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Abstract 

Increasing levels of on-chip integration have enabled steady improvements in modem microprocessor per- 
formance, but have also resulted in high energy dissipation. Deep-submicron CMOS designs maintain high 
transistor switching speeds by scaling down the supply voltage and proportionately reducing the transistor 
threshold voltage. Lowering the threshold voltage increases leakage energy dissipation due to an exponential 
increase in the leakage current flowing through a transistor even when the transistor is not switching. Esti- 
mates from the VLSI circuit community suggest a five-fold increase in leakage energy dissipation in every 
future generation. Modem microarchitectures aggravate the leakage energy problem by investing vast 
resources in on-chip cache hierarchies because leakage energy grows with the number of transistors. While 
demand on cache hierarchies varies both within and across applications, modem caches are designed to meet 
the worst-case application demand, resulting in poor utilization of on-chip caches, which in turn leads to 
energy inefficiency. 

This paper explores an integrated architectural and circuit-level approach to reduce leakage energy dissipa- 
tion in instruction caches (i-caches) while maintaining high performance. Using a simple adaptive scheme, 
we exploit the variability in application demand in a novel cache design, the Dynamically Resizable i-cache 
(DRI i-cache), by dynamically resizing the cache to the size required at any point in application execution. 
At the circuit-level, the DRI i-cache employs a novel mechanism, called gatedmVdd, which effectively turns 
off the supply voltage to the SRAM cells in the DRI i-cache's unused sections, virtually eliminating leakage 
in these sections. Ow adaptive scheme gives DRI i-caches tight control over the number of extra misses 
caused by resizing, enabling the DRI i-cache to contain both performance degradation and extra energy dis- 
sipation due to increased number of accesses to lower cache levels. simulations using the SPEC95 bench- 
marks show that a 64K DRI i-cache reduces, on average, both the leakage energy-delay product. and average 
size by 62%, with less than 4% impact on execution time. 



1 Introduction 

The ever-increasing levels of onchip integration in the recent decade have enabled phenomenal increases 
in computer system performance. Unfortunately, the performance improvement has been also accompanied 
by an increase in chips' power and energy dissipation. Higher power and energy dissipation require more 
expensive packaging and cooling technology, increase cost, and decrease reliability of products in all seg- 
ments of computing market from portable systems to high-end servers [24]. Moreover, higher power and 
energy dissipation significantly reduce battery life and diminish the utility of portable systems. 

Historically, the primary source of energy dissipation in CMOS transistor devices has been the dynamic 
energy due to chargingldischarging load capacitances when the device switches. Chip designers have relied 
on scaling down the transistor supply voltage in subsequent generations to reduce the dynamic energy dis- 
sipation due to a much larger number of on-chip transistors. 

Maintaining high transistor switching speeds, however, requires a commensurate down-scaling of the tran- 
sistor threshold voltage along with the supply voltage [22]. The International Technology Roadmap for 
Semiconductors [23] predicts a steady scaling of supply voltage with a corresponding decrease in transistor 
threshold voltage to maintain a 30% improvement in performance every generation. Transistor threshold 
scaling, in turn, gives rise to a significant amount of leakage energy dissipation due to an exponential 
increase in leakage current even when the transistor is not switching [7,32,28,20,26,14,11]. Borkar [7] esti- 
mates a factor of 7.5 increase in leakage current and a five-fold increase in total leakage energy dissipation 
in every chip generation. 

State-of-the-art microprocessor designs devote a large fraction of the chip area to memory structures- 
e.g., multiple levels of instruction (i-cache) caches and data (d-cache) caches, TLBs, and prediction tables. 
For instance, 30% of Alpha 21264 and 60% of StrongARM are devoted to cache and memory structures 
[18]. Unlike dynamic energy which depends on the number of actively switching transistors, leakage 
energy is a function of the number of on-chip transistors, independent of their switching activity. As such, 
caches account for a large (if not dominant) component of leakage energy dissipation in recent designs, and 
will continue to do so in the future. Recent energy estimates for 0 . 1 3 ~  processes indicate that leakage 
energy accounts for in excess of 50% of the total energy dissipated in cache memories [6]. Unfortunately, 
current proposals for energy-efficient cache architectures [16,5,2] only target reducing dynamic energy and 
do not impact leakage energy. 

There are a myriad of circuit techniques to reduce leakage energy dissipation in transistorslcircuits (e.g., 
multi-threshold [30,26,20] or multi-supply [12,27] voltage design, dynamic threshold [29] or dynamic sup- 
ply [9] voltage design, transistor stacking [32], and cooling [7]). These techniques, however, suffer from 
three sigmficant shortcomings. First, they often impact circuit performance and are only applicable to cir- 
cuit sections that are not performance-critical [13]. Second, they may require sophisticated fabrication pro- 
cess and increase cost (e.g., dynamic supply- and threshold-voltage designs). Finally, the circuit techniques 
apply low-level leakage energy reduction at all times without taking into account the application behavior 
and the dynamic utilization of the circuits. 

Current high-performance microprocessor designs incorporate multi-level cache hierarchies on chip to 
reduce off-chip access frequency and improve performance. Modem cache hierarchies are designed to sat- 
isfy the demands of the most memory-intensive applications or application phases. The actual utilization of 
caches, however, varies widely both within and across applications. Recent studies on block frame utiliza- 
tion in caches [21], for instance, show that at any given instance in an application's execution, on average 
over half of the block frames are "dead - i.e., they miss upon a subsequent reference. These "dead block 
frames continue dissipating leakage energy while not holding useful data. 

This paper presents the first integrated architectural and circuit-level approach to reduce leakage energy 
dissipation in deep-submicron cache memories. We propose a novel instruction cache (i-cache) design, the 



Dynamically ResIzable instruction cache (DRI i-cache), which dynamically resizes itself to the size 
required at any point during application execution and virtually turns off the supply voltage to the rest of 
the cache's unused sections to eliminate leakage. At the architectural level, a DRI icache relies on simple 
but effective techniques to exploit the variability in i-cache usage and reduce the i-cache size dynamically 
to capture the application's primary instruction working set. At the circuit-level, a DM i-cache uses a 
recently-proposed mechanism, gated-Vdd [I], which reduces leakage by effectively turning off the supply 
voltage to the SRAM cells of the cache's unused block frames. 

Using state-of-the-art cycle-accurate architectural simulation and energy estimation circuit tools, we show 
the following. 

There is a large variability in L1 icache utilization both within and across applications. Using a simple 

adaptive hardware scheme, a DRI i-cache effectively exploits the variability by dynamically resizing the 

cache to accurately fit the application's working set. Simulations using SPEC applications indicate that 

a DRI i-cache reduces the average size of a 64K-cache by 62% with performance degradation con- 

strained within 4%, and by 78% with higher performance degradation. 

Previous resizing techniques coarsely vary associativity without controlling the extra misses incurred 

due to resizing, resulting in performance degradation and extra energy dissipation to access lower cache 

levels [2]. Our adaptive scheme gives DRI i-caches tight control over the number of extra misses by 

constraining the miss rate to stay close to a preset value, enabling the DM i-cache to contain both per- 
formance degradation and the extra lower-cache-level energy dissipation. 

A DM i-cache effectively integrates architectural and the gated-Vdd circuit techniques to reduce leakage 

in an L1 i-cache. Compared to a conventional i-cache, a DM i-cache reduces the leakage energy-delay 

product by 62% with performance degradation constrained within 4%, and by 67% with higher perfor- 

mance degradation. 

Because higher set-associativities encourage more downsizing, and larger sizes imply larger relative 

size reduction, DRI i-caches achieve even better energy-delay products with higher set-associativity and 

larger size. 

Our adaptive scheme is robust in that it is not sensitive to many of the adaptivity parameters, and per- 

forms predictably without drastic reactions to varying the rest of the adaptivity parameters. 

