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Abdract

Increasing levelsof on-chip integration have enabled steady improvementsin modem microprocessor per-
formance, but have also resulted in high energy dissipation. Deep-submicron CMOS designs maintain high
transistor switching speeds by scaling down the supply voltage and proportionately reducing the transistor
threshold voltage. L owering the threshold voltageincreasesleakageenergy dissipation due to an exponential
increase in the leakage current flowing through a transistor even when the transistor is not switching. Esti-
mates from the VLSI circuit community suggest a five-fold increase in leakage energy dissipationin every
future generation. Modem microarchitectures aggravate the leakage energy problem by investing vast
resourcesin on-chip cache hierarchiesbecause leakage energy grows with the number of transistors. While
demand on cache hierarchiesvaries both within and across applications, modem cachesare designed to meet
the worst-case application demand, resulting in poor utilization of on-chip caches, which in turn leadsto
energy inefficiency.

This paper explores an integrated architectural and circuit-level approach to reduce leakage energy dissipa-
tion in instruction caches (i-caches) while maintaining high performance. Using a simple adaptive scheme,
we exploit the variability in applicationdemand in a novel cache design, the Dynamically Resizablei-cache
(DRI i-cache), by dynamically resizing the cacheto the size required at any point in applicationexecution.
At thecircuit-level, the DRI i-cacheemploys a novel mechanism, called gated-V 44, which effectively turns
off thesupply voltageto the SRAM cellsin the DRI i-cache's unused sections, virtually eliminating leakage
in these sections. Ow adaptive scheme gives DRI i-caches tight control over the number of extra misses
caused by resizing, enabling the DRI i-cacheto contain both performance degradation and extra energy dis-
sipation due to increased number of accesses to lower cache levels. simulations using the SPEC95 bench-
marksshow that a 64K DRI i-cache reduces, on average, both the leakage energy-delay product.and average
size by 62%, with lessthan 4% impact on execution time.




1 Introduction

The ever-increasing levels of on-chip integration in the recent decade have enabled phenomenal increases
in computer system performance. Unfortunately, the performance improvement has been al so accompanied
by an increasein chips power and energy dissipation. Higher power and energy dissipation require more
expensive packaging and cooling technology, increase cost, and decrease reliability of productsin all seg-
ments of computing market from portable systemsto high-end servers [24]. Moreover, higher power and
energy dissipationsignificantly reduce battery lifeand diminish the utility of portable systems.

Historically, the primary source of energy dissipationin CMOS transistor devices has been the dynamic
energy dueto charging/discharging |oad capacitanceswhen the device switches. Chip designershaverelied
on scaing down thetransistor supply voltage in subsequent generations to reduce the dynamic energy dis-
Sipation due to a much larger number of on-chip transistors.

Maintaining high transistor switching speeds, however, requiresa commensurate down-scaling of thetran-
sistor threshold voltage along with the supply voltage [22]. The International Technology Roadmap for
Semiconductors [23] predictsa steady scaling of supply voltage with acorresponding decreasein transi stor
threshold voltage to maintain a 30% improvement in performance every generation. Transistor threshold
scaling, in turn, gives rise to a significant amount of leakage energy dissipation due to an exponential
increasein leakage current even when the transistor is not switching [7,32,28,20,26,14,11]. Borkar [7] esti-
matesafactor of 7.5 increasein leakage current and afive-fold increase in total |eakageenergy dissipation
in every chip generation.

State-of-the-art microprocessor designs devote a large fraction of the chip area to memory structures—
e.g., multiple levels of instruction (i-cache) caches and data (d-cache) caches, TLBs, and prediction tables.
For instance, 30% of Alpha 21264 and 60% of StrongARM are devoted to cache and memory structures
[18]. Unlike dynamic energy which depends on the number of actively switching transistors, leakage
energy isafunction of the number of on-chip transistors, independent of their switching activity. As such,
caches account for alarge (if not dominant) component of leakage energy dissipation in recent designs, and
will continue to do so in the future. Recent energy estimates for 0.13u processes indicate that leakage
energy accountsfor in excess of 50% of the total energy dissipated in cache memories [6]. Unfortunately,
current proposalsfor energy-efficient cache architectures[16,5,2] only target reducing dynamic energy and
do not impact leakage energy.

There are a myriad of circuit techniques to reduce leakage energy dissipation in transistors/circuits (e.g.,
multi-threshol d[30,26,20] or multi-supply [12,27] voltagedesign, dynamic threshold [29] or dynamic sup-
ply [9] voltage design, transistor stacking [32], and cooling [7]). These techniques, however, suffer from
three significant shortcomings. First, they often impact circuit performance and are only applicabletocir-
cuit sectionsthat are not performance-critical [13]. Second, they may require sophisticated fabrication pro-
cessand increasecost (e.g., dynamic supply- and threshold-voltagedesigns). Finally, the circuit techniques
apply low-level leakage energy reduction at all times without taking into account the application behavior
and thedynamic utilization of thecircuits.

Current high-performance microprocessor designs incorporate multi-level cache hierarchies on chip to
reduce off-chip access frequency and improve performance. Modem cache hierarchies are designed to sat-
isfy thedemandsof the most memory-intensiveapplicationsor application phases. Theactual utilizationof
caches, however, varies widely both within and across applications. Recent studies on block frame utiliza-
tion in caches [21], for instance, show that at any given instancein an application’'s execution, on average
over half of the block framesare™ dead — i.e., they miss upon a subsequent reference. These " dead block
frames continue dissipating | eakage energy while not holding useful data.

This paper presents the first integrated architectural and circuit-level approach to reduce leakage energy
dissipation in deep-submicron cache memories. We propose a novel instructioncache (i-cache) design, the
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Dynamically Reslzable instruction cache (DRI i-cache), which dynamicdly resizes itsdf to the size
required at any point during application execution and virtually turns off the supply voltage to the rest of
the cache's unused sections to eiminate leekage. At the architectura level, a DRI i-cache relieson smple
but effective techniquesto exploit the variability in i-cache usage and reduce the i-cache size dynamicdly
to capture the application’'s primary instruction working set. At the circuit-level, a DM i-cache uses a
recently-proposed mechanism, gated-V 4, [11, which reduces leskage by effectively turning off the supply
voltageto the SRAM cells of the cache's unused block frames.

Using state-of-the-art cycle-accurate architectural smulation and energy estimation circuit tools, we show

thefollowing.

e Thereisalarge variability in L1 i-cache utilization both within and across applications. Using asimple
adaptive hardware scheme, a DRI i-cacheeffectively exploitsthe variability by dynamically resizing the
cacheto accurately fit the application's working set. Simulationsusing SPEC applicationsindicate that
a DRI i-cache reduces the average size of a 64K-cache by 62% with performance degradation con-
strained within 4%, and by 78% with higher performance degradation.

e Previousresizing techniques coarsely vary associativity without controlling the extra misses incurred
dueto resizing, resulting in performance degradation and extraenergy diss pation to accesslower cache
levels [2]. Our adaptive scheme gives DRI i-cachestight control over the number of extra misses by
congtraining the miss rate to stay closeto a preset vaue, enabling the DM i-cache to contain both per-
formance degradation and the extralower-cache-level energy dissipation.

e A DRI i-cacheeffectively integratesarchitectural and the gated-V g4 circuit techniques to reduceleakage
in an L1 i-cache. Compared to a conventional i-cache, a DM i-cache reduces the |eakage energy-dday
product by 62% with performance degradation constrained within 4% ,and by 67% with higher perfor-
mance degradation.

e Because higher set-associativities encourage more downsizing, and larger sizes imply larger relative
sizereduction, DRI i-cachesachieveeven better energy-delay productswith higher set-associativity and
larger size.

o Our adaptive schemeis robust in that it is not senditiveto meny of the adaptivity parameters, and per-
forms predictably without dragtic reactionsto varying therest of the adaptivity parameters.

