
Purdue University
Purdue e-Pubs

Faculty Publications Department of Computer Information Technology

3-8-2019

Identifying and Using Driver Nodes in Temporal
Networks
Babak Ravandi
Purdue University, bravandi@purdue.edu

Fatma Mili
University of North Carolina at Charlotte

John Springer
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/cit_articles

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ravandi, Babak; Mili, Fatma; and Springer, John, "Identifying and Using Driver Nodes in Temporal Networks" (2019). Faculty
Publications. Paper 11.
https://docs.lib.purdue.edu/cit_articles/11

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fcit_articles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/cit_articles?utm_source=docs.lib.purdue.edu%2Fcit_articles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/cit?utm_source=docs.lib.purdue.edu%2Fcit_articles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/cit_articles?utm_source=docs.lib.purdue.edu%2Fcit_articles%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages

IMA Journal of Complex Networks (2019) Page 1 of 29
doi:10.1093/comnet/xxx000

Identifying and Using Driver Nodes in Temporal Networks

BABAK RAVANDI∗

Department of Computer and Information Technology, Purdue University, IN, USA
∗Corresponding author: bravandi@purdue.edu

FATMA MILI
College of Computing and Informatics, University of North Carolina at Charlotte, NC, USA

fatma.mili@uncc.edu

AND

JOHN A. SPRINGER
Department of Computer and Information Technology, Purdue University, IN, USA

jaspring@purdue.edu

[Received on 13 November 2018]

In many approaches developed for defining complex networks, the main assumption is that the network is
in a relatively stable state that can be approximated with a fixed topology. However, in several applications,
this approximation is not adequate because a) the system modeled is dynamic by nature, and b) the changes
are an essential characteristic that cannot be approximated. Temporal networks capture changes in the
topology of networks by including the temporal information associated with their structural connections,
i.e., links or edges. We focus here on controllability of temporal networks, that is, the study of steering
the state of a network to any desired state at deadline t f within ∆ t = t f − t0 steps through stimulating key
nodes called driver nodes. Recent studies provided analytical approaches to find a maximum controllable
subspace for an arbitrary set of driver nodes. However, finding the minimum number of driver nodes Nc
required to reach full control is computationally prohibitive.
In this work, we propose a heuristic algorithm that quickly finds a suboptimal set of driver nodes with
size Ns > Nc. We conduct experiments on synthetic and real-world temporal networks induced from ant
colonies and e-mail communications of a manufacturing company. The empirical results in both cases
show the heuristic algorithm efficiently identifies a small set of driver nodes that can fully control the
networks. Also, as shown in the case of ants’ interactions networks, the driver nodes tend to have a large
degree in temporal networks. Furthermore, we analyze the behavior of driver nodes within the context of
their datasets, through which, we observe that queen ants tend to avoid becoming a driver node.

Keywords: temporal networks; complex networks; driver nodes; controllability; heuristic.

1. Introduction

A complex network is a network of often numerous interconnected components with non-trivial topolog-
ical/structural characteristics that do not occur in simple networks, such as lattices or random graphs,
but often occur in networks modeling real-world systems. The application of such networks spans over
many scientific disciplines including abstract and applied physics [1], biology [2, 3], chemistry [4], and
sustainability in ecosystem management [5]. Understanding the structure of these complex networks is
necessary to understand and predict their behavioral characteristics.

Controlling such systems motivated the scientific community for decades and resulted in a tremendous

c© The author 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Recommended citation:
Ravandi, B., Mili, F., & Springer, J. A. (2019).
Identifying and using driver nodes in temporal networks.
Journal of Complex Networks.
https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/
comnet/cnz004/5372353

https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz004/5372353
https://academic.oup.com/comnet/advance-article-abstract/doi/10.1093/comnet/cnz004/5372353

2 of 29 B. RAVANDI ET AL.

number of studies on controlling networks mostly focused on fixed topology [6, 7]. Given the dynamic
nature of complex systems, it is necessary to study how the changes in structure of the networks
influence our ability to control them. In this work, we focus on the controllability of networks with
changing structure over time, also called temporal networks or dynamic networks [8]. When non-trivial
temporal correlations govern a system, it is necessary to include the order of interactions in the structure.
Such complex systems include transportation, communication, biological, and neural networks [9–13].
Furthermore, temporal correlations in pathways govern the spreading process [10]. Static networks
capture the existence of connections between nodes during an observation period, ignoring the temporal
correlations. To capture the dynamic aspects, the temporality of links must be explicit. Fig. 1 presents a
simple temporal network in the observation period 16 t 6 2 with three time-respecting paths, marked
with colors red, blue, and green. If a path follows the temporal ordering of connections, it is denoted as a
time-respecting path. The static representation of a temporal network is is known as time-aggregated
network where the weights of edges represent the observation times, in which interactions between nodes
were observed. Consider the time-aggregated network presented in Fig. 1 (a) with timestamped edges.
Without considering the temporal correlations, information can spread from node 4 to node 1. However,
this is not possible if considering the temporal order of interactions. To clearly show the temporal
correlations, we use a time-layered network, i.e., the network representation created by making a copy of
nodes for each observation period as a time-layer and connecting the nodes between the layers. In other
words, the time-layers represent the intervals in which the interactions between nodes are observed. Fig.
1 (b) presents the time-layered visualization of the network; it unpacks the temporal correlations with
layers of time and presents the interactions between them.

The study of controllability in complex networks addresses the existence of ways to influence a
network within a finite time to reach a targeted state. Studies on structural controllability of graphs
showed it is possible to answer control-related questions by only leveraging the underlying structure
of graphs [14, 15]. Compared to static networks, temporal networks have fundamental advantages in
terms of time and energy required to reach controllability. This means the changing topology of complex
system can be utilized to increase the efficiency of control [16]. Pósfai and Hövel extended the structural
controllability theorem to temporal networks [17] and provided the necessary tools to study controllability
for this class of networks. Moreover, they investigated the Maximum Controllable Subspace (MCS) for a
single driver node. We extend these results by focusing on finding a minimum number of nodes required
to reach complete control in temporal networks.