The rest of the paper is organized as follows. In Section 2, we describe the architectural techniques to 
resize i-caches dynamically. In Section 3, we describe the gated-Vdd circuit-level mechanism to reduce 
leakage in SRAM cells. In Section 4, we describe our experimental methodology. In Section 5, we present 
experimental results. Section 6 and Section 7 present the related work and conclusions, respectively. 



2 DRI I-Cache: Reducing the Leakage in Deep-Submicron I-Caches 

This paper proposes the Dynamically ResIzable instruction cache (DRI i-cache). The key observation 
behind a DRI i-cache is that there is a large variability in i-cache utilization both within and across pro- 
grams leading to large energy inefficiency for conventional caches in deep-submicron designs; while the 
memory cells in a cache's unused sections are not actively referenced, they leak current and dissipate 
energy. A DRI i-cache's novelty is that it dynamically estimates and adapts to the required i-cache size, and 
uses a novel circuit-level technique, gated Vdd [I], to turn off the supply voltage to the cache's unused 
memory cells. In this section, we will describe the anatomy of a DRI i-cache. In the next section, we will 
present the circuit technique to gate a memory cell's supply voltage. 

The large variability in i-cache utilization is inherent to an application's execution. Application programs 
often break down the computation into distinct phases. In each phase, an application typically iterates and 
computes over a set of data. The code size executed in each phase dictates the required i-cache size for that 
phase. Our ultimate goal is to exploit the variability in the code size and the required i-cache size across 
application phases to save energy. The key to our leakage energy saving technique is to have a minimal 
impact on performance and a minimal increase in dynamic energy dissipation. 

To exploit the variability in icache utilization, hardware (or software) must provide accurate mechanisms 
to determine a transition among two application phases and estimate the required new i-cache size. Inaccu- 
rate cache resizing may significantly increase the access frequency to lower cache levels, increase the 
dynamic energy dissipated, and degrade performance, offsetting the gains from leakage energy savings. 
Resizing may also affect block placement in the cache requiring existing blocks to k moved to new 
frames, incurring overhead. A mechanism is also required to determine how long an application phase exe- 
cutes so as to select phases that have long enough execution times to amortize the resizing overhead. 

In this paper, we use a simple and intuitive all-hardware design to resize an i-cache dynamically. Our 
approach to cache resizing increases or decreases the number of active cache sets. Alternatively, we could 
increaseldecrease associativity, as is proposed for reducing dynamic energy in [2]. This alternative, how- 
ever, has several key shortcomings. First, it assumes that we start with a base set-associative cache and is 
not applicable to direct-mapped caches, which are widely used due to their access latency advantages. Sec- 
ond, changing associativity is a coarse-grained approach to resizing and may increase both capacity and 
conflict miss rates in the cache. Such an approach increases the cache resizing overhead, significantly 
reducing the opportunity for energy reduction. 

While many of the ideas in this paper apply to both i-caches and dcaches, we focus on i-cache designs in 
this paper. Our approach to resizing caches requires that upon downsizing, the cache's unused sections be 
turned off to save energy. Because cache blocks in a d-cache may be modified, dynamically resizing d- 
caches requires that either the modified data in the cache's unused sections be written back., potentially off- 
setting the gains from saving energy [2] and incurring high writeback latency, or the modified cache blocks 
remain "on". The latter complicates the cache design (Section 2.2) because accesses to the cache require 
lookups in both the "on" and "off7 sections of the cache, incurring prohibitively high latency upon lookup. 
This paper is the first step towards designing dynamically resizable caches, and as such we focus on i- 
caches. Studying d-cache designs is beyond the scope of this paper. 

In the rest of this section, we will first describe the mechanisms to detect phase transitions and cache resiz- 
ing and discuss cache lookup and placement strategies for a DRI i-cache. Next, we will discuss the hard- 
ware and software implications for our new design. Finally, we present the impact on dynamic energy 
dissipation using our design. 



2.1 Basic DRI I-Cache Design 

Much like conventional adaptive computing frameworks, our cache uses a set of parameters to monitor, 
react, and adapt to changes in application behavior and system requirements dynamically. A DRI i-cache 
divides an application's execution time into fixed-length intervals (measured in the number of instructions 
executed) to monitor the cache's performance, and decides at the end of every interval if a change in cache 
size is necessary. We use miss rate as the primary metric for monitoring the cache's performance. The keys 
to a successful DRI i-cache design are mechanisms to control the cache size accurately while preventing a 
significant increase in the cache miss rate. A large miss rate increase may both prohibitively increase exe- 
cution time and the dynamic energy dissipated in the lower level caches, offsetting the leakage energy sav- 
ings. Therefore, the key parameters in our design are those that directly control the cache's miss rate. 

Figure 1 depicts the anatomy of a direct-mapped DRI i-cache (the same design applies to set-associative 
caches). The adaptive mechanism monitors the cache in fixed-length intervals, the sense interval, measured 
in number of dynamic instructions (e.g., 1 million instructions). A miss counter counts the number of DM 
i-cache misses in each sense interval. At the end of each sense interval, the cache upsizesldownsizes, 
depending on whether the miss counter is lowerhigher than a preset value, the miss-bound. The factor by 
which the cache resizes (up or down) is called the divisibility. For example, divisibility of two halves the 
cache size upon every downsize and miss-bound set at 10,000 triggers a downsize if the cache incurs more 
than 10,000 misses in a sense interval. If, however, the icache size would get smaller than EL preset size, the 
size-bound (e.g., 1 K), the cache does not downsize and stays at the same size. 

All the cache parameters - i.e., the interval length, the size-bound, the miss-bound, and the divisibility - 
can be set either dynamically or statically. This paper is a first step towards understanding a resizable cache 
design. As such, we focus on designs that statically set the values for the parameters prior to the start of 
program execution. 

Among these parameters, the key parameters that control the i-cache's size and performance are the miss- 
bound and size-bound. The combination of these two key parameters provides accurate and tight control 
over the cache's performance. Miss-bound allows the cache to react and adapt to an application's instruc- 
tion working set by "bounding" the cache's miss rate in each monitoring interval. Thus, the miss-bound 
provides a "fine-grain" resizing control between any two intervals independent of the cache size. Applica- 
tions typically require a specific minimum cache capacity beyond which they incur a large number of 
capacity misses and thrash. Size-bound provides a "coarse-grain" resizing control by preventing the cache 
from thrashing by downsizing past a minimum size. 

The other two parameters, the sense interval length and divisibility, are less-critical to DRI: i-cache perfor- 
mance. Intuitively, the sense interval length allows selecting a sense interval length that best matches an 
application's phase transition times, and the divisibility determines the rate at which the i-cache is resized. 

Resizing the cache requires that we dynamically change the cache block lookup and placement function. 
Conventional (direct-mapped or set-associative) i-caches use a fixed set of index bits from a memory refer- 
ence to locate the set to which a block maps. Resizing the cache either reduces or increases the total num- 
ber of cache sets thereby requiring a larger or smaller number of index bits to look up a set. Our design uses 
a mask to find the right number of index bits used for a given cache size (Figure 1). Every time the cache 
downsizes, the mask shifts to the right to use a smaller number of index bits and vice versa. Therefore, 
downsizing removes the highest-numbered sets in the cache in groups of powers of two. The mask can be 
folded into the address decoder trees of the data and tag arrays, so as to minimize the impact on the lookup 
time. 