The rest of the paper is organized as follows. In Section 2, we describe the architectural techniques to
resize i-caches dynamically. In Section 3, we describe the gated-Vyy circuit-level mechanism to reduce
leakagein SRAM cells. In Section4, we describe our experimenta methodology. In Section 5, we present
experimental results. Section 6 and Section 7 present the related work and conclusions, respectively.



2 DRI |-Cache: Reducingthe Leakagein Degp-Submicron|-Caches

This paper proposes the Dynamically Reslzable instruction cache (DRI i-cache). The key observation
behind a DRI i-cacheis that there is a large variability in i-cache utilization both within and across pro-
grams leading to large energy inefficiency for conventional caches in deep-submicron designs; while the
memory cells in a cache's unused sections are not actively referenced, they leak current and dissipate
energy. A DRI i-cache's novelty is that it dynamically estimates and adaptsto the required i-cache size, and
uses a novel circuit-level technique, gated V44 [11, to turn off the supply voltage to the cache's unused
memory cells. In this section, we will describe the anatomy of a DRI i-cache. In the next section, we will
present the circuit techniqueto gate a memory cell's supply voltage.

The large variability in i-cache utilization is inherent to an application's execution. Application programs
often break down the computation into distinct phases. In each phase, an applicationtypicaly iteratesand
computesover aset of data. The code size executed in each phase dictatesthe required i-cachesizefor that
phase. Our ultimate goal is to exploit the variability in the code size and the required i-cache size across
application phases to save energy. The key to our leakage energy saving technique is to have a minimal
impact on performance and aminimal increasein dynamic energy dissipation.

Toexploit the variability in icache utilization, hardware (or software) must provide accurate mechanisms
to determinea transition among two application phases and estimate the required new i-cache size. Inaccu-
rate cache resizing may significantly increase the access frequency to lower cache levels, increase the
dynamic energy dissipated, and degrade performance, offsetting the gains from |eakage energy savings.
Resizing may also affect block placement in the cache requiring existing blocks to be moved to new
frames, incurringoverhead. A mechanismisalso required to determine how long an application phase exe-
cutes so as to select phases that have long enough execution times to amortizethe resizing overhead.

In this paper, we use a smple and intuitive all-hardware design to resize an i-cache dynamicaly. Our
approach to cacheresizing increases or decreasesthe number of activecache sets. Alternatively, we could
increase/decrease associativity, as is proposed for reducing dynamic energy in [2]. This alternative, how-
ever, has severa key shortcomings. First, it assumes that we start with a base set-associativecacheand is
not applicableto direct-mapped caches, which are widely used dueto their access latency advantages. Sec-
ond, changing associativity is a coarse-grained approach to resizing and may increase both capacity and
conflict miss rates in the cache. Such an approach increases the cache resizing overhead, significantly
reducing the opportunity for energy reduction.

While many of theideasin this paper apply to both i-cachesand dcaches, wefocus on i-cachedesigns in
this paper. Our approach to resizing caches requires that upon downsizing, the cache's unused sections be
turned off to save energy. Because cache blocks in a d-cache may be modified, dynamically resizing d-
cachesrequiresthat either the modified datain the cache's unused sections be written back., potentially off-
setting the gainsfrom saving energy [2] and incurring high writeback latency, or the modified cache blocks
remain "'on”". The latter complicates the cache design (Section 2.2) because accesses to the cache require
lookupsin both theon'" and "' of f” sections of the cache, incurring prohibitively high latency upon lookup.
This paper is the first step towards designing dynamically resizable caches, and as such we focus on i-
caches. Studying d-cachedesignsis beyond the scope of this paper.

In therest of this section, we will first describe the mechanismsto detect phase transitionsand cacheresiz-
ing and discuss cache lookup and placement strategies for a DRI i-cache. Next, we will discuss the hard-
ware and software implications for our new design. Finaly, we present the impact on dynamic energy
dissipation using our design.




2.1 BascDRI |-CacheDesign

Much like conventional adaptive computing frameworks, our cache uses a set of parametersto monitor,
react, and adapt to changesin application behavior and system requirementsdynamicaly. A DRI i-cache
divides an application's execution time into fixed-lengthintervals(measured in the number of instructions
executed) to monitor the cache's performance, and decides at the end of every interval if a changein cache
sizeis necessary. We use missrate as the primary metric for monitoring the cache's performance. The keys
to a successful DRI i-cachedesign are mechanismsto control the cache size accurately while preventing a
significant increasein the cache missrate. A large missrate increase may both prohibitively increaseexe-
cution time and the dynamic energy dissipated in thelower level caches, offsetting the leakage energy sav-
ings. Therefore, the key parametersin our design arethose that directly control the cache's missrate.

Figure 1 depicts the anatomy of a direct-mapped DRI i-cache (the same design appliesto set-associative
caches). The adaptive mechanism monitorsthe cachein fixed-lengthintervals, thesenseinterval, measured
in number of dynamic instructions (e.g., 1 million instructions). A miss counter counts the number of DRI
i-cache misses in each sense interval. At the end of each sense interval, the cache upsizes/downsizes,
depending on whether the miss counter is lower/higher than a preset value, the miss-bound. The factor by
which the cache resizes (up or down) is called the divisibility. For example, divisibility of two halvesthe
cache size upon every downsize and miss-bound set at 10,000 triggers adownsizeif the cache incurs more
than 10,000 missesin asenseinterval. If, however, thei-cache size would get smaller than a preset size, the
size-bound(e.g., 1 K), the cache does not downsize and staysat the same size.

All the cache parameters— i.e., the interval length, the size-bound, the miss-bound, and thedivisibility —
can be set either dynamically or statically. This paper isafirst step towards understandinga resizable cache
design. As such, we focus on designs that statically set the valuesfor the parameters prior to the start of
program execution.

Among these parameters, the key parametersthat control the i-cache's size and performanceare the miss-
bound and size-bound. The combination of these two key parameters provides accurate and tight control
over the cache's performance. Miss-bound allows the cache to react and adapt to an application's instruc-
tion working set by "bounding™ the cache's miss rate in each monitoring interval. Thus, the miss-bound
providesa "'fine-grain” resizing control between any two intervalsindependent of the cache size. Applica
tions typically require a specific minimum cache capacity beyond which they incur a large number of
capacity misses and thrash. Size-bound provides a'' coarse-grain” resizing control by preventing the cache
from thrashing by downsizing past 8 minimum Size.

The other two parameters, the sense interval length and divisibility, are less-critical to DRI i-cache perfor-
mance. Intuitively, the sense interval length allows selecting a sense interval length that best matches an
application's phase transition times, and the divisibility determinesthe rate at which thei-cacheisresized.

Resizing the cache requires that we dynamically change the cache block |ookup and placement function.
Conventional (direct-mapped or set-associative) i-cachesuse afixed set of index bitsfrom amemory refer-
ence to locate the set to which a block maps. Resizing the cache either reduces or increasesthe total num-
ber of cache setsthereby requiring alarger or smaller number of index bitsto look up aset. Our design uses
a mask to find the right number of index bits used for a given cache size (Figurel). Every time the cache
downsizes, the mask shifts to the right to use a smaler number of index bits and vice versa. Therefore,
downsizing removes the highest-numbered sets in the cache in groups of powersof two. The mask can be
folded into the address decoder trees of the data and tag arrays, so as to minimize theimpact on the lookup
time.

