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Efficient Parallel Binary Search on Sorted Arrays

Danny Z. Chen·

Abstract

Let A be an array of n numbers and B an array of m numbers, where A and B
are sorted and n < m. We consider the problem of determining for each element AU),
1 ::; j ~ n, the element B(i) such that BCi) ::; A(j) < BCi + I), where 0 S i :S m (with
B(O) = -00 and B(m + 1) = +00). Efficient parallel algorithms on the EREW-PRAM
for this problem have been given [I, 8]. In this paper, we present a parallel algorithm
to solve it in O(logm) time using O((nlog(mjn»Jlogm) EREW-PRAM processors.
OUf solution improves the previous known results either on the time or on the total
work complexity, and it can be used to obtain a different parallel algorithm fOf merging
two sorted arrays of size m each in O(logm) time using Oem/ lagm) EREW-PRAM
processors.

1 Introduction

"Dept. of Computer Science, Purdue University, West Lafayette, IN 47907. This research was partially
supported by the Office of Naval Research under Grants NOOOH-84-K-0502 and NOOOH-86-K-0689, the
National Science Foundation under Grant DCR-8451393, and the National Library of Medicine nnder Grant
ROI-LM05118.
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how to solve the MSP by a sequential algorithm whose time complexity in the worst case

is O(nlog(m/n)).

There have also been parallel solutions to the MSP in the PRAM models. It is trivial

to solve the MSP on the CREW-PRAM (in which concurrent reads from the same memory

address by multiple processors are allowed) in O(1ogm) time using O(n) processors. On

the EREW-PRAM, one can solve the problem in O(logm) time using o(m/logm) proces

sors by doing parallel merging [3, 4]. There were also parallel solutions that avoid using

parallel merging. In [1], two such results b<U>ed on binary search were presented: one uses

n EREW~PRAM processors and takes O((logmlogn)/loglogm) time, and the other runs

in O((logmlogp)/loglogm + (nlogm){p) time using p EREW-PRAM processors. An

other solution was given in [8] that runs in O(1ogm + log2 p + (nlogm){p) time using p

EREW-PRAM processors.

We present an algorithm solving the MSP in O(logm) time using O((n log(m{n)){logm)

EREW-PRAM processors. Hence we improve the results in [1, 8] either on the time or on

the total work complexity (the total work of a parallel algorithm is its time X processor

product). Our parallel algorithm has a total work complexity of O(nlog(mjn)), which

matches the time bound of the sequential algorithm that we give in Section 2. Using this

solution for the MSP, we can easily obtain a parallel algorithm for merging two sorted arrays

of size m each in O(logm) time using O(mj logm) EREW-PRAM processors. Notice that

optimal EREW-PRAM algorithms for merging in parallel have been known [3, 4]. This

parallel merge algorithm is different from the ones in [3, 4] and it has the same optimal

complexity bounds as those in [3, 4]. Our algorithm can be easily simulated by using p :$

O((nlog(m{n)){logm) EREW·PRAM processors without any increase on the asymptotic

complexity of the total work (by Brent's theorem [2]).

We first give a parallel algorithm which runs in O(1ogm) time using n EREW-PRAM

processors (Subsection 3.1). The basic idea of this algorithm comes from the parallel search

ing scheme on 2-3 trees of [9]. In our problem, however, the scheme of [9] can not be directly

applied since we do not want to explicitly construct a 2-3 tree for array B (such construc

tion would already require O(m) total work which in general can not be accomplished by

n processors in O(logm) time). Notice that in a 2-3 tree the data in many leaves may

have multiple copies of their values stored in the internal nodes of the tree, while in the

case of arrays, there are no multiple copies of the array elements available. Hence we must

modify the scheme of [9]. What we do is to make some copies of appropriate elements
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in B in order to avoid read confljcts in the parallel search, and such copies are created

when they are needed in the process of searching (see Subsection 3.1). Then we use this

algorithm to obtain another algorithm which still takes O(logm) time but uses less (Le.,

0((nlog(mJn»J log m» processors (Subsection 3.2). A parallel merge algorithm is outlined

in Section 4.

2 Preliminaries

We let the n EREW-PRAM processors be P(l), P(2), ... , Pen). We denote a consecutive

sequence of processors P(i), P(i+ 1), ... , P(j), i ~ j, by P[i,j] and we call P[i,j) a P-block.

Similarly, we denote a consecutive sequence of elements in A (resp., B) by A[i,j] (resp.,

B[i,j]) and call it an A-block (resp., B-block).