Because smaller caches use a small number of index bits, they require a larger number of tag bits to distin- 
guish data in block frames. Because a DRI i-cache dynamically changes its size, it requires a different 
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FIGURE 1 : Anatomy of a DRI i-cache. 

number of tag bits for each of the different sizes. To satisfy this requirement, our design maintains as many 
tag bits as required by the smallest size to which the cache may downsize itself. Thus, we maintain more 
tag bits than conventional caches of equal size. We define the extra tag bits to be the resizing tag bits. The 
size-bound dictates the smallest allowed size and, hence, the corresponding number of resizing bits. For 
instance, for a 64K DRI i-cache with a size-bound of lK, the tag array uses 16 (regular) tag bits and 6 
resizing tag bits for a total of 22 tag bits to support downsizing to 1K. The resizing tag bits increase the 
dynamic energy dissipated in the cache as compared to a conventional design. We will discuss the dynamic 
energy implications of resizing tag bits in Section 2.3 and present results in Section 5 that indicate a DRI i- 
cache has an overall minimal impact on the dynamic energy dissipated. 

2.2 Implications on Block Lookups 

Using the resizing tag bits, we ensure that the cache functions correctly at every individual size. However, 
transitioning from one size to another may still cause problems in cache lookup. Because resizing modifies 
the set-mapping function for blocks (by changing the index bits), it may result in an incorrect lookup if the 
cache contents are not moved to appropriate places or flushed before resizing. For instance, a 64K cache 
maintains only 16 tag bits whereas a 1K cache maintains 22 tag bits. As such, even though downsizing the 
cache from 64K to 1K allows the cache to maintain the upper 1K contents, the tags are not comparable 
(Figure 2 left). While a simple solution, flushing the cache or moving block frames to the appropriate 
places may incur prohibitively large amounts of overhead. Our design does not resort to this solution 
because we already maintain all the tag bits necessary for the smallest cache size at all times; i.e., a 64K 
cache maintains the same 22 tag bits from the block address that a 1K cache would. This way, a tag com- 
parison can proceed independent of the cache size obviating the need to move the blocks or flush the cache 
after resizing. 

Moreover, upsizing the cache may complicate lookup because blocks map to different sets in different 
cache sizes. Figure 2 (right) illustrates an example in which block A maps to a different set when upsizing 
the cache from 1K to 64K. Such a scenario creates two problems. A lookup for A after upsizing fails to find 
A, and therefore fetches and places A into a new set. While the overhead of such (compulsory) misses after 
upsizing may be negligible and can be amortized over the sense interval length, such an approach will 
result in multiple aliases of A in the cache. Unlike d-caches, however, in the common case a processor only 
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FIGURE 2: Block lookup and frame aliasing in a DRI i-cache. 
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There are scenarios, however, which require invalidating all aliases of a block in the i-cache. Unmapping 
an instruction page (when swapping the page to the disk) requires invalidating all of the page's blocks in 
the i-cache. Similarly, dynamic libraries require call sites which are typically placed in the heap and require 
coherence between the icache and the d-cache. Conventional systems, however, often flush the icache or 
d-cache to maintain coherence between them because the above operations are infrequent. Moreover, these 
operations typically involve OS intervention and incur high overheads, amortizing the cache flush over- 
head. 

2.3 Impact on Energy and Performance 

Cache resizing helps reduce leakage energy by allowing a DRI i-cache to turn off the cache's unused sec- 
tions. Resizing, however, may adversely impact the miss rate (as compared to a conventional i-cache) and 
the access frequency to the lower-level (L2) cache. The increase in L2 accesses may impact both execution 
time and the dynamic energy dissipated in L2. While the impact on execution time depends on an applica- 
tion's sensitivity to i-cache performance, the higher miss rate may significantly impact the dynamic energy 
dissipated due to the growing size of on-chip L2 caches [2]. A DRI i-cache may also increase the dynamic 
energy dissipated as compared to a conventional cache due to the extra resizing tag bits in the tag RAM. 
The combined effect of the above may offset the gains in leakage energy. In this section, we qualitatively 
analyze the impact on performance and energy dissipation of a DRI icache. In Section 5.3, we present 
simulation results which indicate that a DRI i-cache can significantly reduce leakage energy with minimal 
impact on execution time and dynamic energy. 

There are two sources of increase in the miss rate when resizing. First, resizing may require remapping of 
data into the cache and incur a large number of (compulsory) misses at the beginning of a sense interval. 
The resizing overhead is dependent on both the resizing frequency and the sense interval length. Fortu- 
nately, applications tend to have at most a small number of well-defined phase boundaries at which the i- 
cache size requirements drastically change due to a change in the instruction working set size. Our results, 
however, indicate that optimal interval lengths to match application phase transition times are long enough 
to help amortize the overhead of moving blocks around at the beginning of an interval (Section 5.3). 

Second, downsizing may be suboptimal and result in a significant increase in the miss rate when the 
required cache size is slightly below a given size. Such a scenario will lead to both high miss rates for inter- 
vals in which an application's working set does not fit in the cache, and frequent unnecessary switching 
between two cache sizes. The impact on the miss rate is highest at very small cache sizes when the cache 
begins to thrash. Much as other adaptive systems, a DRI i-cache incorporates a simple throttling mecha- 
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Table 1: Impact of resizing on leakage, miss rate, and L1 dynamic energy. 

M i  rate Resuing I Parameters 

conservative 

nism (using a 3-bit saturating counter with resizing backoff) to prevent the system from unnecessary resiz- 
ings. Moreover, the size-bound guarantees that the cache never resizes beyond a given size, preventing the 
cache from thrashing. 

Leakage 

miss-bound >> conventional miss rate 
size-bound low 

Miss-bound and size-bound control a DRI i-cache's aggressiveness in reducing the cache size and leakage 
energy. Table 1 depicts the impact of resizing on performance and energy. In an aggressive DRI i-cache 
configuration with a large miss-bound and a small size-bound, the cache is allowed to resize more often 
and to small cache sizes, thereby aggressively reducing leakage. Small cache sizes, however, may lead to 
high miss rates, a high increase in dynamic energy dissipated in L2, and a high increase in dynamic energy 
dissipated in L1 due to a large number of resizing tag bits. Depending on an application's performance sen- 
sitivity to i-cache miss rates, the higher miss rates may increase execution time, indirectly increasing the 
overall energy dissipated due to a higher execution time. 

miss-bound - conventional miss rate 
size-bound high 

A conservative DRI i-cache configuration maintains a miss rate which is close to the miss rate of a conven- 
tional icache of the same base size, and bounds the downsizing to higher cache sizes so as to prevent 
thrashing and significantly increasing the miss rate. Such a configuration reduces leakage with minimal 
impact on execution time and dynamic energy dissipated. 

-1 

The adaptivity parameters, sense interval length and divisibility, may also affect a DRI i-cache's ability to 
adapt to the required i-cache size accurately and timely. While a larger divisibility favors applications with 
drastic changes in icache requirements, it makes size transitions more coarse reducing a DRI icache's 
opportunity to adapt to a size closest to the required size. Similarly, while longer sense intervals may span 
over multiple application phases reducing opportunity for resizing, shorter intervals may result in a high 
resizing overhead due to a large number of compulsory misses after resizing. Our results, however, indicate 
that the sense interval length and divisibility are less critical than the miss-bound and size-bound to con- 
trolling the extra misses in a DRI i-cache (Section 5.6). 

7' 

7' -l. -1 
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FIGURE 3: 6-T SRAM cell schematics: (a) conventional, (b) with NMOS gatedm\ldd. 

3 Gated-Vdd: A Circuit-level Mechanism for Supply-Voltage Gating 

Current technology scaling trends [7] require aggressive scaling down of the threshold voltage (V,) to 
maintain transistor switching speeds. At low V,, however, there is a subthreshold leakage current through 
transistors, even when operating in the "cut-off' region, i.e., when the transistor is "off' [22]. The leakage 
current increases exponentially with decreasing threshold voltage, resulting in a significant amount of leak- 
age energy dissipation at low V,. 

