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EXTRACTION AND CLASSIFICATION OF

OBJECTS IN MULTISPECTRAL IMAGES"

Thomas V. Robertson

Laboratory for Applications of Remote Sens1~g
Purdue University, West Lafayette, Indiana

I. ABSTRACT

Presented here is an algorithm that partitions a
digitized multispectral image into parts that correspond
to objects in the scene being sensed. The algorithm
partitions an image into successively smaller rectangles
and produces a partition that tends to minimize a crit­
erion function.

Supervised an~ unsupervised classification tech­
niques can be applied to partitioned images. This part­
ition-then-classify approach is used to process images
sensed from aircraft and the ERTS-1 satellite, and the
method 1s shown to give relatively accurate results in
classifying agricultural areas and extracting urban
areas.

II. INTRODUCTION

The classification of a multispectral image involves labeling areas of interest
in the image. These areas of interest are groups of image points that have been
produced by the sensing of objects such as agricultural fields, bodies of water, and
cities. One approach to machine classification of images has been to classify each
image point separately. This approach uses the reflectance of each point in various
spectral bands (channels) to classify the point. Classification algorithms using
point-b~po1ntclassificationmetho~have been successful in many applications, but
in some cases classification accuracy has been undesirably low.

Human photointerpretersuse spatial properties such as texture, size, and shape
in image interpretation. The presence of this spatial information in multispectral
images suggests that machine olassifioation of multispeotral images may be improved
if spatial as well as speotral information is used in the olassification algorithm.

The olassifioation method presented in this paper is a two step prooedure.
First, an image is partitioned into blooks or sets of image points. The image part­
itioning algorithm is designed so that it is likely that each blook oontains image
points from a single object of interest. In the second step of the procedure, the
blooks are classified. Classifying blooks instead of indiVidual image points allows
the measurement and use of texture and other spatial oharacteristios of objects
that are not apparent when single points are olassified separately •

..

....ThiS research was sponsored by NASA oontraot NAS 52-1773.
The author is presently with Bell Laboratories, Holmdel, New ~ersey.
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III. PARTITIONING ALGORITHM

The partitioning algorithm divides an image into disjoint rectangles (blocks)
such that each area of interest (object) is approximated by a union of blocks. The
basic charact~ristics of the algorithm are given in the following sections.

A. NOTATION AND DEFINITIONS

An image I is a set of points in a plane that is surrounded by a closed curve
C of finite length. In our discussion we will assume that the image points of I are
defined by !!1 the intersections surrounded by C of a set of equally-spaced horizon­
tal and vertical lines in the plane. A sUblmage of I is an image J such that J£1.

A partition P of an image I is a finiEe set of images (11.12, •••• I L) such that

1 =~ Iii=l
and for j~i.

I jn1 i = ,
where' is the empty set. Each 1 j EP will be called a block of P.

The area of an image J will be denoted IJI • The size of J is the minimum of
the horizontal and vertical extent of J.

A gray-level function g(.) is a function whose domain is an image and whose
range is a bounded interval on the real line. We use g(X) to stand for the gray level
at a point X€I. For a given X. g(X) will be considered a random variable whose dis­
tribution depends on X. A fraY-level vector GC·) is a vector of gray-level functions I

G(X)=( gl(X).g2(X), •••• gN X) ), where each gi(') is a gray-level function.

Consider an image J. Let E(') be expected value. We will use the following not­
ation.

Mgi(J) = E(gi(X)IXEJ)

M
g1

(J)

Mg (J)
2

.
Mg (J)

N

We call MG(J) the mean vector of J. Also let

S~ (J) = E«gi(X)-Mgi(X»2IXEJ)
2 i 2Zg (J) = E(g1 (X) Ixe:J).

1
An image J is G-regular if for any sub1mage KSJ. MG(K)-MG(J). A G-regular

image is "homogeneous" with respect to G in the sense that the mean values of the
gray-level funct10ns (gi('), i=l. 2 •••• , N) are constant throughout the image.

'A subimage J of 1 is G-distinct if J is G-regular. and if for any subimage K<;;. 1
that 1s adjacent to J. KV J is not G-regular. In other words. a G-distinct sUb1mage
is surrounded by sub1mages with different mean values of the N gray-level functions
of G.

A partition P is G-regular if every block of P is G-regular. P is called
G-optimal if every block in P is also G-d1stinct. Note that a G-optimal partition is
necessarily G-regular. but a G-regular partition is not G-optimal if some pair of
adjacent blocks have the same mean vectors.
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The mean test to determine the G-regularity of an image J is carried out as

follows I First J is partitioned into two sUbimages J 1 and J 2 • J 1s determined to be
G-regular if and only if MG(J1 )=MG(J2 ) . In Ref. 1 we show tfiat this test makes no
errors if the number of image points Rer unit area is infinite. We also show in
Ref. 1 that the G-optimal partition P is unique.