✹✸✷✶
t❂✶t❂✶t❂✷

�✁✂

�✁✂

✭❛✮ ❚✐✄☎✲✆✝✝❣☎✝✆✞☎✟ ♥☎✞✠♦❣✡ ✭❜✮ ❚✐✄☎✲❧✆②☎❣☎✟ ♥☎✞✠♦❣✡

t❂✶

�✁✂

☛☞✌

✹✸✷✶

✹✸✷✶

✂

FIG. 1. Temporal correlations in pathways. Three time-respecting paths that follow the temporal correlations are marked with
colors red, blue, and green. (a) A time-aggregated temporal network within the observation period 1 6 t 6 2. Considering the
temporal correlations, the path 4→ 3→ 2→ 1 physically does not exists. (b) Visualization of the temporal correlations using the
time-layered network presentation. The self-loop at interval t = 2 allows node 3 to retain the influence it received from node 4 at
interval t = 1.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 3 of 29

1.1 Innovation

Networks are controlled by stimulating a subset of nodes known as driver nodes. Controllable networks
can have multiple sets of driver nodes. The problem of control is twofold: determining whether an actual
set of driver nodes exists and if so, identifying a minimum set of driver nodes with size Nc [15, 17, 18].
Because the control of temporal networks is still emerging, little attention has been devoted to the latter
of these, i.e., to identify the minimum number of driver nodes Nc required to reach complete control in
temporal networks. Finding Nc is a computationally prohibitive task for both static and temporal networks.
For static networks, the most efficient approach reduces the problem to the maximum matching problem
that finds a Minimum Driver node Set (MDS) with size Nc [15]. However, the analytical approach for
temporal networks requires validating an order of O(2N∆ t) configurations where N is the number of
nodes and ∆ t is the desired number of steps to reach control. In addition, the validation itself requires
calculating the rank of the corresponding temporal controllability matrix where building this matrix
involves an exponential number of matrix multiplication. This validation is O(A(t)∆ t) where A(t) is
the adjacency matrix of the temporal network at interval t [17]. This motivates the desire for finding
more efficient approaches. We introduce a heuristic algorithm with complexity O(N3 +N2E +N∆ t) that
finds multiple Suboptimal Minimum Driver node Sets (SMDS) with size Ns > Nc to efficiently control a
temporal network where E is the set of timestamped edges.

2. Complex Networks Controllability

In many approaches developed for defining complex networks, the main assumption is that the network
is in a static or quasi-static state with a static topology [19]. Static construction is typically used to build
networks from a snapshot or aggregated snapshots of a complex networked system. However, many
real-world networks exhibit a significant level of dynamic behavior in both spatial and temporal domains
[8]. For instance, network-analytic methods make the fundamental assumption that paths are transitive
(i.e., the existence of path a→ b and b→ c implies a transitive path a→ b→ c). However, as shown
in [20] and Fig. 1, temporal correlations in pathways can invalidate this assumption and accordingly
invalidate the approaches based on them.

Another important aspect of complex systems traditionally not captured in static networks is the
effect of self-interactions [21, 22]. Most natural systems enjoy passive stability, i.e., the ability to retain
information over time [23]. The framework provided by Pósfai and Hövel allows using self-loops to
model the state retention aspect [17]. A simple example of self-loop is presented in Fig. 1 enabling the
influence of node 4 on node 3 at interval t = 1 to persist to interval t = 2.

2.1 Controllability of Static Networks

Static networks assume the topology of network is fixed over time. Controllability of static networks
is interested in modeling systems that can be presented by a set of nodes with state variables. The
relationships between the nodes are captured with directed weighted edges and a protocol that governs
the dynamics by which the network changes the state variables over time. These systems interact with
an environment from which they receive stimuli (inputs), denoted by u(t), and to which they produce
effects (outputs). In other words, the controllability of complex networks is the study of the relationship
between the external stimuli and the graphs’ behaviors and outputs.

Although most physical systems have intrinsic nonlinear dynamic behavior, their controllability in
many aspects can be structurally considered to be linear [24]. Recent literature mostly focused on the
linear time-invariant dynamics (LTI) [25–28]. Equation 2.1 presents the dynamics of network in time.

4 of 29 B. RAVANDI ET AL.

x(t +1) = A>x(t)+Bu(t) (2.1)

The adjacency matrix A ∈ RN×N describes the “wiring” of the system and its interaction strengths.
The time varying vector x(t) ∈ RN×1 describes the state of the system at time t. The second term Bu(t)
models the effect of the external stimuli, in which B ∈ RN×M captures the connections with a controller
and M driver nodes. Also, the strength of the stimuli imposed by the controller is captured by the
time-varying input vector u(t) ∈ RM×1. To reach controllability, first we need to identify a set of nodes
that can provide full control over the network if driven by different external stimuli; as indicated earlier,
such nodes are called driver nodes, and most control problems are interested in identifying the minimum
number of driver nodes, denoted by Nc, to fully control a system.

The system described above is controllable if we can steer its state from any initial state to a desired
state within a finite time. This is only possible iff the controllability matrix C ∈ RN×NM (defined in
Equation 2.2) has full rank (i.e., rank(C) = N). This represents the mathematical controllability condition
called Kalman’s rank condition [29].

C = (B,AB,A2B, . . . ,AN−1B) (2.2)

Applying the Kalman’s rank condition to Equation 2.2 requires knowing the weights of all links in
the entire network that for most physical systems it is not practical. The structural controllability theorem
enables one to bypass the problem of a priori having the exact weight of the links. This means, the system
〈A,B〉 is “structurally controllable” if it is possible to place nonzero weights in A and B and assuming
Equation 2.1 governs the system’s dynamics. In [14], Lin shows that a structurally controllable system
is controllable for almost any weight configuration. However, O(2N) combinations of driver nodes are
required to test the Kalman’s rank condition to find an MDS. For static networks, extensive research has
been done to efficiently test structural controllability and determine the location of the minimum number
of drivers required. One approach to identify an MDS is by finding a maximum matching of the network.
Murota [15] represents a comprehensive view of the conducted research on controllability of dynamical
systems and the maximum matching approach; this is on the order of O(

√
NE) using Hopcroft-Karp

bipartite matching algorithm [30] where N is the number of nodes and E is the number of edges.

2.2 Controllability of Temporal Networks

Temporal networks allow modeling a system with a topology that changes over time. We can utilize these
changes in network’s wiring to increase efficiency of control in terms of the time and energy required to
gain control compared to the static networks [16]. Also, including time in the definition of controllability
allows to explicitly study the time necessary to gain control; in contrast, this is an area that only receives
implicit treatment in static networks [31]. These motivate the need to study the controllability of temporal
networks. In this section, we first introduce the definition of temporal networks and then cover the
definition of structural controllability for temporal networks.

A directed temporal network T (V,E), consists of a set of vertices V = {v1,v2, . . . ,vn} and a set of
timestamped directed edges E = {e1,e2, . . . ,em}. Each temporal link e = (vi,v j,wi j, t) ∈ E connects
two vertices vi→ v j at an observation interval t, and the weight of their connection is captured by wi j.
The weights in static networks often present aggregated information about interactions between two
vertices (i.e., the frequency of interactions). In temporal networks, the weights present the strength of a
connection at a point in time. For example, in social networks weights could present the strength of trust
between people during a time period.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 5 of 29

Many physical systems are driven by nonlinear processes. However, the controllability of nonlinear
systems in many aspects is structurally similar to linear systems [24]. In this work, we consider discrete
time-varying linear dynamics govern the interactions between nodes as shown in Equation 2.3 [17, 32].

x(t +1) = A(t)>x(t)+B(t)u(t) (2.3)

The state of network is captured by the time-varying vector x(t) ∈ RN×1 where N is the number
of nodes. Equation 2.3 defines the state x at time t + 1 as a sum of two terms: the resultant of the
internal system dynamics applied to the state at interval t and the impact of external stimuli. The matrix
A(t) ∈RN×N is the weighted adjacency matrix of the network at observation interval t. Control is applied
by stimulating driver nodes di ∈ V at interval t that propagates the stimulated value to the network at
interval t +1. Through this article, stimulating a driver node is referred as an intervention, and the pair
(di, t) is called an intervention point. The matrix B(t) ∈ RN×NI(t) identifies the intervention points where
a) NI(t) is the number of intervention points at interval t, and b) u(t) ∈ RNI(t) denotes the strength of
stimuli to enforce control.