To prevent the leakage energy dissipation in a DRI i-cache from limiting aggressive threshold-voltage seal- 
ing, we use a circuit-level mechanism called gated-Vdd [I]. Gated-Vdd enables a DRI i-cache to turn off 
effectively the supply voltage and eliminate virtually all the leakage energy dissipation in the cache's 
unused sections. The key idea is to introduce an extra transistor in the leakage path from the supply voltage 
(Vdd) to the ground (Gnd) of the cache's SRAM cells; the extra transistor is turned on in the used and 
turned off in the unused sections, essentially "gating" the cell's supply voltage. Gated-Vdd maintains the 
performance advantages of lower supply and threshold voltages while reducing the leakage. 

The fundamental reason for gated-Vdd achieving exponentially lower leakage is that two "off' transistors 
connected in series incur an order of magnitude lower leakage; this effect is due to self reverse-biasing of 
the stacked transistors, and is called the stacking efect [32]. Gated-Vdd9s extra transistor connected in 
series with the SRAM cell transistors produces the stacking effect when the gated-Vdd transistor is turned 
off, resulting in a high reduction in leakage. When the gated-Vdd transistor is turned "on", the cell is said to 
be in "active" mode and when turned "off', the cell is said to be in "standby" mode. In the interests of lim- 
iting the number of terms defined in the paper, we will continue to use "on" and "off' modes. 

Figure 3 (a) depicts the anatomy of a conventional 6-T SRAM cell with dual-bitline architecture we 
assume in this paper. On a cache access, the corresponding row's wordline is activated by the address 
decode logic, causing the cells to read their values out to the precharged bitlines or to write the values from 
the bitlines into the cells. The two inverters in Figure 3 (a) each have a Vdd to Gnd leakage path going 
through an NMOS or a PMOS transistor connected in series. Depending on the bit value (of 0 or 1) held in 
the cell, the PMOS transistor of one and the corresponding NMOS transistor of the other inverter are "off'. 
Figure 3 (b) shows a DRI i-cache SRAM cell using an NMOS gated-Vdd transistor. When the gated-Vdd 
transistor is "off ', it is in series with the "off' transistors of the inverters, producing the stacking effect. The 
DRI i-cache resizing circuitry keeps the gated-Vdd transistors of the used sections turned on and the unused 
sections turned off. 



Much as conventional gating techniques, the gated-Vdd transistor can be shared among multiple circuit 
blocks to amortize the overhead of the extra transistor. For example, in a DRI i-cache, a single gated-Vdd 
transistor can be shared among the SRAM cells of one or more cache blocks. To reduce the impact on 
SRAM cell speed, the gated-Vdd transistor must be carefully sized with respect to the SRAM cell transis- 
tors it is gating. While the gated-vdd transistor must be made large enough to sink the current flowing 
through the SRAM cells during a readwrite operation in the "on" mode, too large a gated-vdd transistor 
may reduce the stacking effect, thereby diminishing the power savings. Moreover, large: transistors also 
increase the area of overhead due to gating. 

Gated-Vdd may be implemented using either an NMOS transistor connected between the SRAM cell and 
Gnd or a PMOS transistor connected between Vdd and the cell. Using a PMOS or an NMOS gated-Vdd 
transistor presents a trade-off between area overhead, leakage reduction, and impact on performance [I]. 
Moreover, gated-Vdd can be coupled with a dual-threshold voltage (dual-V,) process technology 1281 to 
achieve even larger reductions in leakage. Dual-V, technology allows integrating transistors with two dif- 
ferent threshold voltages. With dual-V, technology, the SRAM cells use low-V, transistors to maintain high 
speed and the gated-Vdd transistors use high-V, to achieve additional leakage reduction. h this paper, we 
assume NMOS gated-Vdd transistors with dual-Vt for optimal performance, energy, and a-ea results [I]. 



I Processor Parameters I 

Ll  i-cache/ I I 64K, direct-mapped 
L1 DRI i-cache 1 cycle latency 

Instruction issue 
& decode band- 
width 

L1 d-cache 

8 issues per cycle 

I I 64K, 2-way (LRU) 
1 cycle latency 

L2 cache I I lM, 4-way, unified 
12 cycle latency 

Memory access 80 cycles + 4cycles per 
latency ( 8 bytes 

I Reorder buffer 1 1  128 I 

I Branch predictor I I 2-level hybrid 1 
I I I I 

Table 2: Processor configuration 
parameters. 
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gCC 
go 
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Ii 
m88ksim 
per1 

Floating 

~ P P ~ U  

apsi 

~ P P P P  
hydro2d 
mgrid 
su2cor 
swim 
tomcatv 

We use Simplescalar-2.0 [lo] to simulate an L1 DRI i-cache in the context of an out-of-order microproces- 
sor. Table 2 shows the base configuration for the simulated system. Table 3 presents the benchmarks we 
use in this study, the corresponding input data sets, and the number of dynamic instructions executed. We 
run all of SPEC95 with the exception of two floating-point benchmarks and one integer benchmark (in the 
interests of reduced simulation turnaround time). 

To determine the energy usage of a DRI i-cache, we use geometry and layout information from CACTI 
[31]. Using spice information from CACTI to model the 0 . 1 8 ~  SRAM cells and related capacitances, we 
determine the leakage energy of a single SRAM cell and the dynamic energy of read and write activities on 
single rows and columns. This information is used to determine energy dissipation for appropriate cache 
configurations. Area estimates are from a Mentor Graphics IC-Station layout of a single cache line. 

able 3: Applications and input sets. 

test 
train 
train 
test 
train 
test 
train 

point 
train 
train 
train 
test 
test 
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test 
test 

All simulations use a power supply of 1.0 volt. We estimate cell access time and energy dissipation using 
Hspice transient analog analysis. The worst case read time is the time to lower the bitline: to 75% of Vdd 
after the wordline is asserted. We compute "off' and "on" mode energy dissipation by measuring average 
energy dissipated by a steady state cache cells with the gated-Vdd transistor in the correct mode. We ensure 
that the SRAM cells are all initialized to a stable state before measuring read time or "on" mode leakage 
energy. 

0.035 
1.276 
0.955 
0.553 
0.183 
0.490 
0.040 

benchmarks 
0.288 
2.349 
0.331 
0.974 
4.422 
1.054 
0.849 
2.798 



Cell Vt 
Technique 

no gated-Vdd, 

Table 4: Leakage Energy, read time, and area for gated-Vdd. 

"On" Cell- 
Leakage per 

high V, 

no gated-Vdd, 
low v, 
gated-Vdd, 
low v, 

5 Results 

(v) 

0.30 

In this section, we present experimental results on the performance and energy trade-off of a DRI i-cache, 
compared to a conventional i-cache. First we briefly present circuit results indicating the energy savings of 
gated-Vdd. Then we present energy savings achieved for the benchmarks, demonstrating a DRI i-cache's 
effectiveness at reducing average cache size and energy dissipation. Then we present the impact of DRI i- 
cache parameters on dynamic energy dissipation: effect of the number of extra tag bits on L1 dynamic 
energy, and effect of the miss-bound on L2 dynamic energy. Next we show performance and energy results 
while varying DRI i-cache size and associativity. Finally, we present the effect of varying the DRI i-cache 
adaptivity parameters: divisibility and sense interval length. 

"Off' Cell- 
Leakage Energy 

0.20 

0.20 

5.1 Circuit Results 

Cycle (nJ) 

50 

As transistor threshold voltages decrease, we expect read time to improve but leakage energy to increase 
drastically. In this section we will show that gated-Vdd virtually eliminates the leakage while maintaining 
fast read times. Table 4 shows leakage energy per cycle, relative read time, and the area overhead associ- 
ated with gated-Vdd. We assume a dual-V, technology, with a 0.4 V V, for the gated-Vdd transistor, and a 
0.2 V V, for the SRAM cell transistors. 