Without loss of generality, we assume A and B are sorted in nondecreasing order. We

also assume A(i) < AU) for all i < j. That is, A contains distinct elements. (If it is not

the case, then we can use parallel prefix [5, 7) to eliminate the repetitions of the elements

in A with 0 (nJ log n) processors and in 0 (log n) time.) We still use n to denote the size of

A so resulted. We let each processor P(i) have element A(i).

It is sufficient to find, for each index j of A, the unique index i such that B(i) ~ AU) <

B(i + 1), D ~ i ~ m (with B(D) = -00 and B(m + 1) = +00). This is because after the

appropriate indices of B are known to the elements of A, the elements of A can find the

values of the corresponding elements of B by parallel prefix [5, 7]'

As in the searching algorithm of [9], the processors are grouped into disjoint P-blocks.

During the computation, a P-block is often bisected into two P-blocks of equal size (e.g.,

P[i,j], i < j, is bisected into P[i,k] and P[k + I,j]). For each P-block P[i,j], only one

processor, say P(i), is active (i.e., it is the only processor that does the primary computation

for the search of P{i,j] so long as P[i,jJ is not bisected); the rest processors in P[i,j] are

all idle. When P[i,j], i < j, is bisected into P[i,k] and P[k + l,i], P(i) "wakes" P(k + 1)

up and let P(k +1) handle P[k + l,j] while P(i) handles P[i,k].

Here we show how to solve the MSP sequentially in O(nlog(mln» time. We combine

the merge and binary search algorithms together as follows: first partition B into n sub·

arrays of size min each by selecting n elements from B (this is easy to do in arrays); then

merge the n selected elements from B with A (hence we know for each element AU) which

sub-array of B into that AU) falls); finally do a binary search for every element of A in the
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sub-array of B into that it falls in order to find for it the appropriate element of B. This

method obviously requires O(nlog(mJn)) time in the worst case because the partition and

merge take only O(n) time and n binary searches are performed (each binary search is of

O(log(m(n)) time).

Notice that the O(nlog(mJn)) sequential time algorithm is better than the O(n log m)

time algorithm when O(log(mfn)) is o(logm).

3 The Parallel Search Algorithms

We present two algorithms solving the MSP. The first one, which runs in O(logm) time

using O(n) processors, is described in Subsection 3.1. Then we use this algorithm to obtain

another algorithm in Subsection 3.2 which has the same time complexity as the one in

Subsection 3.1 but uses only O«nlog(mfn))jlogm) processors.

3.1 The First Algorithm for the MSP

The following is the algorithm with O(log m) time and O(n) processors.

Procedure Alg-MSP(B[i, j], P[k, I), F, L).

Input. B[i,j], i $ j, P(k,l], k $1, and values F and L (F js a copy of B(i) and L a copy

of B(j)).

Case 1. E[i, j] has no more than two elements. This case is easy. (For example, one

can first do binary search for each element of B[i,j] in A[k, I] to find the appropriate

location of the element of B in A[k,l], and then use parallel prefix to assign the indices

of B so found to the elements of A[k,l].)

Case 2. P[k,l] has at least two processors. Let m a (resp., mb) be the index of A (resp.,

B) that partitions A[k,l] (resp., B[i,j]) into two sub-blocks of equal size. Let Vb be a

copy of B(mb). There are five subcases.

Subcase 2.1. A(l) < F. Then the index for all elements of A[k,l] is i-I.

Subcase 2.2. L $ A(k). Then the index for all elements of A[k, I] is j.

Subcase 2.3. Vb $ A(ma). Then in parallel, call Alg-MSP(B[i,j],P[k,mal,al,a2)'

where at is a copy of F and a2 a copy of L, and call Alg-MSP(B[mb+1,j],P[ma+

l,l],a3,a4), where a3 is a copy of B(mb +1) and a4 a copy of L.
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Subcase 2.4. A(ma) < Vb < A(ma + 1). Then in parallel, call Alg-MSP(B[i,mb

1], P[k, ma]' al, a2), where at is a copy of F and a2 a copy of B(mb -1), and call

Alg-MSP(B[mb + l,i], P[ma+ l,l],a3,a4), where a3 is a copy of B(mb + 1) and

ao'j a copy of L.

Subcase 2.5. A(ma+1) .:s Vb. Then in parallel, call Alg-MSP(B[i, i], P[ma+1, l], at, a2),

where at is a copy of F and a2 a copy of L, and call Alg-MSP(B[i,mb _

l],P[k,m,,], a3, a4), where a3 is a copy of F and a4 a copy of B(mb -1).