2.2.1 Independent Path Theorem
Pósfai and Hövel extended the standard definition of structural controllability to time-varying systems

modeled with directed temporal networks [17]. We note that a structurally controllable system is
controllable for almost any weight configuration [14]. According to the independent path theorem [17],
a temporal network is structurally controllable at target interval t f in the desired ∆ t steps if all nodes
vi ∈V at deadline t f are connected to the intervention points through a set of independent time-respecting
paths originated within (t f −∆ t, t f]; this is under the assumption that Equation 2.3 governs the system’s
dynamics. A set of time-respecting paths are independent if they do not pass the same node at a same
time. Fig. 2 illustrates two scenarios for controlling the simple temporal network introduced in Fig.
1. The intervention points are marked with the red nodes, and the independent time-respecting paths
originating from them are marked with the solid red arrows. In Fig. 2 (a), we only illustrate the first
interval of the network since the target deadline to reach control is t f = 1. The figure shows at least three
driver nodes are required to reach control. However, for deadline t f = 2 in Fig. 2 (b), at least two driver
nodes are needed to fully control the network (node 2 is stimulated twice) since the self-loop (on node 3
at interval t = 2) enables preserving the influence of node 4 on node 3 over the interval t = 2.

t❂✶

✹✸✷�

✹✸✷�

✭❛✮ ❈♦✁✂✄☎✆☎ ❝♦✝✆✞♦✄ ✐✝ ✒✞☛ ✌ ✄✁ ✂✞ ✌ ✄�

✟✠�

✟✠✷

✹✸✷�

✹✸✷�

✹✸✷�

✭❜✮ ❈♦✁✂✄☎✆☎ ❝♦✝✆✞♦✄ ✐✝ ✒✞☛ ✌ ☎✁ ✂✞ ✌ ☎�

FIG. 2. Controlling the simple temporal network illustrated in Fig. 1. The driver nodes and independent time-respecting paths are
marked with the red colors. (a) Three driver nodes are required to reach full control over interval t = 1. (b) Two driver nodes are
needed to reach control over interval t = 2 as the self-loop of node 3 at the interval t = 2 enables controlling node 3 through node 4.

6 of 29 B. RAVANDI ET AL.

2.2.2 MCS for a Set of Driver Nodes An Maximum Controllable Subspace (MCS), namely C ⊆V ,
at any deadline t f for a set of driver nodes di ∈ V can be efficiently identified using Ford-Fulkerson
algorithm [17]. The problem is equivalent to obtaining a maximum flow of the time-layered network by
connecting the source node to all driver nodes in all of the time-layers, next connecting all the nodes at the
deadline time-layer to the sink node, and then limiting the maximum capacity that can pass through each
node to one (see Appendix A for details). Fig. 3 illustrates the identification of an MCS for a temporal
network by using the maximum flow approach. To improve visualization, we selected distinct colors for
the independent time-respecting paths in Fig. 3 (c) and (d). Also, we grouped the connections from the
source node to the driver nodes. The colored dotted edges from the source node represent the selected
intervention points by the maximum flow algorithm. The temporal network in Fig. 3 requires at least
two driver nodes to reach control at deadline t = 3 given the possibilities of independent time-respecting
paths. In many control problems, the goal is to identify a minimally sized set of nodes that can control a
network.

❛ ❜

❝ ❞

t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

3

t = 1
t = 1,2,3

t = 1,2,3 t = 1,2,3

t = 1,2,3

t
=

 1

t
=

 2

t = 2

t = 3

t = 3

t
=

 3

2 4

1

FIG. 3. Identifying an MCS using the maximum flow algorithm. The independent time-respecting paths are marked with
distinct colors. The intervention points connected to driver nodes are marked with dotted lines. (a) Time-aggregated network with
timestamped edges and observation period 16 t 6 3. (b) The temporal pathways are visualized with the time-layered network. (c)
Node 1 as a single driver node at most can control 75% of the network (three nodes). (d) Node 1 and Node 4 together can fully
control the network.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 7 of 29

3. Problem

Finding an MDS is computationally prohibitive due to two difficulties: 1) identifying the minimum
number of driver nodes and their intervention points requires testing O(2N∆ t) configurations where
∆ t = t f − t0 is the desired number of steps to reach control at deadline t f , and 2) testing a configuration
requires computing rank of the temporal controllability matrix C

(
t0, t f

)
as found in Equation 3.1; this

latter step involves matrix multiplications on the order of O(A(t)∆ t) [17]. Without loss of generality,
we assume the start interval is t0 = 0 within this article. There is no loss of generality as control can be
applied within any period (t f −∆ t, t f].

C(t0, t f) =
[
A(t f −1)A(t f −2) · · ·A(t0 +1)B(t0); · · · ;A(t f −1)B(t f −2);B(t f −1)

]
(3.1)

The operator [X ;Y] represents the concatenation of two matrices and hence C(t0, t f) ∈ RN×NI where
NI = ∑t NI(t) is the total number of interventions. As the linear rank of C(t0, t f) is the number of
variables that can be controlled independently, the system 〈A(t),B(t)〉 (governed by Equation 2.3)
becomes controllable if rank(C(t0, t f)) = N. This can be done by a proper selection of intervention points
via the driver nodes.

Constructing an optimal driver node set (i.e., MDS) that satisfies the aforementioned rank condition is
computationally prohibitive, and thus, we propose a heuristic algorithm to efficiently control the temporal
networks.

4. Heuristic for Efficiently Control Temporal Networks

To start introducing the heuristic approach, we first need to introduce two properties that correlate
the MCS of individual nodes to the concepts of MDS (optimal sets in terms of size) and SMDS (i.e.,
suboptimal driver sets that can fully control a temporal network). As discussed in Section 3, finding
an MDS with size Nc is computationally prohibitive. In this work, our goal is to efficiently create an
SMDS with size Ns > Nc. According to the independent path theorem in [17], a subset of network
variables (nodes) C ⊆V is controllable at deadline t f in a desired ∆ t steps iff |C| number of independent
time-respecting paths exists that a) start from intervention points within (t f −∆ t, t f] period, and b) end
on the nodes vk ∈C at deadline t f . Moreover, a structurally controllable temporal network has at least
|V | number of independent time-respecting paths originating from the driver nodes within (t f −∆ t, t f]
and end on all nodes v ∈V at deadline t f .