Becausesmaller caches use asmall number of index bits, they require alarger number of tag bitsto distin-
guish data in block frames. Because a DRI i-cache dynamically changes its size, it requires a different
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FIGURE 1: Anatomy of a DRI i-cache.

number of tag bitsfor each of thedifferent sizes. To satisfy thisrequirement, our design maintainsas many
tag bitsas required by the smallest size to which the cache may downsize itself. Thus, we maintain more
tag bits than conventional caches of equal size. We define the extratag bits to be the resizing tag bits. The
size-bound dictates the smallest allowed size and, hence, the corresponding number of resizing bits. For
instance, for a 64K DRI i-cache with a size-bound of 1K, the tag array uses 16 (regular) tag bits and 6
resizing tag bitsfor atotal of 22 tag bits to support downsizing to 1K. The resizing tag bits increase the
dynamicenergy dissipated in the cache ascompared to aconventional design. We will discuss thedynamic
energy implicationsof resizing tag bitsin Section 2.3 and present resultsin Section 5 that indicatea DRI i-
cachehas an overall minimal impact on the dynamic energy dissipated.

2.2 Implicationson Block L ookups

Using the resizing tag bits, we ensure that the cache functionscorrectly at every individua size. However,
transitioning from one size to another may still cause problemsin cachelookup. Becauseresizing modifies
the set-mapping function for blocks (by changing theindex bits), it may result in an incorrect lookup if the
cache contents are not moved to appropriate places or flushed before resizing. For instance, a 64K cache
maintainsonly 16 tag bits whereas a 1K cache maintains 22 tag bits. As such, even though downsizing the
cache from 64K to 1K allows the cache to maintain the upper 1K contents, the tags are not comparable
(Figure?2 left). While a simple solution, flushing the cache or moving block framesto the appropriate
places may incur prohibitively large amounts of overhead. Our design does not resort to this solution
because we already maintain al the tag bits necessary for the smallest cache size at al times; i.e., a 64K
cache maintains the same 22 tag bitsfrom the block addressthat a 1K cache would. This way, a tag com-
parison can proceed independent of the cache size obviating the need to movethe blocksor flush the cache
after resizing.

Moreover, upsizing the cache may complicate lookup because blocks map to different sets in different
cachesizes. Figure 2 (right) illustrates an examplein which block A maps to a different set when upsizing
the cachefrom 1K to 64K. Such a scenariocreatestwo problems. A lookupfor A after upsizing failstofind
A, and thereforefetchesand placesA into a new set. Whilethe overhead of such (compulsory) misses after
upsizing may be negligible and can be amortized over the sense interval length, such an approach will
result in multiplealiases of A in the cache. Unliked-caches, however, in thecommon case a processor only
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reads and fetches instructionsfrom an i-cache and does not modify a block's contents. Therefore, alowing
multiplealiases does not interferewith processor lookupsand instruction fetch in i-caches.

There are scenarios, however, which require invalidating all aliasesof a block in the i-cache. Unmapping
an instruction page (when swapping the page to the disk) requiresinvalidating all of the page's blocksin
thei-cache. Similarly, dynamic librariesrequire call siteswhicharetypically placed in the hesp and require
coherence between the i cache and the d-cache. Conventiona systems, however, often flush theicache or
d-cache to maintain coherence between them because the above operationsare infrequent. Moreover, these
operations typicaly involve OS intervention and incur high overheads, amortizing the cache flush over-
head.

2.3 Impact on Energy and Performance

Cacheresizing helps reduce leakage energy by alowing a DRI i-cacheto turn off the cache's unused sec-
tions. Resizing, however, may adversely impact the miss rate (as compared to a conventional i-cache) and
the accessfreguency to the lower-level (L2) cache. Theincreasein L 2 accesses may impact both execution
time and the dynamic energy dissipated in L2. While the impact on execution time dependson an applica-
tion's sensitivity to i-cache performance, the higher missrate may significantly impact the dynamic energy
dissipated due to the growing size of on-chip L2 caches[2]. A DRI i-cache may also increasethedynamic
energy dissipated as compared to a conventional cache due to the extraresizing tag bits in the tag RAM.
The combined effect of the above may offset the gains in leakage energy. In this section, we qualitatively
analyze the impact on performance and energy dissipation of a DRI i-cache. In Section 5.3, we present
simulation results which indicatethat a DRI i-cache can significantly reduce |eakage energy with minimal
impact on execution time and dynamic energy.

There are two sources of increase in the miss rate when resizing. First, resizing may require remapping of
data into the cache and incur a large number of (compulsory) misses at the beginning of a sense interval.
The resizing overhead is dependent on both the resizing frequency and the sense interval length. Fortu-
nately, applications tend to have at most a small number of well-defined phase boundariesat which thei-
cache size requirementsdrastically change due to achangein the instruction working set size. Our results,
however, indicatethat optimal interval lengths to match application phase transition times are long enough
to help amortize the overhead of moving blocks around at the beginning of aninterval (Section 5.3).

Second, downsizing may be suboptimal and result in a significant increase in the miss rate when the
required cache sizeis dightly below agiven size. Such a scenario will lead to both high missratesfor inter-
vals in which an application's working set does not fit in the cache, and frequent unnecessary switching
between two cache sizes. The impact on the missrateis highest at very small cache sizes when the cache
begins to thrash. Much as other adaptive systems, a DRI i-cache incorporatesa simple throttling mecha-




Resizing | Parameters Leakage M irate | L1 TagEnergy

aggressve miss-bound >> conventiond missrate 1 0 0
Sze-bound lov

conservetive miss-bound - conventiondl missrate 0 l 1
Sze-bound high

Table 1: Impact of resizing on leakage, miss rate, and L1 dynamic energy.

nism (using a 3-bit saturating counter with resizing backoff) to prevent the system from unnecessary resiz-
ings. Moreover, the size-bound guarantees that the cache never resizes beyond a given size, preventing the
cachefrom thrashing.

Miss-bound and size-bound control a DRI i-cache's aggressivenessin reducing the cache size and leakage
energy. Table 1 depicts the impact of resizing on performance and energy. In an aggressive DRI i-cache
configuration with a large miss-bound and a small size-bound, the cache is alowed to resize more often
and to small cache sizes, thereby aggressively reducing leakage. Small cache sizes, however, may lead to
high missrates, a high increase in dynamic energy dissipatedin L2, and a high increasein dynamic energy
dissipatedin L1 due to alarge number of resizing tag bits. Depending on an application's performancesen-
Sitivity to i-cache miss rates, the higher miss rates may increase execution time, indirectly increasing the
overall energy dissipated dueto a higher executiontime.

A conservative DRI i-cacheconfiguration maintainsa miss rate which is close to the missrateof aconven-
tional icache of the same base size, and bounds the downsizing to higher cache sizes so as to prevent
thrashing and significantly increasing the miss rate. Such a configuration reduces leakage with minimal
impact on execution time and dynamic energy dissipated.

The adaptivity parameters, sense interval length and divisibility, may also affect aDRI i-cache's ability to
adapt to the required i-cache size accurately and timely. Whilea larger divisibility favorsapplications with
drastic changes in icache requirements, it makes size transitions more coarse reducing a DRI icache's
opportunity to adapt to a size closest to the required size. Similarly, whilelonger senseintervals may span
over multiple application phases reducing opportunity for resizing, shorter intervals may result in a high
resizing overhead due to alargenumber of compulsory missesafter resizing. Our results, however, indicate
that the sense interval length and divisibility are less critical than the miss-bound and size-bound to con-
trolling the extramissesin aDRI i-cache(Section 5.6).

_____ —
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FIGURE 3: 6-T SRAM cell schematics: (a) conventional, (b) with NMOS gated-V4q4.

3 Gated-Vg44: A Circuit-level M echanism for Supply-Voltage Gating

Current technology scaling trends [7] require aggressive scaling down of the threshold voltage (V,) to
maintain transistor switching speeds. At low V,, however, there is a subthreshold leakage current through
transistors, even when operatingin the ™ cut-off' region, i.e., when the transistor is* off' [22]. The leakage
current increasesexponentially with decreasing threshold voltage, resulting in asignificant amount of leak-
age energy dissipationat low V,.