Case 3. P[k,l] has only one processor. There are four subcases. These subcases are han

dled similarly as those in Case 2 and, in fact, are simpler than those in Case 2. Hence

they are omitted here.

The algorithm inltially calls Alg-MSP(B[I,m], P[l, n], bt , b2), where bt is a copy of B(l)

and b2 a copy of B(m).

The algorithm proceeds in stages, as shown in [9]. IT a call is processed at stage s, then

the recursive calls made by this call are to be processed at stage.9 + 1. Since P[l, nJ can be

bisected O(logn) times and a binary search in B can take O(logm) steps, there are totally

O(logm + logn) = O(logm) stages in the algorithm. Therefore it is easy to see that the

algorithm takes O(log m) time.

The algorithm correctly solves the MSP. This can be shown by an easy induction on the

number of stages of the algorithm. Suppose in stage s ~ 1, a call to Alg-MSP with input

arguments B[i,i] and P[k,l] is being processed. Then one of two possible things is done:

either we correctly find the indices of B for A[k,l) (e.g., in Case 1, Subcases 2.1 and 2.2) and

make no recursive calls, or we ensure the following condition being held for the recursive

calls (which are to be processed in stage s +1) generated by this call: the indices of B for

the P-block arguments (hence, the A-blocks) to those recursive calls can all be determined

using the B-block arguments to those calls (this can be easily checked for Subcases 2.3, 2.4,

and 2.5).

The only thing left is to show that no read conflict occurs in this algorithm. Case 1 is

easy, because the reads are caused only by 0(1) sequential binary searches on A[k, I] (notice

that the A-blocks are disjoint). We only show for Case 2, since Case 3 is just a simple case

of Case 2.

ma stage, we say P[k,l] is at B[i,i] if both P(k,lJ and B[i,i] are input arguments to a

call made by the algorithm. There are two situations: one is when two P-blocks are at two
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distinct B-blocks in a stage, and the other is when two P-blocks are at the same B-block in

a stage. We have the following facts.

Lemma 1 In a stage, let P[k,l] be at B[i,j]. Then the only possible read accesses to B[i,j]

made by P[k,IJ occur only at B(mb -1), B(mb), or B(mb + 1), where mb is the index for

the middle element of B[i, j]. Furthermore, a read access to one of these three elements is

necessary only if the index q for that element in B satisfies i < q < j.

Proof. The subcases in Case 2 are identified using the values of B(i), B(mb), and B(j). The

values of B(mb - 1) and B(mb +1) are needed for the recUIsive calls. These five values are

all that are needed from B[i,j] by the search of P[k,i] in this stage. The values of B(i) and

B(j) are already available from the input arguments F and L. Notice that each P-block has

its own copies of F and L (even if the copies represen t the same elements in B). Therefore

no read conflict can occur when reading from F and L. Let q E {mb - 1, mb, mb + I}. If

q < i or j < q, then q is out of the index range of B[i,j] and thus no read is needed from

B(q) by P(k,l). If, say, q = i, then there is no need to read from B for the value of B(i)

because the value is available from F. The same is for q = j. 0

Lemma 2 In a stage, if P[kl,l}] is at B[il,j}] and P{k2,12] at B[i2 ,i2], where B[il,j}] t
B[i2,j2], then P[kl, I}] and P[k2 , l2J do not read from the same element of B.

Proof. Let the index for the middle element of B[i},j}] be mb
l

and the index for the middle

element of B[i2 ,i2] be mb2 • Since B[i},jd is different from B[i2 ,j2], there is at most one

index q E {mbl - 1, mbl , mb l + I} n {mb2 - 1, mb2 , mb2 + I} such that B(q) is in B[i},jd n

B[i2 ,i2]. If this is the case, then B(q) must be one of the first or last element of B[i},jd

or B[i2 ,j2J, and by Lemma 1 no read from B(q) is necessary. 0

The above two lemmas show that if two P-blocks are at distinct B-blocks in a stage, then

no read conflict can occur between the two P-blocks from their read accesses to B. The

following lemma shows that in the situation when more than one P-biock is at the same

B-biock in a stage, no read conflict will happen at that B-block.

Lemma 3 In a stage, there can be only 0(1) (in fact, at most three in our algorithm)

P-blocks at the same B-block.

Proof. It has been shown in [9] that there can be at most Jour P-blocks at the same node

of a 2-3 tree in a stage during the parallel search. The same proof is for this lemma and

hence is omitted here. 0
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From the discussion for the two situations above, we can conclude that no read conflict

occurs in this algorithm.