Here we focus on the problem of identifying an SMDS, namely D, with its MCS denoted by
MC(D, t f ,∆ t) =V where function MC ⊆V finds a maximum subset of nodes that can be controlled by
applying interventions at points (d ∈D, t) for any interval in t f −∆ t < t 6 t f . This leads to the formation
of the following properties.

Property 1 ∑d∈L |MC({d}, t f ,∆ t)| > |V | for any MDS, namely L, where function MC(X , t f ,∆ t) ⊆ V
finds an MCS for any driver node set X ⊆V by applying interventions at points (d ∈ X , t) within any
interval in t f −∆ t < t 6 t f , and V is the set of nodes in the temporal network.

Proof. Recall that function MC(X , t f ,∆ t) finds an MCS for any driver node set X based on a maximum
flow of X , denoted by f (X), in the time-layered network constructed for the interval (t f −∆ t, t f] (Section
2.2.2). Therefore, |MC({d}, t f ,∆ t)|= f ({d}) for any node d ∈ X and hence ∑d∈X |MC({d}, t f ,∆ t)|=
∑d∈X f ({d}) for any driver node set X . Now, suppose there exists an MDS, namely L, that can fully
control the network, i.e., f (L) = |V |. It is enough to show that ∑d∈L f ({d})> |V |. Assume otherwise,
i.e., ∑d∈L f ({d}) < |V |. Notice that by structure of the time-layered network, and the fact that the

8 of 29 B. RAVANDI ET AL.

maximum capacity that can pass through each node is one f (L)6 ∑d∈L f ({d}) holds. Thus, combined
with the earlier assumption we get f (L) 6 ∑d∈L f ({d}) < |V |, and thus f (L) < |V | would hold. This
contradicts the independent path theorem; that is, to gain full control all nodes vi ∈V at deadline t f must
be connected through a set of independent time-respecting paths originated from intervention points
(d ∈ L, t) within time-layers in interval t f −∆ t < t 6 t f . This in turn would mean that L cannot be an
MDS, and as this contradicts our original supposition regarding L, ∑d∈L f ({d})< |V | does not hold and
accordingly ∑d∈L f ({d})> |V |. �

Based on Property 1, the sum of the flow of individual driver nodes for any driver node set that can
reach full control must be equal to or bigger than |V |. This leads to the formation of Property 2 that
belongs to all MDSs and SMDSs.

Property 2 If ∑d∈D′ |MC({d}, t f ,∆ t)| > |V |, then the driver set D′ ⊆ V is a possible SMDS within
interval (t f −∆ t, t f].

Proof. By definition, an MDS, namely L, is a driver node set with the minimum number of driver nodes
Nc that can fully control the network, i.e., MC(L, t f ,∆ t) =V . Also, an SMDS, namely D′, is a driver node
set with size Ns > Nc that can fully control the network, i.e., MC(D′, t f ,∆ t) =V . Assume there exists a
possible SMDS, namely D′, where ∑d∈D′ |MC({d}, t f ,∆ t)|< |V |. Since D′ could be an SMDS only if it
can gain full control, then the proof of this property follows the same logic as the property 1. �

The heuristic identifies a possible SMDS that can fully control a temporal network by applying
the Property 2 to a list of MCSs denoted by C. We say the set Svk is an MCS of node vk such that
Svk = MC({vk}, t f ,∆ t)⊆V . We propose to construct a possible SMDS, namely D′, from an MCS list
denoted by C in the following way:

1. Choose all MCSs of nodes to include in the MCS list
C= [Sv1 ,Sv2 , . . . ,Svk=N]. For each node added, we keep record of the set of nodes it controls.

2. Add MCS of nodes to the list C in decreasing order of the size of subspaces such that the sets
Svk ∈ C follow the order |S1|> |S1|> · · ·> |SN | where the superscripts denote the position of sets
in C. In other words, the sets in C are sorted in decreasing order of their respective cardinalities.

3. Starting from the first set Si=1, subtract its controllable subspace from the controllable subspace of
sets located after it (i.e., S j>i ∈ C). In other words, S j← S j \Si where 16 i < j 6 N denotes the
position of members in C which themselves are sets.

4. Stop when all sets in C are processed. Nodes with non-empty controllable subspace are driver
nodes. That is, a possible SMDS denoted by D′ is derived from C where P = {vk|Svk ∈C,Svk 6= /0}.

5. If MC(D′, t f ,∆ t) =V , then D′ is an actual SMDS, namely D, that can fully control the temporal
network. Otherwise, D′ partially controls the network.

In summary, the proposed heuristic algorithm converts an MCS list C to a possible SMDS by enforcing
Property 2. Therefore, the heuristic ensures any MCS list C satisfies the following: a)

⋃
Svk∈C

Svk =V , b)⋂
Svk∈C

Svk = { /0}, and c) ∑Svk∈C
|Svk |= |V |; these increase the likelihood of deriving a possible SMDS

that is an actual SMDS (i.e., can fully control the network) or control a significant percentage of the
network.

In Fig. 4, we illustrate an execution of the heuristic approach on a simple temporal network. Fig. 4
(a) visualizes a step by step execution of the heuristic on the indicated MCS list C, which is induced

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 9 of 29

from the temporal network in Fig. 4 (b). The blue arrows indicate the MCS of a node that is being
processed in each iteration of the heuristic. The heuristic starts with processing S1

v2
, i.e., the first MCS

in C where the superscript indicates the position of the sets in C. In Iteration 1, the common vertices
within the controllable subspace of S1

v2
and its following subspaces are marked red. Therefore, S3

v1
and

S4
v3

are adjusted based on the assumption that S1
v2

can control v1 and v3. These iterations continue until all
Svi ∈ C are processed. Thereby Property 2 will be enforced on C. In this example, the derived driver set
is both an SMDS and MDS. In Fig. 4 (b), we use the identified SMDS to control the network on deadline
t f = 3 and in ∆ t = 2 steps. The independent time-respecting paths and the intervention points required to
control the network are marked with the red nodes and links.