To prevent the leakage energy dissipation in a DRI i-cachefrom limiting aggressive threshol d-voltageseal -
ing, we use a circuit-level mechanism called gated-V 4, [1]. Gated-V 44 enables a DRI i-cache to turn off
effectively the supply voltage and eliminate virtualy all the leakage energy dissipation in the cache's
unused sections. The key ideaisto introducean extratransistor in the leakage path from the supply voltage
(V4q) to the ground (Gnd) of the cache's SRAM cells; the extra transistor is turned on in the used and
turned off in the unused sections, essentially "'gating” the cell's supply voltage. Gated-V 33 maintainsthe
performance advantages of lower supply and threshold voltages while reducing the leakage.

The fundamental reason for gated-V 44 achieving exponentially lower leakage is that two " off' transistors
connected in seriesincur an order of magnitude lower leakage; this effect is due to self reverse-biasing of
the stacked transistors, and is called the stacking effect [32]. Gated-V44’s extra transistor connected in
series with the SRAM cell transistors produces the stacking effect when the gated-V 44 transistor is turned
off, resulting in a high reduction in leakage. When the gated-V 44 transistor is turned "on", thecell issaid to
bein"active” mode and when turned "' off', the cell issaid to bein **standby” mode. In theinterestsof lim-
iting the number of termsdefined in the paper, we will continueto use*on™ and " off' modes.

Figure 3 (a) depicts the anatomy of a conventional 6-T SRAM cell with dual-bitline architecture we
assume in this paper. On a cache access, the corresponding row's wordline is activated by the address
decode logic, causing the cellsto read their values out to the precharged bitlines or to write the valuesfrom
the bitlines into the cells. The two invertersin Figure 3 (a) each have a V44 to Gnd leakage path going
through an NMOS or a PMOS transistor connected in series. Depending on the bit value (of 0 or 1) held in
thecell, the PMOS transistor of one and the corresponding NMOS transistor of the other inverter are™ off'.
Figure 3 (b) shows a DRI i-cache SRAM cell using an NMOS gated-V 44 transistor. When the gated-V 44
transistor is™ off’, it isin serieswith the" of f' transistors of theinverters, producing the stacking effect. The
DRI i-cacheresizing circuitry keepsthe gated-V 44 transistors of the used sectionsturned on and the unused
sections turned off.



Much as conventional gating techniques, the gated-V44 transistor can be shared among multiple circuit
blocks to amortize the overhead of the extra transistor. For example, in a DRI i-cache, a single gated-V 44
transistor can be shared among the SRAM cells of one or more cache blocks. To reduce the impact on
SRAM cell speed, the gated-V 44 transistor must be carefully sized with respect to the SRAM cell transis-
tors it is gating. While the gated-V 44 transistor must be made large enough to sink the current flowing
through the SRAM cells during a read/write operation in the ""on'"* mode, too large a gated-V 44 transistor
may reduce the stacking effect, thereby diminishing the power savings. Moreover, lage transistors aso
increase the area of overhead due to gating.

Gated-V 34 may be implemented using either an NMOS transistor connected between the SRAM cell and
Gnd or a PMOS transistor connected between V44 and the cell. Using a PMOS or an NMOS gated-V 44
transistor presents a trade-off between area overhead, |leakage reduction, and impact on performance[1].
Moreover, gated-V 44 can be coupled with a dual-threshold voltage (dua-V,) process technology [28] to
achieve even larger reductions in leakage. Dual-V, technology allowsintegrating transistors with two dif-
ferent threshold voltages. With dua-V, technology, the SRAM cells use low-V, transistors to maintain high
speed and the gated-V 44 transistors use high-V, to achieve additional leakage reduction. In this paper, we
assume NMOS gated-V 44 transistorswith dua-Vt for optimal performance, energy, and area results[1].



10

Pr ocessor Par ameters name || input | #Of inst(billions)
— - Integer benchmarks

Qiggg‘gg;ﬁf Bissues per cyde compress || test 0.035
width gec tran 1276
. ] go tran 0.955
L | i-cache/ 64K, direct-mapped iipeg tegt 0553
L1 DRI i-cache 1cydelaency i tran 0183
L1 d-cache 64K, 2-way (LRU) m88ksim || text 0490
1cydelaency perl train 0.040

L2cache 1M, 4-way, unified Floaf|ng paint benchmarks
12 cyde latency app_lu tral_n 0.288
Memory access 80cydest 4cycles per aps tra_n 234
latency 8 bytes foppp tran 0331
hydro2d || ted 0974
size su2cor tet 104
LSQ size 128 swim test 0.849
Branch predictor || 2-leve hybrid tomcatv_ || ted 2798

Table 3: Applications and input sets.

Table 2: Processor configuration
parameters.

4 Methodology

We use Simplescalar-2.0[10] to simulatean L1 DRI i-cachein the context of an out-of-order microproces-
sor. Table2 shows the base configuration for the smulated system. Table 3 presents the benchmarks we
usein this study, the corresponding input data sets, and the number of dynamic instructionsexecuted. We
run all of SPEC95 with the exception of two floating-point benchmarks and one integer benchmark (in the
interests of reduced simulation turnaround time).

To determine the energy usage of a DRI i-cache, we use geometry and layout information from CACTI
[31]. Using spice information from CACTI to modd the 0.18pu SRAM cells and related capacitances, we
determine theleakageenergy of asingle SRAM cell and thedynamic energy of read and write activitieson
single rows and columns. This informationis used to determine energy dissipation for appropriate cache
configurations. Areaestimatesare from a Mentor Graphics | C-Station layout of a single cacheline.

All simulations use a power supply of 1.0 volt. We estimate cell access time and energy dissipation using
Hspice transient analog analysis. The worst case read time is the time to lower the bitline to 75% of V44
after the wordline is asserted. We compute " off* and *'on™ mode energy dissipation by measuring average
energy dissipated by a steady state cache cellswith the gated-V 44 transistor in the correct mode. We ensure
that the SRAM cells are al initialized to a stable state before measuring read time or "on™ mode |eakage
energy.
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"On" Cdll- " Off' Cell- Energy | Relative | Area
CdlV, | Leakageper LeakageEnergy | Savings | Read Increase
Technique ) Cycle(n]) per Cycle (nJ) (%) Time (%)
no gated-V 44, 0.30 50 NIA N/A 222 N/A
high V,
Nno gated-V 44, 0.20 1740 N/A N/A 1.00 N/A
low V,
gated-Vyq, 0.20 1740 53 97 1.01 3%
low V;
Table 4: Leakage Energy, read time, and area for gated-V 4.
5 Results

In this section, we present experimental results on the performance and energy trade-off of a DRI i-cache,
compared to a conventional i-cache. First we briefly present circuit results indicating the energy savings of
gated-V 4. Then we present energy savings achieved for the benchmarks, demonstrating a DRI i-cache's
effectivenessat reducing average cache size and energy dissipation. Then we present the impact of DRI i-
cache parameters on dynamic energy dissipation: effect of the number of extra tag bits on L1 dynamic
energy, and effect of the miss-bound on L2 dynamic energy. Next we show performance and energy results
while varying DRI i-cache size and associativity. Finally, we present the effect of varying the DRI i-cache
adaptivity parameters: divisibility and senseinterval length.

51 Circuit Results

As transistor threshold voltages decrease, we expect read time to improve but leakage energy to increase
drastically. In this section we will show that gated-V 44 Vvirtualy eliminates the leakage while maintaining
fast read times. Table 4 shows leakage energy per cycle, relative read time, and the area overhead associ-
ated with gated-V 44. We assume adua-V, technology, with a 0.4V V, for the gated-V 44 transistor, and a
0.2V V, for the SRAM cell transistors.

The"on'" Leakage Cell Energy and " off' LeakageCell Energy columnsindicates|eakageenergy dissipated
per cyclewhen the cell isin*'on™ and " off' mode, respectively. From the first two rows, we see that lower-
ing the cache V, from 0.3to 0.2V reducesthe read time by over haf but increasesthe |eakage energy by
more than a factor of 30. From the third row we see that using gated-V 44, the leakage energy can be
reduced by 97% in " off' mode, confining the leakage to high-V, levels while maintaining low-V, speeds.
Thislargereduction in leakageiskey to ensuring that unused sectionsof the cache put in** off* modedissi-
pate little leakage energy.