Energy 
Savings 

1740 

1740 

The "on" Leakage Cell Energy and "off' Leakage Cell Energy columns indicates leakage energy dissipated 
per cycle when the cell is in "on" and "off' mode, respectively. From the first two rows, we see that lower- 
ing the cache V, from 0.3 to 0.2 V reduces the read time by over half but increases the leakage energy by 
more than a factor of 30. From the third row we see that using gated-Vdd, the leakage energy can be 
reduced by 97% in "off' mode, confining the leakage to high-V, levels while maintaining low-V, speeds. 
This large reduction in leakage is key to ensuring that unused sections of the cache put in "off' mode dissi- 
pate little leakage energy. 

perCycle(RJ) 

NIA 

If a gated-Vdd transistor is shared among an entire cache block's SRAM cells, the transistor needs to be 
wide enough to sink the current through the block's SRAM cells to prevent excessive degradation in read 
time. The width of the gated-Vdd transistor needs to be equivalent to the maximum number of cell transis- 
tors that can simultaneously switch in the cache block. Figure 4 shows a layout of 64 SRAM cells on the 
left and an adjoining NMOS gated-Vdd transistor connected to them. By constructing the gated-Vdd tran- 
sistor such that the transistor width expands along the length of the cache line, only the width of the array 
increases with the addition of such a transistor, without increasing the array's height. The total increase in 
data array area due to the addition of the gated-Vdd transistor is about 3%. 
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FIGURE 4: Layout of 64 SRAM cells connected to a single gated-Vdd NMOS transistor. 

5.2 Energy Calculations Illustrating Leakage and Dynamic Energy Trade-off 

. A DRI i-cache decreases leakage energy by gating Vdd to cache sections in "off' mode but increases both 
L1 dynamic energy due to the extra resizing tag bits and L2 dynamic energy due to extra L1 misses. To 
account for both the decrease in leakage energy and increase in dynamic energy, we compute the Effective 
Ll leakage energy using three components, the L1 leakage energy, extra L1 dynamic energy, and extra L2 
dynamic energy as follows: 

Effective L1 DRI i-cache leakage energy = L1 leakage energy + extra L1 dynamic energy + Extra L2 dynamic energy 
L1 leakage energy = Leakage energy of "onw portion + Leakage energy of "off" portion 
Leakage energy of 'onn portion = ('On" portion size as fraction) x (Leakage energy of conventional cache per cycle) x (cycles) 
Leakage energy of "off portion -= 0 
Extra L1 dynamic energy = (resizing tag bits) x (Dynamic energy of 1 bitline per L1 access) x (L1 accesses) 
Extra L2 dynamic energy = (Dynamic energy per l2 access) x (extra L2 accesses) 

We now explain the equations. The Effective L1 leakage energy is the effective leakage energy dissipated 
by the DRI i-cache during the course of the application execution. The first component, the L1 leakage 
energy, is the leakage energy of the "on" and "off" portions of the DRI i-cache dissipated during the execu- 
tion. We compute DRI i-cache's "on" portion leakage energy as the leakage energy dissipated by a conven- 
tional i-cache in one cycle times the DRI i-cache "on" portion size expressed as a fraction of the total size 
times the number of cycles. We obtain the average "on" portion size and the number of cycles from Sim- 
plescalar simulations. Using the low-V, "on" Cell-Leakage energy in Table 4, we compute the leakage 
energy for a conventional i-cache. Because the "off' mode energy is a factor of 30 smaller than the "on" 
mode energy in Table 4, we set the "off' mode term to zero. 

The second component is the extra L1 dynamic energy dissipated due to the extra resizing tag bits during 
the application execution. We compute this component as the number of resizing tag bits used by the pro- 
gram times the dynamic energy dissipated in one access of one resizing tag bitline in the L1 cache times 
the number of L1 accesses made in the program. The third component is the extra L2 dynamic energy dis- 
sipated in accessing the L2 cache due to the extra L1 misses during the application execution. We compute 
this component as the dynamic energy dissipated in one access of the L2 cache times the number of extra 
L2 accesses. To estimate the dynamic energy of one access of one resizing tag bitline and of one L2 access, 
we modify the Spice files supplied by CACTI and use the calculations for cache access energy in [15].We 
tabulate the results of our calculations in Table 5, which simplifies the energy expressions as follows: 

Effective L1 DRI i-cache leakage energy = L1 leakage energy + L1 extra dynamic energy + L2 extra 
dynamic energy 

L1 leakage energy = ('0n"ortion size as fraction) x 0.91 x (cycles) 
Extra L1 dynamic energy = (resizing tag bits) x 0.0022 x (L1 accesses) 
Extra l2 dynamic energy = 3.6 x (extra L2 accesses) 
Energy savings = Conventional cache leakage - Effective L1 DRI i-cache leakage energy 

If the extra L1 and L2 dynamic energy components do not significantly add to L1 leakage energy, a DRI i- 
cache's energy savings will not be outweighed by extra (Ll+L2) dynamic energy, as forecasted in 



Energy component 
Dynamic energy per L2 access 
Dynamic energy of 1 resizing tag bit per L1 access 

Section 2.3. To demonstrate that the components do not significantly add to L1 leakage energy, we com- 
pare each of the components to the L1 leakage energy and show that the components are much smaller than 
the leakage energy. 

Energy (d) 
3.6 

0.0022 
Conventional L1 cache leakage energy per cycle 
Ratio of L1 leakage energyper cycle to L2 dynamic energy per access 

(Extra L1 dynamic energy) 1 (L1 leakage energy) = [(resizing bits) x 0.0022 x (Ll accesses)] 1 [('On-action) x 0.91 x (cycles)] 
- [ (resizing bits) x 0.00221 1 [('On' fraction) x 0.911 
- 0.024 (if resizing == 5, "on" fraction = 0.25) 

0.9 1 

We compare the extra L1 dynamic energy against the L l  leakage energy by computing their ratio. We sim- 
plify the ratio by approximating the number of L1 accesses to be equal to the number of cycles (i.e., an L1 
access is made every cycle L1 accesses and cycles), and cancelling the two in the ratio. I:f the number of 
resizing tag bits is 5 (i.e., the size-bound is a factor of 32 smaller than the original size), and the "on" por- 
tion is as small as half the original size, the ratio reduces to 0.024, implying that the extra L1 dynamic 
energy is about 3% of the L1 leakage energy, under these extreme assumptions. This assertion implies that 
if a DRI i-cache achieves sizable savings in leakage, the extra L1 dynamic energy will n.ot outweigh the 
savings. 

Table 5: Cache energy components. 

(Extra L2 dynamic energy) / (Ll leakage energy) = [3.6 x (exha L2 accesses)] 1 [('On' fraction) x 0.91 x (cycles)] 
- [(3.95 / ('On" fraction)] x [(extra L2 accesses) / (cycles)] 
- [(3.95 / ("Onn fraction)] x (extra L1 miss rate) 
- 0.16 (if "on" fraction == 0.25, extra L1 miss rate = 1%) 

Now we compare the extra L2 dynamic energy against the L1 leakage energy by computing their ratio. As, 
before, we simplify this ratio by approximating the number of cycles to be equal to the total number of L1 
accesses, which allows us to express the ratio as a function of the absolute increase in the L.1 miss rate (i.e., 
number of extra L1 misses divided by the total number of L1 accesses). If the "on" portitw is as small as 
half the original size, and the absolute increase in L1 miss rate is as high as 1% (e.g., L1 miss rate increases 
from 5% to 6%), the ratio reduces to 0.16, implying that the extra L2 dynamic energy is about 16% of the 
L1 leakage energy, under these extreme assumptions. This assertion implies that if a DRI icache achieves 
sizable savings in leakage, the extra L2 dynamic energy will not outweigh the savings. 