✞☛☞❂�✟✡✱✁✂✱✟✄⑥✱

✞☛☎❂�✁✆✱✁✝⑥✱

✠☛✌
✍✎✏✡✑✒

✞☛✓❂�✟✄⑥✱

✠☛✔
✍✎✕✝✑

✞☛☞❂�✁✖✱✁✂✱✁✗⑥✱

✞☛☎❂�✁✆✱✟✘⑥✱

✠☛✌
✍✎✑✒

✞☛✓❂�⑥✱

✠☛✔
✍✎✏✘✑

■t❡✙❛t✐♦✚ ✶ ■t❡✙❛t✐♦✚ ✷ ✛✜✢✣✤✜✥✦✧ ✸

■t❡✙❛t✐♦✚ ✹ ■t❡✙❛t✐♦✚ ✺

★✍✩✠☛☞✪ ✕✖✫ ✕✂✫ ✕✗ ✫ ✠☛☎
✪ ✕✆✫ ✕✝ ✫ ✠☛✌

✪ ✕✖ ✫ ✠☛✓✪ ✕✗ ✫ ✠☛✬
✪ ✕✝ ❪

❙�❉❙ ❂ �❉❙
✭✁✂✮ ✁✆✯

✞☛☞❂�✁✖✱✁✂✱✁✗⑥✱

✞☛☎❂�✁✆✱✁✝⑥✱

✠☛✌
✍✎✑✒

✞☛✓❂�⑥✱

✠☛✔
✍✎✑

✠✰☞
✍✎✕✲✒✕✳✒✕✴✑✒

✞☛☎❂�✁✆✱✁✝⑥✱

✞☛✌❂�⑥✱

✞☛✓❂�⑥✱

✞☛✬❂�⑥

✠✰☞
✍✎✕✲✒✕✳✒✕✴✑✒

✞☛☎❂�✁✆✱✁✝⑥✱

✞☛✌❂�⑥✱

✞☛✓❂�⑥✱

✞☛✬❂�⑥

★ ✵

✭❛✮ ✭❜✮

❯✁✐♥✂ ❉✄✐☎❡✄ ◆✆✝❡ ❙❡✞ ❂ ✟✁✂✱ ✁✆⑥

✞❂t

✠✡☛

✞❂☞

✹

✹✻✶

✻✶

✻✷✶

✺

✺

✺

✻✷✶ ✺

✷

✷

✹

✹

FIG. 4. Execution of the heuristic approach on a simple temporal network. (a) Execution of the heuristic for the MCS list C. The
heuristic identified one SMDS that is also the optimal solution (MDS). Blue arrows indicate the controllable subspace of a node
that is being processed by the heuristic. An MCS for each node is denoted by Svk = MC({vk}, t f = 3,∆ t = 3). (b) Controlling the
temporal network with the identified SMDS. The intervention points and their independent time-respecting paths are marked with
the red nodes and links.

4.1 Multiple SMDSs and Non-unique Controllable Subspace

Having multiple driver nodes simultaneously could affect the number of independent time-respecting
paths in a network. This means the MCS of multiple driver nodes is not always equal to the union of
their MCSs; i.e., MC({v1,v2}, t f ,∆ t) 6= MC({v1}, t f ,∆ t)∪MC({v2}, t f ,∆ t) where the function MC finds
an MCS for a set of nodes. Furthermore, the MCS of a node often may have several possible solutions.
For example, Fig. 5 illustrates an example by adding the temporal edge (v1→ v4, t = 2) to the network
of Fig. 4. With the presence of the new edge, now there are three sets with size 3 that could be selected
as an MCS for node v2 by the maximum flow algorithm, and there are two possibilities for node v1. For
instance, in Fig. 5 function MC(v1, t f = 3,∆r = 3) could return one of the sets in {{v1,v4},{v1,v5}} as
an MCS for node v1. Suppose function MC selects Sv1 = {v1,v4} (i.e., an MCS of node v1) as well as
Sv2 = {v2,v3,v5} (i.e., an MCS of node v2). Based on all possible independent time-respecting paths
MC({v1,v2}, t f = 3,∆ t = 3) ∈ Z = {{v1,v2,v3,v4},{v1,v2,v3,v5}}. We can see that for the selected
MCSs Sv1 ∪Sv2 /∈ Z. On the other hand, if MC selects S′v2

= {v1,v2,v3} then in this case Sv1 ∪S′v2
∈ Z.

In the network of Fig. 5, the edge (v1→ v2, t = 2) enables the possibilities for node v1 to either control

10 of 29 B. RAVANDI ET AL.

FIG. 5. Non-unique MCSs. (a) Identical network as Fig. 4 (b) except the new temporal edge from (v1→ v4, t = 2). The new edge
extends the MCS possibilities for Sv1 and Sv2 . The blue sets mark the new MCS possibilities compared to the network in Fig. 4 (b).

node v4 or v5. However, this new edge also increases the possible MCS choices for nodes v1 and v2. In
turn, the size of an SMDS created by the heuristic approach varies depending on which MCS is selected
by the maximum flow algorithm.

To address the aforementioned problem, we introduce a complementary step to our heuristic that
enables the creation of multiple SMDSs on the basis of the following three considerations: 1) the number
of SMDSs discovered could be used to characterize the control behavior of the network and make
approximations (see Section 6.1), 2) creating multiple SMDSs could increase the chances of finding a
smaller set of driver nodes, and 3) creating multiple SMDSs would increase the chance of finding at least
one SMDS that can fully control the network. As discussed later, our empirical results show all of the
derived possible SMDSs identified by the heuristic approach are an actual SMDS that can reach full
control.

We introduce a branching process to create multiple MCS lists stemmed from the initial list C. We
refer to a stemmed MCS list by C′. The order of sets in C plays a crucial role in our heuristic. Therefore,
the branching process creates new stems by switching the position of sets in C. The branching process
is in the following way: 1) in execution of the heuristic, while iterating for each set Si ∈ C to subtract
S j>i from the controllable subspace Si; before subtracting any two controllable subspaces, create a stem
C′← C if the intersection of those two subspaces is not empty (i.e., if Si∩S j 6= /0), 2) switch the location
of those two sets in C′, 3) run the heuristic on each created C′ without branching (only one level of
branching is allowed). Fig. 6 illustrates an example of the aforementioned branching process. Each row
presents an execution of the heuristic for the MCS list C and its stems C′. Overall, the branching process
creates four stems denoted by C′. Running the heuristic on C and its stems results in four unique SMDSs
with their sizes ranging between 2 and 4 (Fig. A.12 provides the execution of the heuristic for each stem).

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 11 of 29

FIG. 6. Illustration of the branching process for the temporal network in Fig. 5. (a) Execution of the heuristic approach with
branching enabled. Each iteration focuses on processing the controllable subspace of a node based on the order of nodes in C. The
red arrows mark the controllable subspace set of a node being focused in an iteration. On each iteration, the heuristic creates stems
denoted by C′. (b) The heuristic identified four unique possible SMDSs that are actual SMDSs with their sizes ranging from 2 and
4. Execution of the heuristic for each stem is illustrated in Appendix B.

The problem of finding independent time-respecting paths to satisfy the independent path theorem
(see Section 2.2.1) resembles the Maximum Node Disjoint Paths (MNDP) problem [33]. The objective
of MNDP problem is to find the maximum cardinality of source-sink pairs M′ ⊆ {(s1, t1), . . . ,(sk, tk)} ⊆
V ×V that are connected via node disjoint paths. The focus of this article differs from MNDP in two
aspects. First, the objective of MNDP is finding a maximum cardinality, whereas the focus of this article
is finding a minimum cardinality. Precisely, the goal of this article is finding a minimum number of driver
nodes that can fully control a temporal network. To do this, we reduced the problem to finding node
disjoint paths in the time-layered network in which each time-layer represents a copy of all nodes and the
aim is to minimize the size of union of selected driver nodes within all time-layers. Second, to reach
full control, exactly |V | time-respecting paths (i.e., node disjoint paths in the time-layered network) with
specific sinks are required; however, the objective of MNDP problem is finding the maximum number of
node disjoint paths between all source-sink pairs.