If agated-V44 transistor is shared among an entire cache block's SRAM cells, the transistor needs to be
wide enough to sink the current through the block's SRAM cellsto prevent excessive degradationin read
time. The width of the gated-V g4 transistor needsto be equivalent to the maximum number of cell transis-
tors that can simultaneously switch in the cache block. Figure4 shows a layout of 64 SRAM cells on the
left and an adjoining NMOS gated-V 44 transistor connected to them. By constructing the gated-V 44 tran-
sistor such that the transistor width expands along the length of the cache line, only the width of the array
increases with the addition of such a transistor, without increasing the array's height. The total increasein
data array areadue to the addition of the gated-V 44 transistor is about 3% .



gated-Vyq transistor
FIGURE 4: Layaut o 64 SRAM cdllsconnected to asngle gated-Vgg NMOS trandgor.

5.2 Energy CalculationslllugtratingL eakageand Dynamic Energy Tradeoff

. A DRI i-cache decreases leakage energy by gating Vdd to cache sectionsin ** of f' mode but increasesboth
L1 dynamic energy due to the extraresizing tag bits and L2 dynamic energy due to extral.l misses. To
account for both the decreasein leakageenergy and increasein dynamic energy, we computethe Effective
U leakageenergy using three components, the L1 leakage energy, extraL1 dynamic energy, and extral.2
dynamic energy asfollows:

Effective L1 DRI i-cache leakage energy = L1 leakage energy + extra L1 dynamic energy + Extra L2 dynamic energy

L1 leakage energy = Leakage energy of "on" portion + Leakage energy of "off" portion

Leakage energy of ‘on” portion = (On" portion size as fraction) x (Leakage energy of conventional cache per cycle) x (cycles)
Leakage energy of “off” portion ~= 0

Extra L1 dynamic energy = (resizing tag bits) x (Dynamic energy of 1 bitiine per L1 access) X {L1 accesses)

Extra L2 dynamic energy = (Dynamic energy per L2 access) X (extra L2 accesses)

We now explain the equations. The Effective L1 leakage energy is the effective leakage energy dissipated
by the DRI i-cache during the course of the application execution. The first component, the L1 leskage
energy, isthe leakage energy of the on'™ and "' off" portions of the DRI i-cache dissipated during the execu-
tion. We compute DRI i-cache's "'on’™* portion leakage energy asthe leakage energy dissipated by aconven-
tiond i-cache in one cycletimes the DRI i-cache ' on'™ portion size expressed as afraction of the total size
times the number of cycles. We obtain the average™ on' portion size and the number of cyclesfrom Sim-
plescalar smulations. Using the low-V, "on" Cell-Leakage energy in Table4, we compute the leskage
energy for a conventiona i-cache. Becausethe ™ off' mode energy is a factor of 30 smaller than the "on'™
mode energy in Table 4, we set the™ off' modeterm to zero.

The second component is the extra L1 dynamic energy dissipated due to the extra resizing tag bits during
the application execution. We compute this component as the number of resizing tag bits used by the pro-
gram times the dynamic energy dissipated in one access of one resizing tag bitline in the L1 cache times
the number of L1 accesses made in the program. The third component is the extra L2 dynamic energy dis-
sipated in accessing the L2 cache dueto the extraLL1 missesduring the application execution. We compute
this component as the dynamic energy dissipated in one access of the L2 cache times the number of extra
L2 accesses. To estimate the dynamic energy of one access of oneresizing tag bitline and of one L2 access,
we modify the Spice files supplied by CACTI and use the calculations for cache accessenergy in [15]. We
tabulate the resultsof our calculationsin Table 5, which smplifiesthe energy expressionsasfollows:

Effective L1 DRI i-cache leakage energy = L1 leakage energy * L1 extra dynamic energy + L2 extra
dynamic energy

L1 leakage energy = ("On" portion size as fraction) x 0.91 X (cycles)

Extra L1 dynamic energy = (resizingtag bits) x 0.0022 x (L1 accesses)

Extra L2 dynamic energy = 3.6 X (extra L2 accesses)

Energy savings = Conventional cache leakage - Effective L1 DRI i-cache leakage energy

If the extraLL1 and L2 dynamic energy componentsdo not significantly add to L1 leakageenergy, aDRI i-
cache's energy savings will not be outweighed by extra (L1+L2) dynamic energy, as forecasted in




13

Energy component Energy (nJ)
Dynamicenergy per L2 access 3.6
Dynamicenargy o 1 resizing tag hit per L1 access 0. 0022
Conventiona L1 cache leskageenergy per cyde 0.91
Ratio d L1 leskageenergyper cyde to L2 dynamic energy per access 0.25

Table 5: Cache energy components.

Section 2.3. To demonstrate that the components do not significantly add to L1 |eakage energy, we com-
pare each of thecomponentstotheL1 leakageenergy and show that the components are much smaller than
the leakage energy.

(ExtraL1 dynamic energy)/ (L1 leekage energy)-= [(reszinghits)x 00022 x (LI accesses))/ [(On—adtion) x 091 x (cydes)]
~ [ (resz2ing bits) x 0.0022] / [(On' fradtion) x Q911
- 0.024 (if resizing ==15, ""on" fraction = 0.25)

We comparetheextraL1 dynamicenergy againstthe L | leakage energy by computing their ratio. We sim-
plify theratio by approximating the number of L1 accessesto be equal to the number of cycles(i.e., anL1
access is made every cycle L1 accesses and cycles), and cancelling the two in the ratio. If the number of
resizing tag bitsis 5 (i.e., the size-bound is afactor of 32 smaller then the original size), and the"on'™* por-
tion is as small as haf the original size, the ratio reduces to 0.024, implying that the extraL1 dynamic
energy isabout 3% of theL1 leakageenergy, under these extreme assumptions. This assertion implies that
if aDRI i-cache achieves sizable savings in leakage, the extra L1 dynamic energy will not outweigh the
savings.

(Extra L2 dyremicenargy)/ (LI leekage energy)=[3.6 x (extra L2 accesses)]/ [('On' fradtion) x 091 x (cydes)]
- [(3.95 / (On' fraction)]x [(extral2 accesses)/ (cydes)]
- [(3.95 / ('Ori'fraction)]x (extral1 miss rate)
- 0.16 (if ""on™ fraction == 0.25, extraL1 missrate— 1%)

Now we comparethe extra L 2 dynamic energy against the L1 |eakageenergy by computing their ratio. As,
before, we smplify this ratio by approximatingthe number of cyclesto be equal to the total number of L1
accesses, which allows us to expressthe ratio asa function of theabsoluteincreasein the L1 missrate(i.e.,
number of extraLl missesdivided by the total number of L1 accesses). If the™on' portion isassmall as
half theoriginal size, and the absoluteincreasein L1 missrateisashigh as1% (e.g., L1 miss rateincreases
from 5% to 6%), the ratio reducesto 0.16, implying that the extra L2 dynamic energy is about 16% of the
L1 leakage energy, under these extreme assumptions. Thisassertionimpliesthat if a DRI icache achieves
sizable savingsin leakage, the extra L2 dynamic energy will not outweighthe savings.

5.3 DRI I-CacheEnergy Savings

In this section, we present the overall energy-savingsachieved by aDRI i-cache. Becausea DRI icache's
energy dissipation depends on the miss-bound and size-bound, we show the best-case energy-savings
achieved for each benchmark under variouscombinationsof the miss-bound and size-bound. We determine
the best case via simulation by empirically searching the combination space. We present the energy-delay
product because it is a well-established metric used in low-power research. The energy-delay product
ensures that both reductionin energy and accompanyingdegradation in performanceare taken into consid-
eration together, and not separately. But because the best-case energy-delay in some cases amounts to con-
siderable performance degradation, which may be unacceptable in certain domains, we include
performance-constrained, best-case energy-delay product by limiting overall performance degradation to
under 4%, compared to a conventional i-cache.
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FIGURE 5: Performance-constrainedand unconstrained best cases.