5.3 DRI I-Cache Energy Savings 

In this section, we present the overall energy-savings achieved by a DRI i-cache. Because a DRI icache's 
energy dissipation depends on the miss-bound and size-bound, we show the best-case energy-savings 
achieved for each benchmark under various combinations of the miss-bound and size-bound. We determine 
the best case via simulation by empirically searching the combination space. We present the energy-delay 
product because it is a well-established metric used in low-power research. The energy-delay product 
ensures that both reduction in energy and accompanying degradation in performance are taken into consid- 
eration together, and not separately. But because the best-case energy-delay in some cases amounts to con- 
siderable performance degradation, which may be unacceptable in certain domains, we include 
performance-constrained, best-case energy-delay product by limiting overall performance degradation to 
under 4%, compared to a conventional i-cache. 
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FIGURE 5: Performance-constrained and unconstrained best cases. 

We compute the energy-delay product by multiplying the effective DRI i-cache leakage energy numbers 
from Section 5.2 with the execution time reported by Simplescalar. Figure 5 (top graph) shows the effec- 
tive energy-delay product normalized with respect to the conventional i-cache leakage energydelay prod- 
uct. We present the empirically-obtained best cases with performance degradation constrained to be within 
4% relative to the conventional i-cache as well as unconstrained degradation. The stacked bars show the 
breakdown between the leakage and extra dynamic (Ll and L2) components. For the unconstrained case, 
we show the percentage increase in execution time relative to a conventional i-cache above the bars when- 
ever performance degradation is worse than 4%. 

Figure 5 (bottom graph) shows the DRI i-cache size averaged over the benchmark execution time, as a 
fraction of the conventional i-cache size. We show the miss rates under the unconstrained case above the 
bars whenever the miss rates are higher than 1 %. Note that for the performance-constrained case, the DRI 
i-cache miss rates are all below 1 %, except for perl at 1.1 %. The conventional i-cache miss rate is less than 
1% for all the benchmarks (highest being 0.7% for perl), indicating that a 64K-cache captures most of the 
working set of these benchmarks. 

From the top graph, we see that a DRI i-cache achieves large reductions in the energy-delay product as per- 
formance degradation is constrained to be within 4%, demonstrating the effectiveness of our adaptive resiz- 
ing scheme. In fact, out of the 15 benchmarks, 9 stay within 2% degradation. The reduction ranges from as 
much as 80% for applu, compress, ijpeg, and mgrid, to 60% for apsi, hydro2d, li, and swim, 40% for 
m88ksim, perl, and s d c o r ,  and 10% for gcc, go, and tomcatv. Fpppp is the only benchmark with no reduc- 
tion. The dynamic (extra Ll+L2) component of the energy-delay product is small for all the benchmarks, 
implying that the extra L2 accesses are few enough not to increase the dynamic component significantly, as 
forecasted in Section 2.3 and Section 5.3. 

For the unconstrained case, the best-case is identical to the perfonnance-constrained case for many bench- 
marks. However, a few benchmarks (gcc, go, m88ksim, and tomcatv) have significantly lower energy-delay. 



Table 6: Miss-bound and size-bound for performance-constrained (c) and unconstrained (u) cases. 

For all these benchmarks, performance of the unconstrained best-case is considerably worse than that of 
the conventional icache (e.g., gcc by 26% go by 30%, tomcatv by 21%), indicating that the lower energy- 
delay product is achieved at the cost of performance. This observation is borne out by the fact that the 
dynamic component for these benchmarks is significantly larger, implying that the unc:onstrained case 
reduces leakage by downsizing the cache incurring numerous extra Ll  misses. 

miss-bound 
(c) 
size-bound in 
Kl3 (c) 
miss-bound 
(u) 
size-bound in 
Kl3 (u) 

From the bottom graph, we see that the average DRI i-cache size is significantly smaller than the conven- 
tional i-cache in the performance-constrained case, confirming our hypothesis that i-cache requirements 
vary both within and across applications. The average cache size reduction ranges from as much as 80% for 
applu, compress, ijpeg, li, and mgrid, to 60% for m88ksim,perl, and suZcor, and 20% for gcc, go, and tom- 
catv. For all the benchmarks, the miss rates continue to be less than 1%, staying close to those of the con- 
ventional i-cache, demonstrating the success of our adaptive scheme in downsizing to the required size 
while keeping the extra L1 misses in check. The only cases where the DRI i-cache miss rates are much 
higher than those of the conventional i-cache are under the unconstrained case for gcc, go, perl, and tom- 
cam which downsize the cache to the extent of incurring numerous extra L1 misses. 

In Table 6, we list the combinations of the miss-bound and size-bound corresponding to the bestcase under 
performance-constrained and unconstrained cases for each benchmark. Because each benchmark's level of 
sensitivity to the miss-bound and size-bound is different, requiring different miss-bounds and size-bounds 
to determine the best-case. Even for the performance-constrained case (and more so for the constrained 
case), the miss-bounds ("miss-bound(c)" row) are one or two orders of magnitude higher than the conven- 
tional miss rates ("reference miss rate" row), encouraging miss rates higher than the conventional i-cache. 
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DRI i-cache's simple adaptive scheme enables the cache to downsize without causing the miss rate ("miss- 
rate(c)" row) to exceed the miss-bound, except for the relatively small excesses in the case of gcc and 
su2cor. Because the absolute differences between the conventional and DRI i-cache miss rates are still 
small in magnitude, the actual number of extra L1 misses is small and the performance loss is minimal. 
The largest miss-rate difference is 0.004 for gcc and from the calculations done in Section 5.3, we know 
that the this miss rate difference contributes only a small amount of extra L2 dynamic energy.This observa- 
tion makes it profitable to trade off extra L2 dynamic energy for L l  leakage energy savings. 

6x 
lo4 

6x 
10-4 

To understand the average i-cache size requirements better, we categorize the benchmarks into three 
classes. Benchmarks in the first class primarily require a small i-cache throughout their execution. Mostly, 
they execute tight loops allowing a DRI i-cache to stay at the size-bound, causing the unconstrained and the 
performance-constrained best-cases to match. Applu, compress, li, mgrid and swim fall in this class, and 
they almost always stay at the minimum size allowed by the size-bound. The dynamic component is a large 
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fraction of the DRI i-cache energy in these benchmarks because much of the L1 leakage energy is elimi- 
nated through size reduction and a large number of resizing tag bits are used to allow a small size-bound. 

The second class consists of the benchmarks that primarily require a large i-cache throughout their execu- 
tion and do not benefit much from downsizing. Apsi,fpppp, go, m88ksim and per1 fall under this class, and 
fpppp is an extreme example of this class. If these benchmarks are encouraged to downsize via high miss- 
bounds, they incur a large number of extra L1 misses, resulting in significant performance loss. Conse- 
quently, the performance-constrained case uses a small number of resizing tag bits, forcing the size-bound 
to be reasonably large. Fpppp requires the full-sized i-cache, so reducing the size dramatically increases 
the miss rate, canceling out any leakage energy savings. Therefore, fpppp is disallowed from downsizing 
the cache by having a 64K size-bound. The rest of the applications are not as extreme asfpppp. At the per- 
formance-constrained best-case, the dynamic energy overhead is much less than the leakage energy sav- 
ings, and allowing more downsizing is still beneficial. However, due to their large i-cache size 
requirements, the unconstrained best-case, obtained by downsizing beyond the performance-constrained 
best-case, falls outside the acceptable performance range. 

