vdd: A Circuit Mechanism for
Reducing Leakage in Cache Memories. In Proceedings of the International Symposium on Low Power Electronics and De-
sign (ISLPED), July 2000.

D. H. Alboensi. Selective cache ways: On-demand cache resource allocation. In 32nd Annual IEEUACM International
Symposium on Microarchitecture (MICRO 32). Nov. 1999.

F. Assaderaghi, D. Sinitsky, S. Park, J. Bokor, P. K.Ko, and C. Hu. A dynamic threshold voltage MOS:FET@TMOS) for
ulm-low voltage operation. IEDM Digest, page 809, 1994.

N. Bellas, I. Hajj, and C. Polychronopoulos. Architectural and compiler support for energy reduction in the memory hier-
archy of high performance microprocessors. In Proceedings of the International Symposium on Low Power Electronics and

Design (ISLPED), August 1998.

N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic management techniques to reduce energy in high-performance
pmessors. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), August 1999.

S. Borkar. Private communication.

S. Borkar. Design challenges of technology scaling. IEEE Micro, 19(4):23-29, July 1999.

D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to improve processor power and performance.
Jan. 1999.

T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED), July 2000.

D. Burger and T. M. Austin. The Simplescalar tool set, version 2.0. Technical Report 1342, Computer Sciences Depart-
ment, University of Wisconsin-Madison, June 1997.

B. Davari, R. Dennard, and G. Shahidi. CMOS scaling for high performance and low power- the next ten years. Proceedings
of the IEEE, 83(4):595, June 1995.

M. Hamada et al. A topdown low power design technique using cluster volatge scaling with variable supply voltage
scheme. In Proceedings of the I998 Custom lntegrated Circuits Conference, pages 495-498, 1998.

F. Hamzaoglu, Y. Ye, A. Keshavarzi, K. Zhang, S. Narendra S. Borkar, M. Stan, and V. De. Dual-vt sram cells with full-
swing single-ended bit line sensing for high-performance on-chip cache in 0.13um technology generation. In Proceedings
of the International Symposium on Low Power Electronics and Design (ISLPED), July 2000.

C. Hu. Low Power Design Methodologies, chapter Device and technology impact on low power electronics, pages 21-35.
Kluwer Publishing, 1996.

M. B. Kamble and K. Ghose. Analytical energy dissipation models for low power caches. In Proceedings of the Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), Aug. 1997.

J. Kin, M. Gupta, and W. H. Mangione-Smith. The filter cache: An energy efficient memory structure. In 30th Annual
IEEUACM International Symposium on Microarchitecture (MICRO 30). pages 184-193, December 1997.

U. KO, A. Pa, A. Hill, and P. Srivastava. Hybrid dual-threshold design techniques for high performance processors with low
power features. In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED), pages
307-311, 1998.

S. Manne, A. Klauser, and D. Grunwald. Pipline gating: Speculation control for energy reduction. In Proceedings of the
25th Annual International Symposium on Computer Architecture, pages 132-141, June 1998.

T. M. C. Mark C. Toburen and M. Reilly. Instruction scheduling for low power disspiation in high performance micropro-
cessors. In Proceedings of the Power Driven Microarchitecture Workshop.

S. Mutoh et al. I-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS. IEEE Journal
of Solid-State Circuits, 30(8):847-854, 1995.

1.-K. Peir, Y. Lee, and W. W. Hsu. Capturing dynamic memory reference behavior with adaptive cache topology. In Pro-
ceedings of the Eighth International Conference on ArchitecturaE Support for Programming Languages and Operating Sys-
tems (ASPLOS VIll), pages 240-250, Oct. 1998.

J. M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.

Semiconductor Industry Association. The International Technology Roadmap for Semiconductors (ITRS). http://

www.semichips.org, 1999.

D. Singh and V. Tiwari. Power challenges in the internet world. Cool Chips Tutorial in conjunction with the 32nd A ~ u a l
International Symposium on Microarchitecture, November 1999.

S. Sirichotiyakul et al. Standby power minimization through simultaneous threshold voltage selection and circuit sizing. In
Proceedings of the 36th Design Automation Conference, 1999.

L. Su et al. A high performance sub-0.25um cmos technology with multiple thresholds and copper interconnects. In IEEE
Symposium on VLSI Technology, 1998.

K . Usami and M. Horowitz. Design methodology of ultra low-power mpeg4 codec core ecploiting voltage scaling tech-
niques. In Proceedings of the 35th Design Automation Conference, pages 483-488, 1998.

L. Wei, Z. Chen, M. C. Johnson, K. Roy, and V. De. Design and optimization of low voltage high performance dual thresh-
old CMOS circuits. In Proceedings of the 35th Design Automation Conference, pages 489494, 1998.

L. Wei, Z. Chen, and K. Roy. Double gate dynamic threshold voltages (DGDT) SO1 MOSFETs for low .power high perfor-
mance designs. In ZEEE lnternutionul SO1 Conference, 1997.

L. Wei and K. Roy. Design and optimization for low-leakage with multiple threshold CMOS. In ZEEE U'orkrhop on Power
and Timing Modeling. pages 3-7, Oct. 1998.

S. J. E. Wilson and N. P. Jouppi. An enhanced access and cycle time model for on-chip caches. Technical Report 9315, Dig-
ital Equipment Corporation, Western Research Laboratory, July 1994.

Y. Ye, S. Borkar, and V. De. A new technique for standby leakage reduction in high performance circuits. In IEEE Sympo-
sium on VLSI Circuits, pages 4041, 1998.

	Purdue University
	Purdue e-Pubs
	5-1-2000

	Dynamically Resizable Instruction Cache: An Energy-Efficient and High-Performance Deep-Submicron Instruction Cache
	Se-Hyun Yang
	Michael Powell
	Babak Falsafi
	Kaushik Roy
	T. N. Vijaykumar