We compute the energy-delay product by multiplying the effective DRI i-cache |eakage energy numbers
from Section 5.2 with the execution time reported by SimpleScalar. Figure5 (top graph) shows the effec-
tive energy-delay product normalized with respect to the conventional i-cache leakage energydelay prod-
uct. We present the empirically-obtained best cases with performance degradation constrained to be within
4% relative to the conventiona i-cache as well as unconstrained degradation. The stacked bars show the
breakdown between the leakage and extra dynamic (L1 and L2) components. For the unconstrained case,
we show the percentage increasein execution time relativeto a conventional i-cache above the bars when-
ever performance degradation is worse than 4%.

Figure5 (bottom graph) shows the DRI i-cache size averaged over the benchmark execution time, as a
fraction of the conventional i-cache size. We show the miss rates under the unconstrained case above the
bars whenever the miss rates are higher than 1%. Notethat for the performance-constrained case, the DRI
i-cache missratesare all below 1%, except for perl a 1.1%. The conventiona i-cache missrateis|essthan
1% for all the benchmarks (highest being 0.7% for perl), indicating that a 64K-cache capturesmost of the
working set of these benchmarks.

From the top graph, we see that a DRI i-cache achieveslarge reductionsin the energy-delay product as per-
formance degradation is constrained to be within 4%, demonstrating the effectivenessof our adaptiveresiz-
ing scheme. In fact, out of the 15 benchmarks, 9 stay within 2% degradation. The reductionrangesfrom as
much as 80% for applu, compress, ijpeg, and mgrid, to 60% for apsi, hydro2d, li, and swim, 40% for
m88ksim, perl, and su2cor, and 10% for gcc, go, and tomcatv. Fpppp is the only benchmark with no reduc-
tion. The dynamic (extra L1+L2) component of the energy-delay product is small for al the benchmarks,
implying that the extra L 2 accesses are few enough not to increase the dynamic component significantly, as
forecasted in Section 2.3 and Section 5.3.

For the unconstrained case, the best-case isidentical to the performance-constrained case for many bench-
marks. However, afew benchmarks (gec, go, m88ksim, and tomcatv) have significantly lower energy-delay.
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Class 1 Class 2 Class 3

applu |compress| i | mgrid | swim | apsi | foppp | go |m88ksim| perl | gec |hydro2d| ijpeg |su2cor|tomearv
conventional | 6X 1x 3x 8x 2X 2X 5x 9x 5x TX 5x 2x 2x ax 6Xx
miss rate 100 105 | 109 106 | 106 | 10| 104 10%| 10 | 103| 103] 103 | 10%]| 106 10
miss rate 8x 3x 3x X 2X 2x 5% 4x 8X 1x 9x 2X 2x 2X 3x
(©) 105 10% | 103 105 | 103 | 103 | 104 ]| 10| 10* | 102| 103 103 | 10| 10| 103
missbound | 1x 6x Ix | 4x 5% 4x 0 6X 2x 2X 5% 9x 1x 1x I x
© 103 | 10% | 102] 103 | 103 | 102 10%] 103 | 10| 103| 103 | 102 | 107 ]| 103
;;e(tl‘)’“nd'” 8 | 4 |8 | 2| 4 |1d643p32d328|21]|38]4]s
miss-bound | 3x 6x Ix | 4x 5X 5% 0 4x TX 5x 1x 2X 1x 3x 1x
) 103 104 | 102 103 | 107 | 102 10| 10% | 102| 10| 102 | 102 | 103 | 10°
sze-boundin
KB @ 8 4 8 2 4 8 |6 4 8/ 1 |6 1 6| 8 (2 4 4| 8

Table 6: Miss-bound and size-bound for performance-constrained(c) and unconstrained (u) cases.

For al these benchmarks, performance of the unconstrained best-caseis considerably worse than that of
the conventiona i-cache (e.g., gcc by 26%, go by 30%, tomcatv by 21%), indicating that the lower energy-
delay product is achieved at the cost of performance. This observation is borne out by the fact that the
dynamic component for these benchmarks is significantly larger, implying that the unconstrained case
reducesleakage by downsizing the cache incurring numerous extral. | misses.

From the bottom graph, we see that the average DRI i-cache size is significantly smaller than the conven-
tional i-cache in the performance-constrainedcase, confirming our hypothesisthat i-cache requirements
vary both within and across applications. The average cache si ze reduction rangesfrom as much as 80% for
applu, compress, ijpeg, li, and mgrid, to 60% for m88ksim, perl, and suZcor, and 20% for gec, go, and tom-
catv. For all the benchmarks, the miss rates continue to be less than 1%, staying close to those of the con-
ventional i-cache, demonstrating the success of our adaptive scheme in downsizing to the required size
while keeping the extra L1 missesin check. The only cases where the DRI i-cache miss rates are much
higher than those of the conventional i-cache are under the unconstrained casefor gee, go, perl, and tom-
catv, which downsizethe cache to the extent of incurring numerousextraLLl misses.

In Table6, welist the combinationsof the miss-bound and size-bound corresponding to thebest-case under
performance-constrained and unconstrained casesfor each benchmark. Because each benchmark’slevel of
sensitivity to the miss-bound and size-bound is different, requiring different miss-boundsand size-bounds
to determine the best-case. Even for the performance-constrained case (and more so for the constrained
case), the miss-bounds (“miss-bound(c)” row) are one or two ordersof magnitude higher than the conven-
tional miss rates ("' referencemiss rate'* row), encouraging miss rates higher than the conventional i-cache.

DRI i-cache's simple adaptive scheme enablesthe cache to downsize without causingthe missrate (" miss-
rate(c)” row) to exceed the miss-bound, except for the relatively small excessesin the case of gec and
su2cor. Because the absolute differences between the conventional and DRI i-cache miss rates are till
small in magnitude, the actual number of extralll misses is smal and the performance loss is minimal.
The largest miss-rate difference is 0.004 for gec and from the calculationsdone in Section 5.3, we know
that the this miss rate differencecontributesonly a small amount of extralL 2 dynamic energy.This observa-
tion makesit profitableto trade off extralL 2 dynamic energy for L1 |eakageenergy savings.

To understand the average i-cache size requirements better, we categorize the benchmarks into three
classes. Benchmarksin thefirgt class primarily requirea small i-cachethroughout their execution. Mostly,
they executetight loopsalowing a DRI i-cacheto stay at the size-bound, causing the unconstrainedand the
performance-constrained best-cases to match. Applu, compress, li, mgrid and svim fall in this class, and
they almost alwaysstay at the minimumsize allowed by the size-bound. The dynamic componentisalarge
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fraction of the DRI i-cache energy in these benchmarks because much of the L1 leakage energy is dimi-
nated through size reduction and alarge number of resizing tag bits are used to dlow asmall size-bound.

The second class consistsof the benchmarks that primarily require alarge i-cache throughout their execu-
tion and do not benefit much from downsizing. Apsi, foppp, go, m88ksim and perl fall under thisclass, and
fpppp is an extreme example of thisclass. If these benchmarks are encouraged to downsize via high miss-
bounds, they incur a large number of extraL1 misses, resulting in significant performance loss. Conse-
quently, the performance-constrainedcase uses asmall number of resizing tag bits, forcing the size-bound
to be reasonably large. Fpppp requires the full-sized i-cache, so reducing the size dramatically increases
the miss rate, canceling out any leakage energy savings. Therefore, fpppp is disallowed from downsizing
the cache by havinga64K size-bound. The rest of the applicationsare not asextreme as fpppp. At the per-
formance-constrained best-case, the dynamic energy overhead is much less than the leakage energy sav-
ings, and alowing more downsizing is still beneficid. However, due to their large i-cache size
requirements, the unconstrained best-case, obtained by downsizing beyond the performance-constrained
best-case, fall s outside the acceptabl e performance range.