Moreover, MNDP is an optimization version of the classical Node Disjoint Paths (NDP); NDP is
a decision problem with the objective to verify whether all pairs of source and sink nodes in a graph
can be connected via node disjoint paths. Karp shows when the number of source and sink pairs is an
input, the NDP problem is NP-complete [34]. Furthermore, NDP and MNDP problems can be reduced
to Edge Disjoint Paths (EDP) and Maximum Edge Disjoint Paths (MEDP) problems. In fact, MEDP
is also NP-hard [33]. Approximation algorithms for MNDP and MEDP are extensively discussed in
the area of graph theory with important applications in computer-communication networks [35–37].
However, adapting such approximation algorithms to satisfy the independent path theorem requirements
is non-trivial.

12 of 29 B. RAVANDI ET AL.

4.2 Algorithms and Complexity of the Heuristic

For the sake of clarity and simplicity, the proposed heuristic approach is presented in two Algorithms.
Algorithm 1 manages the necessary tasks to create an SMDS for a temporal network within three phases;
namely initialization, creation, and selection phases. A brief description of the phases follows: 1) the
initialization phase initializes the necessary variables to execute our proposed heuristic, 2) the creation
phase employs Algorithm 2 to convert an input MCS list C to a possible SMDS, namely D′, and create
the stems of C, and 3) the selection phase validates the derived driver node sets from C and its stems
Cstem to ultimately return an actual SMDS, namely D, with the smallest number of driver nodes. The total
complexity of our heuristic is equal to the sum of the complexity of each phase. This section analyzes the
three phases individually and derives the complexity class of the heuristic as follows:

(1) Initialization phase (Lines 2 - 4 of Algorithm 1): This phase starts with computing a maximum
flow for each node on the time-layered network. Building the time-layered network requires
O(N∆ t +E) computation where ∆ t = t f − t0 is the desired number of steps to reach control and E
is the number of edges in the temporal network. Since the capacity of edges in the time-layered
network is always equal to one and the value of maximum flow is N, employing the Ford-Fulkerson
algorithm requires O(NE) computation1 [30, 38]. We need to compute an MCS for each node
in the network. As a result, computing the MCSs for all of the network nodes is on the order of
O(N2E) (Line 3 of Algorithm 1). We then sort the created list C in the descending order of the size
of its members (which themselves are sets); this requires O(N logN) computations. Accordingly,
the total complexity of Initialization phase is O(N2E +N∆ t).

(2) Creation phase (Lines 5 - 11 of Algorithm 1): The creation phase uses Algorithm 2 for two
purposes: a) Creating a possible SMDS from an MCS list takes O(N2) computations because of
the nested loops in Lines 3 and 4 of Algorithm 2 and b) Employing the branching process to create
stems of the MCS list C denoted by Cstem in Algorithm 1. The maximum number of stems from an
MCS list C is on the order of ∑

N−1
i=1 ∑

N
j=i+1 1 = O(N2); that is, in each iteration of the Algorithm 2,

all of the subspace sets S j>i must have a common node with Si where 16 i < j 6 N denotes the
position of members in C which themselves are sets (Fig. 6 illustrates an example). Hence, the
creation phase is O(N4) since we need to run Algorithm 2 for each stem.

(3) Selection phase (Lines 12 - 18 of Algorithm 1): Finally, in the selection phase, we sort the created
possible SMDSs in an ascending order (Line 13 of Algorithm 1). Next, starting from the possible
SMDSs (stored in set P) with the smallest size, we look for an actual SMDS that can fully control
the network. This requires testing the created set of possible SMDSs (denoted as P in Algorithm 1)
by computing the maximum flow of the possible SMDSs. Since the maximum number of stems is
expected to be linear (explained below), at worse the validation requires a call to Ford-Fulkerson
for all of the stems which results in overall computation of O(N2E).

Altogether, computational complexity of the proposed heuristic is O(N4). It is important to note that
the derived complexity of our proposed heuristic is a factor of N lower in practice. For instance, even
though the maximum number of stems is O(N2), as suggested by empirical results in Section 5.1 it is
expected to be O(N). Thereby, in practice the expected computational cost is closer to O(N3 +N2E +
N∆ t).

1The time complexity of Ford-Fulkerson algorithm is O(E f ∗) where f ∗ is the value of maximum flow.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 13 of 29

Algorithm 1 Create a single SMDS
Inputs: (1) V : Set of nodes, (2) t f : Deadline layer, (3) ∆ t: Number of steps.
Output: One SMDS, denoted by D, that can fully control the temporal network.

1: procedure FIND SMDS(V, t f ,∆ t)
2: //Initialization phase
3: C← [Svk = MC({vk}, t f ,∆ t)|vk ∈V]
4: Sort C with descending order of its elements size (flows)
5: //Creation phase
6: D′,Cstem ← Driver Selection(C, True)
7: P← D′ // Store all possible SMDSs
8: for each C′ in Cstem do
9: D′← Driver Selection(C′, False)

10: P← P∪D′

11: end for
12: //Selection and Validation phase
13: Sort P in ascending order of its elements size
14: for each D′ in P do
15: if MC(D′, t f ,∆ t) == V then
16: return D← D′ //therefore, D′ is an actual SMDS
17: end if
18: end for
19: end procedure

Algorithm 2 Heuristic for Driver Node Selection
Inputs: (1) C: a maximum controllable subspace (MCS) list,
(2) stem: a flag to allow creating stems of C denoted by C′,
Outputs: (1) D′: a possible SMDS derived from C.
(2) Cstem: a set of stems created from C.

1: procedure DRIVER SELECTION(C,stem)
2: Cstem←{}
3: for each Si in C ; i = 1,2, . . . , |C| do
4: for each S j in C ; j = i+1, i+2, . . . , |C| do
5: if stem is True and |Si∩S j|> 0 then
6: C′← C
7: C′← Switch the position of Si and S j in C′
8: Cstem← (Cstem∪C′)
9: end if

10: S j← S j \Si

11: end for
12: end for
13: D′←{vk|Svk ∈ C,Svk 6= { /0}}
14: return D′,Cstem
15: end procedure

14 of 29 B. RAVANDI ET AL.

4.3 Discussion on the Algorithms

The key idea of our proposed heuristic algorithms is to find a single or multiple SMDSs by strategically
selecting driver nodes using a single MCS list, denoted by C (which is sorted in a descending order of
the size of its elements Svk ∈ C). The goal is to find a small number of driver nodes to obtain a maximum
flow in the time-layered network. As illustrated in Fig. 6, with the branching technique our proposed
heuristic generates possible SMDSs with various sizes. In the worst case if all possible SMDSs with
the smallest size s fail to reach full control, by strategically increasing the number of driver nodes to
s+1 (and beyond if necessary), we increase the probability of finding at least one SMDS. However, our
empirical results on the real-world and synthetic networks show that all possible SMDSs with sizes s and
s+1 passed the verification test (i.e., they are actual SMDSs).