B. PARTITION CRITERION

* *We assume that the blocks in the G-optimal partition P of I , P =(01' ° , ""
OM)' correspond to the*objects in I. Therefore a good partition of I is one t~at
closely approximates P • We now present a criterion function that is minimized by
good partitions.

Consider an arbitrary partition of I , P=(I1 • 12, ... , I L ) , and a gray-level
function g(.). We first define a criterion Vg(P) for the singIe gray-level function
g( • ) I

L£.1l.. 2Vg(P) = iS1 IIISg(l i)
Recall that the S~(Ii)'S are the variances of the blocks in the partition P. A block
variance tends to be small if the block contains a single object, but a block that
overlaps an object boundary of contains several objects will have relatively high
variance. Since in the criterion tunction block variances are weighted by the block
areas, V (p) will tend to be small when most of the largest blocks contain only a
single o§ject, in other words, when P is approximately g-regular. For a gray-level
vector G(·) we define

and

.6 VG(P) = VG(P) - VG(P*)

N
= ~.6V (p) •

j=1 gi

In Ref. 1 we show that VG(P) is a minimum if and only if P is a G-regular partition.

C. THE ALGORITHM

Figure 1 shows a flow chart of the REcursive PARtitioning algorithm, which we
will call RrMPAR. RIMPAR continues to subdivide blocks until the block under consid­
eration is either too small or G-regular. The question of G-regularity is decided by
the mean test discussed earlier. The specification of Which block sizes are too
small is handled by a parameter MINSIZE. In Ref. 1 we prove the following resultl
Assuming no errors are made in determining G-regularity, for any€>O, there are
MINSIZE values for which6VG(Pf ) < €, where Pr is a partition of I produced by RIMPAR
in a finite number of steps, and I is assumed to have an infinite number of points
per unit area.

In practice MINSIZE is useful in resolving ambiguities in object definition.
The user of RIMPAR can use MINSIZE to specify whether he wants certain target areas
to be considered large textured objects or sets of small, relatively homogeneous
objects.

To implement the mean test, several partitions of J are tried. These trial
partitions are generated by (KO-l) horizontal and (Ko-1) vertical, equally spaced
lines. Here KO is an integer greater than 1. The trial partition Pt=(Jl,J2) that
yields the most improvement 1n an estimate of the partition criterio~ function VG(·)
is used to carry out an approx1mate version of the mean test. In this approximate
mean test we use the multivariate T2 statistical hypothesis test (Ref. 2) that
assumes the gray levels in J 1 and J 2 are normally distributed, and tests the hypo­
1mesls that Ma(J1)-Jf<; (J 2) .
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IV. EXPERIMENTS AND RESULTS

A. CLASSIFICATION METHODS

In the following experiments we investigate classifying partitioned images and
compare this method to classifying the individual points of images. The classifica_
tion algorithms used are all based on the assumption that the data are characterized
by mUltivariate. normal distribut~ons.

In the supervised classification of partitioned images, a statistical distance
measure ( the Bhattacharyya distance) is used to determine the distances between
the estimated distributions of the gray levels in partition blocks and the estimated
distributions of the gray levels of sUbimages of known classification. This techni­
que is compared to supervised per-point classification in which a Bayesian maximum
likelihood classifier is used to classify individual image points by comparing
point gray levels to the estimated distributions of the gray levels of sUbimages of
known classification.

Unsupervised classification is carried out using a standard clustering algori­
thm, which can be thought of as folloWing these stepsl

1. An initial number M of classes is specified, and the initial
distributiOns of these classes are estimated using an arbitrary
subset of the data to be clustered.

2. The partition blocks or image points are then classified using
supervised classification techniques and the current estimates
of the M class distributions.

3. If the class membership of the partition blocks or image points
is unchanged from the preVious iteration, the algorithm stops.

4. If there is a change in class membership, calculate a new estimate
of the M class distributions based on the new members of each
class, then return to step 2.

The details of the classification algorithms are discussed in Ref.. 1.

B. CLASSIFYING AGRICULTURAL AREAS

In the first set of experiments supervised classification "is used to identify
crop types in 5 images. The distributions of the classes of interest are estimated
before classification using training fierds. The characteristics of these 5 images
are summarized in Table 1. In Table 2 we compare R1MPAR classification ( ~lassify­
ing an image partitioned by RIMPAR ) with per-point classification ( classifying
individual image points ). Classification accuracy is calculated by comparing the
classification results with test fields that contain points of known classification.
These test fields are distinct from the fields used to estimate distributions used
by the classifiers. The processing time reported is in seconds of Virtual CPO time
on an IBM )60/67 time shared computer. Results storage is in bytes, and is calculat­
ed assuming one byte for each class label and 4 bytes to speCify a partition block
location. The channels used for partitioning and classification are , in general,
different for each image. For the aircraft images, wavelengths from 0.40 to 11.7
microns a:reused, and for the satellite images, wavelengths from 0.6 to 0.8 microns
are used.