3.2 Reducing the Processor Complexity

We now present a solution which takes O(1ogm) time using O«nlog(mln))/logm) EREW

PRAM processors. This algorithm uses less processors than the one in Subsection 3.1 if

O(log(mln)) is o(logm) (it has the same complexity bounds as the one in Subsection 3.1

if O(log(mln)) is 0(logm)). For example, when m = O(nlogCn) for some constant c >

0, only O((nloglogn)/logn) processors are needed here. The total work of this parallel

algorithm is O(n logemin)), matching the time bound of the sequential algorithm in Section

2.

The algorithm is given below.

(1) Select n elements from B to form an array B ' . The elements in B ' partition B into n

portions of size min each.

(2) Partition A into (nlog(mln))flogm sub-arrays of size logmflog(mln) each by select

ing (nlog(mln))/logm elements from A. Let these selected elements form an array

A'.

(3) Call Alg-MSP to search for A' in B. Let C be the array of the elements of B de

termined by the call of searching for A' in B. (The elements of C partition B into

O«(nlog(mln))jlogm) disjoint portions; no two distinct sub-arrays of A fall into the

same portion of B so resulted.)

(4) Merge B 1 and C into array D. D partitions B into n + (nlog(mln))jlogm = O(n)

sub-arrays of size:; min each (some sub-arrays may have size 0).

(5) Merge A and D into array E (E has a size of O(n)).

(6) Find for every element of A which sub-array of B into that it falls (for example, for

each element of E that is from A, mark it as 0, and for each element of E from D,

mark it by its own index in D; then do a parallel prefix on E).

(7) In parallel, process every sub-array Ai of A using one processor. Each element a of Ai

knows exactly which sub-array Bj of B that it falls in. Thus a binary search for a in
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Bj will find the answer for a in B. The processor does such a binary search for every

element of Ai one by one. (No read conflict can occur here because of Step (3).)

The correctness of this algorithm is very easy to see. This algorithm solves the MSP

in O(1ogm) time using O((nlog(m/n))jlogm) EREW-PRAM processors. It is trivial to

compute Steps (1) and (2) in these complexity bounds. Steps (4) and (5) use parallel

merging on totally O(n) numbers and hence can be done in O(1ogn) time using O(n/logn)

processors [3, 4]. Step (6) is parallel prefix [5, 7] and can also be computed in O(logn) time

using O(n/logn) processors. Step (3) uses O((nlog(m/n))jlogm) processors and runs

in O(logm) time (by Subsection 3.1). Step (7) uses O((nlog(m/n))jlogm) processors.

Because every processor takes care of log m/ logemin) elements (which form a sub-array) of

A, and each element costs O(log(m/n)) time (by a binary search for that element in a sub

array of B whose size is $ min), the time for Step (7) is O(log(m/n)) X logmjlog(m/n)

= O(1ogm). Since O(1ogm) = 0(log(m/n) + logn), the time complexity is O(logm) and

the processor complexity is ((nlog(m/n))jlogm).

4 A Parallel Merge Algorithm

For the problem of merging two sorted arrays V and W, each of which has size m, efficient

parallel algorithms on the EREW-PRAM have been known [1, 3, 4]. The best solutions

run in O(logm) time using O(m/logm) processors [3, 4]. Here we give another solution on

the EREW-PRAM for parallel merging which also takes O(logm) time using O(mJlogm)

processors. OUf algorithm uses Alg-MSP as a subroutine.

We briefly outline the algorithm for parallel merging.

(1) Select m/ logm elements from V (resp., W) that partition V (resp., W) into m/logm

portions of size logm each. Let these selected elements form an array V' (resp., W').

(2) Call Alg-MSP to search for V' (resp., W') in W (resp., V). Let the output be in an

array W" (resp., V"). That is, W" (resp., V") contains elements of W (resp., V) as

the result of searching for V' (resp., W') in W (resp., V).

(3) Now V' and V" (resp., W' and W") together partition V (resp., W) into O(m/logm)

sub-arrays of size ~ logm each (a sorted set of V' U V" can be found by doing parallel

prefix on V). In this way, each sub-array of V is paired off with one and only one

sub-array of W.
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(4) In parallel, assign a processor to each pair of sub-arrays of V and W. This processor

merges the two sub-arrays sequentially.

It is straightforward to see the correctness of this algorithm and its complexity bounds;

hence we omit the analysis here.
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