Thelast class of applicationsexhibit distinct phases with diverse i-cache size requirements. Gee, hydro2d,
ijpeg, su2cor and tomcatv belong to thisclassof applications. A DRI i-cache's effectivenessto adapt to the
required i-cache sizeis dependent on itsability to detect the program phase transitionsand resize appropri-
ately. Hydro2d and ijpeg fall into the group that have relatively clear phase trangitions. After theinitializa-
tion phase requiring the full size of i-cache, hydro2d consists mainly of small loops requiring only 2K of i-
cache. Ijpeg followsthis pattern. Therefore, a DRI i-cache adapts to the phases of hydre2d and ijpeg well,
achieving small average sizes with little performance loss. The phase transitionsin gee, su2cor and tom-
catv are not as clearly defined, resultingin aDRI i-cachenot adapting as well asit did for Aydro2d or ijpeg.
Consequently, these benchmarks best-case average sizes under both the performance-<:onstrainedand
uncongtrained case are relatively large.

5.4 Effect of Miss-Bound and Size-Bound

In this section, we present the effect of varying the miss-bound and size-bound on the energy-delay prod-
uct. The miss-bound and size-bound are key parameters which determine the L2 and extra L1 dynamic

energy, respectively.
54.1 Effect of MissBound

The miss-bound control s the number of extraL1 misses caused by downsizing and directly affectstheextra
L2 dynamic energy dissipated to service the extra L1 misses. A higher miss-bound encouragesa DRI i-
cacheto downsizedespitealarger number of L1 missesd the current size.

Figure 6 shows the result of varying the miss-bound around the vaue corresponding to the performance-
constrained best-casein Table 6. The size-bound isfixed a the same value as the performance-constrained
best-casefrom Table 6. The center bar corresponds to the best-case miss-bound; the left and right bars cor-
respond to haf and twice of the center bar's miss-bound, respectively. Varying the miss-boundsat half and
twice the best-case miss-bound keeps the resulting miss-bounds a reasonablevalues. The top graph shows
the effective energy-delay product normalized to the conventiond i-cache leakage energy-dday, and aso
the percentage performance-degradation for the cases which are 4% worse than the conventional i-cache.
The bottom graph shows average cache size as afraction of the conventiona i-cache size and also the miss
ratefor the cases which are above 1%.

The energy-delay graph shows that despite varying the miss-bound over a factor of four range (i.e., from
0.5x to 2x), most of the benchmarks energy-delay product does not change significantly. Even when the
miss-bound is doubled (right bars), the L1 miss rates stay within 1% and the L2 dynamic energy-delay
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FI GQUREG: Effect of varying the miss-bound.

component does not increase much for most of the benchmarks. This behavior indicates that our adaptive
schemeisfairly robust with respect to a reasonabl erange of miss-bounds. The exceptionsare gce, go, perl,
and romcatv, which need large i-caches but alow more downsizing under higher miss-bounds, as can be
seen from the average size graph, because the application phase transitions are not readily identified by a
DRI i-cache. These benchmarks achieve average sizes smaller than those of the best-cases, but incur more
than 4%, albeit lessthan 10%, performancedegradation, compared to the conventiona i-cache.

542 Sze-Bound

The number of resizing tag bitsdetermines the size-bound to which the cachemay be downsized, indirectly
controlling the number of extraL1 misses and the extraL2 dynamic energy. The resizing tag bits directly
incur extraL.l dynamic energy becausethe bitsrequire charging and dischargingadditional bitlines (asdis-
cussed in Section 2.3). Each additional resizing tag bit decreasesthe size-bound by half, and is beneficia
only if the leakage energy savings achieved by downsizing to the next haf size is more than the extraL1l
energy for the resizing tag bitlines and the extra L2 energy due to the extra L1 misses caused by such
downsizing.

Figure 7 shows the effect of varying the size-bound to be double and hdf the value of the performance-
constrained best-casein Table 6. The miss-bound is set a the value of the performance-constrained best-
casein Table 6. The center bar for each benchmark except fpppp, correspondsto the best-case size-bound;
the left and right bars correspond to double and haf that size-bound, respectively. Fpppp's best-case size-
bound is 64K, and therefore there is no left bar. The top graph shows the effective energydelay product
normalized to the conventiona i-cache |eakage energy-delay and also the percentage dowdown for the
cases which are 4% worse than the conventional i-cache. The bottom graph shows average cache sizeasa
fraction of the conventional i-cache size and al so the miss ratefor the cases which are above 1%.
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FIGURE 7: Effect of varying the size-bound.

For all benchmarks, a smaller size-bound resultsin larger reductionin the average cachesize, but the effect
on the energy-delay variesdepending on the classto which the benchmark belongs. Thefirst classof appli-
cations, applu, compress, li, mgrid, and swim, incur little performance degradation with the best-case size-
bound because the benchmarks’ i-cache requirementsare small. Throughout the benchmarks execution, a
DRI i-cache stays at the minimum size alowed by the size-bound. Doubling the size-bound of the best-
case (left bars) results in worse energy-delay than the best-case, corroborated by the fact that the average
size is almost double that of the best-case. Halving the size-bound of the best-case (right bars), causes
numerousextral | missesand increased extral 2 dynamic energy, which resultsin worse energy-delay.

Decreasing the size-bound for the second class, apsi, go, m88ksim, perl, which has relatively largei-cache
requirements, encouragesdownsizing at the expense of performance. With a smaller size-bound, this class
achieves lower energy-delay than the best-case by downsizing more, but incurs performance degradation
beyond 4%. For the third class of applications, gcc, hydro2d, ijpeg, su2cor, and tomcatv, and fpppp, the
extraL 1 dynamic energy incurred by decreasing the size-bound beyond the best-caseoutstripsthe leakage
energy savings, resulting in higher energy-delay than the best-case. Using a 32K size-bound, Fpppp has
worse energy-delay than a conventional i-cache, indicating that poor choice of parameters may result in a
DRI i-cachehaving worse energy-delay than a conventiond i-cache.

5.5 Effect of Conventional Cache Par ameters

In this section, we investigate theimpact of conventional cache parameters, size and associativity, on aDRI
i-cache. Intuitively, higher associativity reduces conflict misses, making the miss rate less senstive to
cache size. Consequently, a DRI i-cache should be more effectivein reducing the cache size without incur-
ring many extra L1 misses and additional L2 dynamic energy. Because a DRI i-cache downsizesto the
working set size of the gpplication independent of the original size of the cache, increasing the size should
result in larger energy savings.
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FIGURE 8 Effect of varying conventional cache parameters.

Figure 8 displaystheresultsfor a 64K, 4-way associative DRI i-cache, a 64K, direct-mapped DRI i-cache
(asin Section 5.3), and a 128K, direct-mapped DRI i-cache, shown from left to right. The miss-bound is
set to be the same as that of the performance-constrained best-casein Table6. The size-bound isalso asin
the performance-constrainedbest-casein Table 6. The128K direct-mapped case usesone moreresizing tag
bit so that the size-bound is the same as the 64K direct-mapped case. Energy-delay, average size, and per-
formance degradation shown in the figures are al relative to a conventiona i-cache of equivalent size and
associativity. Thus, each bar is normalized with respect to a different conventional cache, and the left and
center bars correspond to the same size (64K) but different associativities. The center and right bars corre-
spond to the same associativity (direct-mapped) but different sizes. Note that the right-most bar and left-
most bars are not directly comparable.