The last class of applications exhibit distinct phases with diverse i-cache size requirements. Gcc, hydro2d, 
ijpeg, s d c o r  and tomcatv belong to this class of applications. A DRI i-cache's effectiveness to adapt to the 
required i-cache size is dependent on its ability to detect the program phase transitions and resize appropri- 
ately. Hydro2d and Qpeg fall into the group that have relatively clear phase transitions. After the initializa- 
tion phase requiring the full size of i-cache, hydro2d consists mainly of small loops requiring only 2K of i- 
cache. Zjpeg follows this pattern. Therefore, a DRI i-cache adapts to the phases of hydro2d and ijpeg well, 
achieving small average sizes with little performance loss. The phase transitions in gcc, su2cor and tom- 
catv are not as clearly defined, resulting in a DRI i-cache not adapting as well as it did for hiydro2d or ijpeg. 
Consequently, these benchmarks' best-case average sizes under both the performance-<:onstrained and 
unconstrained case are relatively large. 

5.4 Effect of Miss-Bound and Size-Bound 

In this section, we present the effect of varying the miss-bound and size-bound on the energy-delay prod- 
uct. The miss-bound and size-bound are key parameters which determine the L2 and extra L1 dynamic 
energy, respectively. 

5.4.1 Effect of Miss-Bound 

The miss-bound controls the number of extra L1 misses caused by downsizing and directly affects the extra 
L2 dynamic energy dissipated to service the extra L1 misses. A higher miss-bound encourages a DRI i- 
cache to downsize despite a larger number of L1 misses at the current size. 

Figure 6 shows the result of varying the miss-bound around the value corresponding to the performance- 
constrained best-case in Table 6. The size-bound is fixed at the same value as the performance-constrained 
best-case from Table 6. The center bar corresponds to the best-case miss-bound; the left and right bars cor- 
respond to half and twice of the center bar's miss-bound, respectively. Varying the miss-bounds at half and 
twice the best-case miss-bound keeps the resulting miss-bounds at reasonable values. The top graph shows 
the effective energy-delay product normalized to the conventional i-cache leakage energy-delay, and also 
the percentage performance-degradation for the cases which are 4% worse than the conventional i-cache. 
The bottom graph shows average cache size as a fraction of the conventional i-cache size and also the miss 
rate for the cases which are above 1%. 

The energy-delay graph shows that despite varying the miss-bound over a factor of four range (i.e., from 
0 . 5 ~  to 2x), most of the benchmarks' energy-delay product does not change significantly. Even when the 
miss-bound is doubled (right bars), the L1 miss rates stay within 1% and the L2 dynamic energy-delay 
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FIGURE 6: Effect of varying the miss-bound. 

component does not increase much for most of the benchmarks. This behavior indicates that our adaptive 
scheme is fairly robust with respect to a reasonable range of miss-bounds. The exceptions are gcc, go, perl, 
and tomcah: which need large i-caches but allow more downsizing under higher miss-bounds, as can be 
seen from the average size graph, because the application phase transitions are not readily identified by a 
DRI i-cache. These benchmarks achieve average sizes smaller than those of the best-cases, but incur more 
than 4%, albeit less than lo%, performance degradation, compared to the conventional i-cache. 

5.4.2 Size-Bound 

The number of resizing tag bits determines the size-bound to which the cache may be downsized, indirectly 
controlling the number of extra L1 misses and the extra L2 dynamic energy. The resizing tag bits directly 
incur extra L1 dynamic energy because the bits require charging and discharging additional bitlines (as dis- 
cussed in Section 2.3). Each additional resizing tag bit decreases the size-bound by half, and is beneficial 
only if the leakage energy savings achieved by downsizing to the next half size is more than the extra L1 
energy for the resizing tag bitlines and the extra L2 energy due to the extra L1 misses caused by such 
downsizing. 

Figure 7 shows the effect of varying the size-bound to be double and half the value of the performance- 
constrained best-case in Table 6. The miss-bound is set at the value of the performance-constrained best- 
case in Table 6. The center bar for each benchmark exceptfpppp, corresponds to the best-case size-bound; 
the left and right bars correspond to double and half that size-bound, respectively. Fpppp 's best-case size- 
bound is 64K, and therefore there is no left bar. The top graph shows the effective energydelay product 
normalized to the conventional i-cache leakage energy-delay and also the percentage slowdown for the 
cases which are 4% worse than the conventional i-cache. The bottom graph shows average cache size as a 
fraction of the conventional i-cache size and also the miss rate for the cases which are above 1%. 
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FIGURE 7: Effect of varying the size-bound. 

For all benchmarks, a smaller size-bound results in larger reduction in the average cache size, but the effect 
on the energy-delay varies depending on the class to which the benchmark belongs. The first class of appli- 
cations, applu, compress, li, mgrid, and swim, incur little performance degradation with the best-case size- 
bound because the benchmarks' i-cache requirements are small. Throughout the benchmarks' execution, a 
DRI i-cache stays at the minimum size allowed by the size-bound. Doubling the size-bound of the best- 
case (left bars) results in worse energy-delay than the best-case, corroborated by the fact that the average 
size is almost double that of the best-case. Halving the size-bound of the best-case (right bars), causes 
numerous extra L l  misses and increased extra L2 dynamic energy, which results in worse energy-delay. 

Decreasing the size-bound for the second class, apsi, go, m88ksim, perl, which has relatively large i-cache 
requirements, encourages downsizing at the expense of performance. With a smaller size-bound, this class 
achieves lower energy-delay than the best-case by downsizing more, but incurs performance degradation 
beyond 4%. For the third class of applications, gcc, hydro2d, ijpeg, sdcor,  and tomcaw, andndfppp, the 
extra L1 dynamic energy incurred by decreasing the size-bound beyond the best-case outstrips the leakage 
energy savings, resulting in higher energy-delay than the best-case. Using a 32K size-bound, Fpppp has 
worse energy-delay than a conventional i-cache, indicating that poor choice of parameters may result in a 
DRI i-cache having worse energy-delay than a conventional i-cache. 

5.5 Effect of Conventional Cache Parameters 

In this section, we investigate the impact of conventional cache parameters, size and associativity, on a DRI 
i-cache. Intuitively, higher associativity reduces conflict misses, making the miss rate less sensitive to 
cache size. Consequently, a DRI i-cache should be more effective in reducing the cache size without incur- 
ring many extra L1 misses and additional L2 dynamic energy. Because a DRI i-cache downsizes to the 
working set size of the application independent of the original size of the cache, increasing the size should 
result in larger energy savings. 
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FIGURE 8: Effect of varying conventional cache parameters. 

L1 Leakage O Extra L1 Dynamic Extra L2 Dynamic 

Figure 8 displays the results for a 64K, 4-way associative DRI i-cache, a 64K, direct-mapped DRI i-cache 
(as in Section 5.3), and a 128K, direct-mapped DRI i-cache, shown from left to right. The miss-bound is 
set to be the same as that of the performance-constrained best-case in Table 6. The size-bound is also as in 
the performance-constrained best-case in Table 6. The128K direct-mapped case uses one more resizing tag 
bit so that the size-bound is the same as the 64K direct-mapped case. Energy-delay, average size, and per- 
formance degradation shown in the figures are all relative to a conventional i-cache of equivalent size and 
associativity. Thus, each bar is normalized with respect to a different conventional cache, and the left and 
center barsc~rres~ond to the same size (64K) but different associativities. The center and right bars corre- 
spond to the same associativity (direct-mapped) but different sizes. Note that the right-most bar and left- 
most bars are not directly comparable. 