From the reSUlts shown in Table 2,we conclude that in comparing per-point and
RIMPAR classification, the latter technique gives comparable accuracy ( an average
of 1% improvement in these experiments ), less results storage ( 24% - 42% in these
experiments ), and larger processing time ( 900% - 1250% ) oompared to the former
technique.

C. CLASSIFYING URBAN AREAS

In the next set of experiments, a 93,000 point image from the EBTS-1 satellite
is used to investigate the classification of urban areas. This image contains 5
relative.l f large oities. From top to bottom, the three largest cities are ( see
~1gure 2 ) Janesville, Wisconsin, Beloit, Wisconsin, and Rockford, Illinois. A
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smaller oity, Belvedere, Illinois, appears to the right of Rockford, and above
Belvedere is Poplar Grove. Illinois. The goal of these experiments i8 to isolate
these cities from the rest of the image. This isolation is acoomplished by perform­
ing unsupervised olassification ( clustering ) of the image and displaying the clus­
ter classes as different gray levels. The cities are considered to be effeotively
isolated if they are represented exclusively by a single cluster class. Two methods
using clustering are compared. clustering the individual image points and clustering
the partition blocks produced by RIMPAR.

In Figure 2 we show the results of clustering the individual points of the image
into 5 olasses using channels 2 ( 0.6 - 0.7 microns) and 4 ( 0.8 - 1.1 microns ).
Visually this clustered image seems to be a good representation of the cities in the
image. However, the human visual system does a lot of spatial integration in view­
ing such a picture. As shown in the right side of Figure 2, the cluster class most
nearly representing the cities consists of (1) separated points Within the cities,
and (2) many superfluous points outside the cities. Thus the image discription stor­
ed in the computer. represented by Figure 2, does not specify 5 major objects that
represent oities. The cities are not found as distinot objects when individual
points are olustered beoause oities are charaoterized by texture as well as the
refleotance of individual image points.

In Figure 3 we show the results of clustering the image using channels 2 and 4
after the image was first partitioned by RIMPAR. From the figure it is clear that
the cities have been approximately isolated. Although the boundaries of the oities
are not precise, the image of Figure 3 is a useful input to more detailed prooessing.

V. SUMMARY

An image partitioning algorithm is presented and applied to the classification
of agricultural and urban areas. This method of classification is shown to give
small classifioation results storage at the expense of large computation time. The
technique is also shown to be olearly superior to a per-point method in isolating
cities in an ERTS-1 image.

VI. REFERENCES

T. V. Robertson. P. H. Swain, and K. S. Fu. "Multispectral Image Partitioning",
Information Note 071373, Laboratory for Applications of Remote Sensing, Purdue
University, Lafayette, Indiana, 47907.

T. W. Anderson, An Introduct~on to Multivariate Statistical Analysis, John Wiley
& Sons, Inc•• New York. 195 • PP. 108-109.

3B-31



3B-32

Table i. Comparison of RIMPAR and Per-Point Classifiers

69002901 Aircraft Corn, Soybeans, Wheat 221 2727 5237
2400 feet Forage, Forest, Water

66000600 Aircraft Corn,Soybeans,Wheat,Oats, 410 4459 13562
2600 feet Clover,Alfalfa,Bare Soil

71053900 Aircraft Corn, Soybeans, 64 1387 6410
5000 feet Porage, Forest, Water

7203280A Satellite Corn, Soybeans ,Other 18 850 4842
580 miles (Other Vegetation)

7203280B Satell1te Corn ,Soybeans ,Other 18 1309 1409
580 miles (Other Vegetation)

Average Pield No. Training No. Test
Size (Points) Field Points Field PointsClasses of InterestImage Source

No. Channels to Accuracy* TiD1e Results storage
Image Partition/Classify RIMPAR/Per-Point RIMPAR/Per-Point RIMPAR/Per-Point

69002901 2/4 76.7/78.5 1214/100 15630/44000

66000600 2/4 79.9/78.5 967/95 9535/40280

71053900 2/4 95.4/93.2 1145/105 13950/46509

7203280A 2/2 82.6/81.3 753/81 14125/36000

7203280B 2/2 74.0/71.8 615/67 11635/27900

* Accuracy calculated as 100X(Number of correctly classified points)/(Number of test
field points).

Table 1. Image Characteristics
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