Moreover, each driver node increases the number of possible intervention points by the count of
time-layers. That is, each driver node adds at least ∆ t possibilities to find |V | independent time-respecting
paths. The process of testing multiple SMDSs is implemented in the selection phase (Lines 12 - 18 in
Algorithm 1). The algorithm begins by testing the smallest possible SMDSs (i.e., size s), and it continues
testing the remaining possibilities with bigger sizes (i.e., s+1 and beyond if necessary).

Furthermore, there is a population-based heuristic [39] extension of our algorithm to create more
than one generation of possible SMDSs by varying the order of elements in an MCS list. However, the
empirical results support that one generation is enough to find SMDSs with size Ns close to Nc (the
minimum number of driver nodes).

5. Results

We evaluated our proposed heuristic algorithm on synthetic temporal networks and two real-world
temporal networks induced by a) interactions between ants in six colonies, and b) e-mail communications
between employees of a mid-sized manufacturing company [40–42]. We specifically picked these real-
world datasets because they exhibit different behaviors of complex systems. For example, the ant colonies
self-organize whereas, in contrast, hierarchical organizations rely on key employees for management.
Therefore, we expect their respective temporal networks to exhibit dissimilar behaviors. We provide a
showcase that the proposed heuristic can identify those expected behaviors.

All evaluations assume nodes have self-loops within all intervals to enable the state retention for all
nodes. There is no loss of generality since by modifying the self-loops, analysis without state retention
or with conditions to allow state retentions can be conducted. For the ants datasets, we studied the
controllability within the entire observation periods of datasets. In other words, ∆ t = t f − t0 is the
number of intervals between observations, and deadline t f is the last observation. For the e-mails dataset,
we set the resolution to one-hour intervals between observation period of 2010-01-05 06:00 AM to
2010-09-29 11:00 AM. More details on the datasets’ observation periods and frequency of interactions
are provided in Appendix C. We computed the optimal solutions (MDSs) for the ant colony datasets
using a branch-and-bound brute force approach based on Property 1. However, for the e-mails dataset,
we could not find an optimal solution due to the factorial growth of combinations. Fig. 7 shows the
minimum number of driver nodes required for the heuristic (Ns) and the optimal (Nc) solutions. The
heuristic approach was able to fully control the networks with a few number of driver nodes. Also, for
the ant colonies 3-1, 3-2, and 6-1 the heuristic approach found optimal solutions.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 15 of 29

FIG. 7. The minimum number of driver nodes for the optimal (Nc) and heuristic (Ns) solutions within ants’ interactions datasets.

5.1 Analyzing Multiple Driver Node Sets

Most networks have multiple MDSs with size Nc that increases the domain of driver nodes. Moreover,
this led to categorizing nodes in three groups with respect to their contribution within all MDSs. These
groups are called critical, intermittent, and redundant [43–45]. A critical node exists in all MDSs, i.e.,
the critical nodes are always driver nodes. An intermittent node exists in at least one MDS. Lastly, the
redundant nodes do not belong to any MDS (never employed as a driver node).

With a minor modification, our proposed heuristic approach can generate multiple SMDSs with a
size ranging from Ns and larger. To create multiple SMDSs, instead of returning a single SMDS at Step
16 of Algorithm 1, one can keep record of the validated SMDSs and return them when validation is done.
To further explore the behavior of driver nodes in control, we only study the intersections of nodes within
SMDSs of size Ns and Ns +1. We note that the purpose of this study is not establishing a definition for
characterizing driver nodes for the temporal network, and instead, our focus is on analyzing the behavior
of the heuristic approach and the proposed network model.

Details of the results provided in Fig. 7 are presented in Table 1 for both multiple MDSs and SMDSs
of size Ns and Ns + 1. The column count MDSs presents the number of discovered optimal solutions
using brute force. However, we could not find an optimal solution for the e-mails dataset because it
requires a larger number of driver nodes; e.g., if Nc u 50 then

(109
50

)
= 109!/(50!59!) number of driver

sets needs to be validated. Also, the column Count SMDSs presents the number of SMDSs found with
size Ns and Ns + 1. To analyze the efficiency of the branching process, column |P| presents the total
number of tested driver sets (the initial MCS list C plus the number of its stems with size Ns). Lastly,
Table 1 shows the fraction of intermittent, redundant, and critical nodes denoted by columns f ′i , f ′r , and
f ′c for the heuristic approach and fi, fr, and fc for the optimal solutions.

Also, in Section 4.2 we mentioned that the empirical results suggest the maximum number of stems
is expected to be in the order of O(N) instead of O(N2). This is illustrated with the column Count Stems
in Table 1 indicating the number of stems linearly grows with respect to N. For the ant colonies 3-1, 3-2,
and 6-1, the heuristic approach finds optimal solutions since Ns = Nc (marked with a star). This can be
explained by the degree of uniqueness within the discovered MCSs of nodes in a dataset. That is, the
intersection between the discovered single MCSs for each node is empty or small. In contrast, within the
ant colonies 1-1, 1-2, and 6-2, the discovered MCSs of nodes have a large intersection that intuitively
increases Ns. One can conduct a more precise analysis on the intersections of MCSs by computing
all of the MCSs of each individual node. However, computing all MCSs of nodes is computationally

16 of 29 B. RAVANDI ET AL.

prohibitive. Overall, the proposed heuristic approach fully controls the ants’ interactions networks with
few extra driver nodes compared to the optimal solution. Also, the experiments show all of the created
possible SMDSs with size Ns and Ns +1 are actual SMDSs (i.e., in Table 1, the values of columns Count
SMDSs and |P| are equal). However, as explained in Section 4.1, this is not a guaranteed behavior, and
for that reason, we included the validation process in Step 15 of Algorithm 1.

Table 1. Comparison between optimal and suboptimal solutions. The column |P| presents the total number of possible SMDSs with
size Ns by the heuristic approach.

Dataset Optimal (MDS) Suboptimal (SMDS)

Name N E Nc

Count
MDSs fi fr fc

Count
Stems Ns

Count
SMDSs |P| f ′i f ′r f ′c

Ants
1-1 89 1911 3 153 0.59 0.41 0 231

7 2 2 0.02 0.91 0.07
8 11 11 0.13 0.81 0.06

Average: 0.07 0.86 0.06
7 6 6 0.15 0.82 0.03
8 19 19 0.26 0.72 0.02

Ants
1-2 72 1820 2 21 0.20 0.80 0 198

Average: 0.2 0.77 0.02

Ants
3-1 11 78 2 7 0.54 0.46 0 17

2* 1 1 0 0.82 0.18
3 6 6 0.64 0.27 0.09

Average: 0.32 0.54 0.13
1* 5 5 0 0.83 0.17
2 5 5 1.0 0 0

Ants
3-2 6 104 1 5 0.83 0.17 0 11

Average: 0.5 0.41 0.08

Ants
6-1 33 652 1 3 0.09 0.91 0 50

1* 3 3 0.09 0.91 0
2 19 19 0.54 0.46 0

Average: 0.31 0.68 0
4 5 5 0.22 0.78 0
5 14 14 0.53 0.47 0

Ants
6-2 32 367 2 10 0.28 0.72 0 44

Average: 0.37 0.62 0

E-mails
1h 109 250 Too big to compute 56

51 6 6 0.08 0.50 0.42
52 17 17 0.25 0.39 0.36

Average: 0.16 0.44 0.39
* indicates the heuristic approach found an optimal solution.