For applu, apsi, compress, foppp, ijpeg, li, and mgrid, varying the associativity (left and center bars) does
not impact the relativeenergy-delay product or the average cache size. Thereason for this behavior is that
the direct-mapped DRI i-cache miss rates are not high to start with, making added associativity insignifi-
cant. Consequently, the direct-mapped DRI i-cache achievesthe same averagesize as the 4-way associative
DRI i-cache, resulting in identical energy-delay products. For therest of the benchmarks, gec, go, kydro2d,
suZcor, swim and tomcatv, the direct-mapped DRI i-cache miss rates range from 0.17% for su2cor to
0.92% for gce, giving the 4-way cache an opportunity to absorb some of the conflict misses. Thus, the 4-
way associative DRI i-cache achieves smaller average size and lower energydelay for these benchmarks
using the same miss-bound as the direct-mapped DRI i-cache. Using the same miss-bourd for the 4-way
associative DRI i-cache as the direct-mapped DRI i-cache encouragesmore extra misses in the4-way asso-
ciative DRI i-cache compared to a conventional 4-way associative cache. Consequently, for gee, hydro2d,
and tomcatv, however, the smaller average size comes at the cost of performance degradation beyond 4%.

Increasing the sizefrom 64K (center bars) to 128 K (right bars) while allowing the same size-bound (i.e.,
one extra resizing tag bit for the 128K cache) gives higher savings in energy-delay, because a larger frac-
tion of the cacheisturned " off'. In al cases, except for fpppp and gec, the 128K cache is downsized to the
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FIGURE 9: Effect of varying the divisibility.

same absol ute magnitude as the 64K cache; when expressed as a fraction of the origina size, the average
sizefor the 128K DRI i-cache is half that for the 64K DRI i-cache. Fpppp and gcc are different because
their working set sizes are larger than 64K in some (for gec) or all (for fpppp) application phases, and so
the 128K DRI i-cache does not downsize to 64K in those phases. Hence, the 128K DRU i-cache’s average
sizeis not haf that of the 64K DRI i-cache. This shows that the DFRU i-cache downsizesto the working set
size of the application, regardless of the original cache size. For perl, gcc, and hydro2d, using the same
miss-bound for the 128K cache as the 64K cache causesreatively moreL1 misses in the 128K cachethan
the 64K cache, when compared with the respective equivalent conventional caches. The additional misses
result in higher extralL 2 dynamic energy and performance degradation worsethan 4%, asindicated.

5.6 Effect of Adaptivity Parameters

A DRI i-cacheis an adaptive system using the parameters. miss-bound, size-bound, interval length, and
divisibility, and we have already evaluated the impact of the miss-bound and size-bound in the previous
sections. Now, welook &t the effect of interval lengthand divisibility on DRI i-cache behavior.

Idedly, we want the monitoring interval length to correspond to program phases, allowing the cache to
resize before entering a new phase. Because we do not know the length of the phases, we approximate
using a fixed monitoring interval length. Our experiments show that in amost all cases, a DRI i-cacheis
reasonably robust to interval length. More precisaly, varying the interval length from 250K to 4M i-cache
accesses, the energy-delay product varies by lessthan 1% except for go which showsa 5% difference.

Divisibility is used to control the rate of resizing by setting the factor by which the cache sze changes per
resizing. Largedivisibility isfavorablefor both performanceand energy consumption when the cache rap-
idly switchesbetweenlargeand small working sets. In that case, large divisibility reducesthe time spentin
the intermediate cache sizes. However, larger divisibility makes it difficult for the cache to adapt to the
optimal Size because larger divisibility makes the granularity of the resizing process coarser. Figure9

—



shows that divisibility of 8 always exhibitsworseenergydelay productsthan those of divisibility of 2. For
all the benchmarks, the coar ser granularity preventsthe cache from downsizingto the next one-eighth size
elther becauseof exceeding themiss-bound or because of exhausting the resizing tag bits.
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6 Reated Work

There are anumber of previousstudiesfocusing on reducing thedynam ¢ power and energy dissipationin
processors and cache memories. Manne, et al., [18] propose gating the processor pipeline stages to reduce
the processor's dynamic energy dissipation. Brooks and Martonosi [8] propose exploiting; narrow-width
operands to reduce the processor's dynamic power. Toburen, et d., [19] reduce processor dynamic power
viainstruction scheduling.

To reduce dynamic power of caches, Albonesi [2] proposes Selective Cache Ways, a mechanismto vary
cache associativity dynamically by activating and deactivating cache banks in set-associative caches. There
are severa key differences between this technique and ours. This technique does not work for direct-
mapped caches which are widely used due to their access speed advantages. Because this technique can
vary the associativity and size only together, and not separately, this technique resultsin a greater number
of extra misses than our technique, which varies only the size. While our adaptive scheme gives DRI i-
cachestight control over the number of extra misses, this techniquevaries associativity which is a coarse-
grained resizing approach that increases both capacity and conflict missesin the cache.

Kin, et d., [16] propose the Filter Cache, small (e.g., 256-byte) direct-mapped LO caches, that filter
accessesto L1 |- and D-Caches and reduce power. Filter caches trade-off potentially significant degrees of
performanceloss for power savings. Similarly, Bellas, et al., propose the L oop-Cacheand use the compiler
[4,5] or hardware [4,5] to detect and place small loopsin it to reduce the access frequency to the L1 i-
cache. None of the previous studies have focused on reducing the |eakage power in degp-submicron
caches.

Thereareanumber of previous studiesthat have focused on circuit-level only techniquesto reduceleakage
power. Several circuit techniquessuch as multipletransistor threshold voltages [20,17,25,30] and transi stor
stacking [32,30] have been used to reduce |eakage power dissipation while maintaining high performance.
More recently, dynamic transistor threshold control to achieve high performance when the transistor is
“on” and low leakage current when the transistor is™ off' [3,29] has been used for both bulk Silicon and
Silicon on Insulator (SOI) technology. Multiple supply voltages with multipletransistor threshold voltages
can also be used to achieve both dynamic and |leakage power reduction [12,27]. However, circuit-level
techniques that apply leakage reduction ignore application/architectural behavior and circuit utilization.
Instead, we propose an integrated architectural and circuit-level approach to maximize opportunity for
leakage reduction with minimal impact on performance.
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7 Conclusons

This paper explored an integrated architectural and circuit-level approach to reduce |eakageenergy dissipa-
tion in degp-submicron cache memories while maintaining high performance. The key observation in this
paper is that the demand on cache memory capacity varies both within and across applications. Modem
caches, however, are designed to meet the worst-case application demand, resulting in poor utilization of
on-chip caches, and consequently a energy inefficiency. We introduced a novel cache called the Dynami-
caly Resizable i-cache (DRI i-cache) that dynamically reacts to application demand and adapts to the
required cache sizeduring an application's execution. At the circuit-level, the DRI i-cacheemploysanove
mechanism, called gated-V 44, which effectively turns off the supply voltage to the SRAM cellsin the DRI
i-cache's unused sections, virtually eliminatingleakagein these sections. Our adaptive schemegives DRI i-
caches tight control over the number of extramisses caused by resizing, enabling the DRI i-cache to con-
tain both performance degradation and extra energy dissipation due to increased number of accesses to
lower cachelevels.

We evauated and presented detailed simulation results from running the SPEC95 applicationson a Sim-
pleScalar model of a DRI i-cache used in an out-of-order engine. The resultsindicated that our adaptive
scheme closaly captures the application's working set size accurately, enabling a 64K DRI i-cache to
reduce, on average, the size by 62% with performance degradation constrained within 4%, and by 78%
with higher performancedegradation. Compared to a conventiond i-cache, a DRI i-cachereducesthe lesk-
ageenergy-delay product by 62% with performance degradation constrained within 4%, and by 6726 with
higher performance degradation. Because higher associativities encourage more downsizing, and larger
sizes imply larger relative size reduction, DRI i-caches achieve even better energydelay products with
higher associativity and larger size. We al so showed that our adaptive schemeis robust in that it is not sen-
Stive to many of the adaptivity parametersand performs predictably without drastic reactions to varying
therest of the adaptivity parameters.
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