For applu, apsi, compress,fippp, ijpeg, li, and mgrid, varying the associativity (left and center bars) does 
not impact the relative energy-delay product or the average cache size. The reason for this behavior is that 
the direct-mapped DRI i-cache miss rates are not high to start with, making added associativity insignifi- 
cant. Consequently, the direct-mapped DRI i-cache achieves the same average size as the 4-way associative 
DRI i-cache, resulting in identical energy-delay products. For the rest of the benchmarks, gcc, go, hydro2d, 
su2cor, swim and tomcatv, the direct-mapped DRI i-cache miss rates range from 0.17% for su2cor to 
0.92% for gcc, giving the 4-way cache an opportunity to absorb some of the conflict misses. Thus, the 4- 
way associative DRI i-cache achieves smaller average size and lower energydelay for these benchmarks 
using the same miss-bound as the direct-mapped DRI icache. Using the same miss-bour~d for the 4-way 
associative DRI i-cache as the direct-mapped DRI i-cache encourages more extra misses in the 4-way asso- 
ciative DRI i-cache compared to a conventional 4-way associative cache. Consequently, for gcc, hydro2d, 
and tomcah: however, the smaller average size comes at the cost of performance degradation beyond 4%. 

Increasing the size from 64K (center bars) to 128 K (right bars) while allowing the same size-bound (i.e., 
one extra resizing tag bit for the 128K cache) gives higher savings in energy-delay, because a larger frac- 
tion of the cache is turned "off'. In all cases, except forfippp and gcc, the 128K cache is downsized to the 
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same absolute magnitude as the 64K cache; when expressed as a fraction of the original size, the average 
size for the 128K DRI i-cache is half that for the 64K DRI i-cache. Fpppp and gcc are different because 
their working set sizes are larger than 64K in some (for gcc) or all (forfpppp) application phases, and so 
the 128K DRI i-cache does not downsize to 64K in those phases. Hence, the 128K DFU i-cache's average 
size is not half that of the 64K DRI icache. This shows that ,the DFU icache downsizes to the working set 
size of the application, regardless of the original cache size. For perl, gcc, and hydro2d, using the same 
miss-bound for the 128K cache as the 64K cache causes relatively more L1 misses in the 12% cache than 
the 64K cache, when compared with the respective equivalent conventional caches. The additional misses 
result in higher extra L2 dynamic energy and performance degradation worse than 4%, as indicated. 

5.6 Effect of Adaptivity Parameters 

A DRI i-cache is an adaptive system using the parameters: miss-bound, size-bound, interval length, and 
divisibility, and we have already evaluated the impact of the miss-bound and size-bound in the previous 
sections. Now, we look at the effect of interval length and divisibility on DRI i-cache behavior. 

Ideally, we want the monitoring interval length to correspond to program phases, allowing the cache to 
resize before entering a new phase. Because we do not know the length of the phases, we approximate 
using a fixed monitoring interval length. Our experiments show that in almost all cases, a DRI i-cache is 
reasonably robust to interval length. More precisely, varying the interval length from 250K to 4M i-cache 
accesses, the energy-delay product varies by less than 1% except for go which shows a 5% difference. 

Divisibility is used to control the rate of resizing by setting the factor by which the cache size changes per 
resizing. Large divisibility is favorable for both performance and energy consumption when the cache rap- 
idly switches between large and small working sets. In that case, large divisibility reduces the time spent in 
the intermediate cache sizes. However, larger divisibility makes it difficult for the cache to adapt to the 
optimal size because larger divisibility makes the granularity of the resizing process coarser. Figure 9 



shows that divisibility of 8 always exhibits worse energydelay products than those of divisibility of 2. For 
all the benchmarks, the coarser granularity prevents the cache from downsizing to the next one-eighth size 
either because of exceeding the miss-bound or because of exhausting the resizing tag bits. 



6 Related Work 
There are a number of previous studies focusing on reducing the dynamic power and energy dissipation in 
processors and cache memories. Manne, et al., [18] propose gating the processor pipeline stages to reduce 
the processor's dynamic energy dissipation. Brooks and Martonosi [8] propose exploiting; narrow-width 
operands to reduce the processor's dynamic power. Toburen, et al., [19] reduce processor dynamic power 
via instruction scheduling. 

To reduce dynamic power of caches, Albonesi [2] proposes Selective Cache Ways, a mechanism to vary 
cache associativity dynamically by activating and deactivating cache banks in set-associative caches. There 
are several key differences between this technique and ours. This technique does not work for direct- 
mapped caches which are widely used due to their access speed advantages. Because this technique can 
vary the associativity and size only together, and not separately, this technique results in a greater number 
of extra misses than our technique, which varies only the size. While our adaptive scheme gives DRI i- 
caches tight control over the number of extra misses, this technique varies associativity which is a coarse- 
grained resizing approach that increases both capacity and conflict misses in the cache. 

Kin, et al., [16] propose the Filter Cache, small (e.g., 256-byte) direct-mapped LO caches, that filter 
accesses to L1 I- and D-Caches and reduce power. Filter caches trade-off potentially significant degrees of 
performance loss for power savings. Similarly, Bellas, et al., propose the Loop-Cache and use the compiler 
[4,5] or hardware [4,5] to detect and place small loops in it to reduce the access frequency to the L1 i- 
cache. None of the previous studies have focused on reducing the leakage power in deep-submicron 
caches. 

There are a number of previous studies that have focused on circuit-level only techniques to reduce leakage 
power. Several circuit techniques such as multiple transistor threshold voltages [20,17,25,30] and transistor 
stacking [32,30] have been used to reduce leakage power dissipation while maintaining high performance. 
More recently, dynamic transistor threshold control to achieve high performance when the transistor is 
"on" and low leakage current when the transistor is "off' [3,29] has been used for both bulk Silicon and 
Silicon on Insulator (SOI) technology. Multiple supply voltages with multiple transistor threshold voltages 
can also be used to achieve both dynamic and leakage power reduction [12,27]. However, circuit-level 
techniques that apply leakage reduction ignore applicationkirchitectural behavior and circuit utilization. 
Instead, we propose an integrated architectural and circuit-level approach to maximize opportunity for 
leakage reduction with minimal impact on performance. 



7 Conclusions 

This paper explored an integrated architectural and circuit-level approach to reduce leakage energy dissipa- 
tion in deep-submicron cache memories while maintaining high performance. The key observation in this 
paper is that the demand on cache memory capacity varies both within and across applications. Modem 
caches, however, are designed to meet the worst-case application demand, resulting in poor utilization of 
onchip caches, and consequently 3 energy inefficiency. We introduced a novel cache called the Dynami- 
cally Resizable i-cache @RI i-cache) that dynamically reacts to application demand and adapts to the 
required cache size during an application's execution. At the circuit-level, the DRI i-cache employs a novel 
mechanism, called gated-Vdd, which effectively turns off the supply voltage to the SRAM cells in the DRI 
i-cache's unused sections, virtually eliminating leakage in these sections. Our adaptive scheme gives DRI i- 
caches tight control over the number of extra misses caused by resizing, enabling the DRI icache to con- 
tain both performance degradation and extra energy dissipation due to increased number of accesses to 
lower cache levels. 

We evaluated and presented detailed simulation results from running the SPEC95 applications on a Sim- 
plescalar model of a DRI i-cache used in an out-of-order engine. The results indicated that our adaptive 
scheme closely captures the application's working set size accurately, enabling a 64K DRI i-cache to 
reduce, on average, the size by 62% with performance degradation constrained within 48 ,  and by 78% 
with higher performance degradation. Compared to a conventional i-cache, a DRI i-cache reduces the leak- 
age energy-delay product by 62% with performance degradation constrained within 4%' and by 67% with 
higher performance degradation. Because higher associativities encourage more downsizing, and larger 
sizes imply larger relative size reduction, DRI i-caches achieve even better energydelay products with 
higher associativity and larger size. We also showed that our adaptive scheme is robust in that it is not sen- 
sitive to many of the adaptivity parameters and perfoms predictably without drastic reactions to varying 
the rest of the adaptivity parameters. 
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