5.2 Datasets Analysis

An interesting observation from the ant colonies dataset is that the queen ants tend to avoid becoming a
driver node within all MDSs and even SMDSs. In ant societies, the queen ant’s primary responsibility is
reproduction and she is not directly related to the management of the colony. The fraction of queen ants
within MDSs and SMDSs along with the number of interactions with queens are presented in Table 2.
Although many interactions with and by the queens exist (in-edges and out-edges columns), the queen
ants rarely participated as a driver node (note that colony 6-1 has two queens).

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 17 of 29

Table 2. Queen ants’ interactions. Almost in all colonies queen ants are not a driver node.

Colony Ants
(N) Queen(s) in-edges out-edges

Number
of ants

contacted

Fraction
within all

MDSs

Fraction
within all
SMDSs

Ants 1-1 89 Q1 42 30 23 4% 0%
Ants 1-2 72 Q1 17 23 21 0% 30%
Ants 3-1 11 Q1 3 4 3 0% 0%
Ants 3-2 6 Q1 10 7 4 0% 10%

Ants 6-1 33
Q1 23 0 11 0% 0%
Q2 14 26 15 0% 0%

Ants 6-2 32 Q1 10 6 9 0% 0%

Moreover, to illustrate the frequency of interactions with driver nodes, we compare the average
in-out-total degree distributions of the driver nodes in the time-aggregated networks of ants’ interactions.
Fig. 8 illustrates the average degrees for all driver nodes in MDSs and SMDSs as well as the networks
themselves. Overall in the ants’ interaction networks, the driver nodes tend to have a large degree, and on
average their out-degree is slightly higher than their in-degree. These observations contradict with what
is seen in static directed networks where driver nodes tend to avoid hubs and have a smaller degree than
the average degree of network [46]. The average degree of SMDSs follows the same trend as MDSs.

✭❛✮ ❆�✁s ✶✲✶

✂✄✾ ☎�✁s � ✶✾✶✶ ✐�✁✆✝☎✞✁✐t�s✟

✠
✈
❡
✡☛
☞
❡
✌
❡
☞
✡❡
❡

♦
✍
✌
✡❉
✈
❡
✡
◆
♦
✎
❡
✏

✭❝✮ ❆�✁s ✸✲✶

✂✶✶ ☎�✁s � ✼✄ ✐�✁✆✝☎✞✁✐t�s✟

✭✑✮ ✒♥✓✔ ✻✕✖

✂✸✸ ☎�✁s � ✗✘✙ ✐�✁✆✝☎✞✁✐t�s✟

✚❜✛ ❆�✁s ✶✲✙

✜✢✣ ✤♥✓✔ ✁ ✖✥✣✦ ✧♥✓★✩✤✪✓✧✫♥✔✬

✚❞✛ ❆�✁s ✸✲✙

✜✻ ✤♥✓✔ ✁ ✖✖✯ ✧♥✓★✩✤✪✓✧✫♥✔✬

✚❢✛ ❆�✁s ✶✲✙

✜✰✣ ✤♥✓✔ ✁ ✰✻✢ ✧♥✓★✩✤✪✓✧✫♥✔✬

✠
✈
❡
✡☛
☞
❡
✌
❡
☞
✡❡
❡

♦
✍
✌
✡❉
✈
❡
✡
◆
♦
✎
❡
✏

✵

✺

✱✵

✱✺

✷✳

✴✺

✹✵

✹✺

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇

✳

✺

✱✵

✱✺

✷✳

✴✺

✹✵

✹✺

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇
✳

✴

❈

❊

❋

✱✵

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇

✵

✴

❈

●

❋

✱✵

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇

✳

✱✵

✴✵

✹✵

❈✵

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇

✵

✱✵

✴✵

✹✵

❈✵

▼✽✿❀ ✿▼✽✿❀ ❁❂❃✇❄❅❇

■❍❏❑▲❣r▲▲
❖P◗❏❑▲❣r▲▲
❚❘◗❙❧❏❑▲❣r▲▲

FIG. 8. Average in-out-total degree distributions of driver nodes in the time-aggregated networks of the ants’ interactions datasets.
The average degree of SMDSs follows the same trend as MDSs.

18 of 29 B. RAVANDI ET AL.

5.2.1 Randomizations Analysis
We use five different randomization techniques to assess which network or temporal characteristics

influence the controllability of the ants and e-mails networks. Holme and Saramäki provide a comprehen-
sive explanation of randomizing temporal networks in [8]. Also, we provide a brief description of the
employed randomization techniques in Appendix D and, we compare their effects in Table A.3.

We present the effect of randomizing networks on Ns (the smallest number of driver nodes identified
by the heuristic) and Nc (the minimum number of driver nodes – optimal). Fig. 9 compares Ns of the
randomized networks versus Ns of the original networks, also the figure compares Nc in the similar way.
All results are averaged within 10 randomized networks for each randomization technique. Overall, the
results show degree distribution has the most influence on the controllability of ants’ networks. In Fig. 9
(d), DPN (Degree Preserved Network) has the smallest difference between Nc of the randomized and
original networks. Except for Ants 1-1 network, DPN behave similarly against our heuristic approach
(comparing Ns of the randomized and original networks). DPN preserves the degree distributions of
temporal networks in each time-layer as well as the degree distributions of their time-aggregated network,
but it eliminates the structure of network.

FIG. 9. Randomization of the ants and e-mails networks. The smallest number of driver nodes identified by the heuristic approach
is denoted by Ns and the minimum number of driver nodes is denoted by Nc. The results are averaged over 10 realizations for each
randomization technique.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 19 of 29

Moreover, in Fig. 9 (b-c), Ns has the smallest gap against RP (Randomly Permuted) and RT (Random
Time) that emphasizes the influence of both the degree distribution and the structure of networks on the
heuristic’s performance. Against RE (Randomized Edges), in Fig. 9 (a), the fluctuations on Ns and Nc
show the effect of network topology. In Fig. 9 (e), RN (Random Network) shows the largest differences
on both Ns and Nc as RN eliminates both the degree distributions of the time-aggregated network and
the networks between each time-layer. Lastly, the e-mails dataset behave similarly to all randomization
techniques. The reason could be the small number of time-layers (224) compared to the number of nodes
(109) in the e-mails network, which is created with one-hour resolution (Fig. A.14 (g)).

Furthermore, the reason for observing small differences in the randomization effect on Ns and Nc in
Fig. 9 could be the combination of a) the strong state retention assumption (which assumes all nodes
have a self-loop) and b) the temporal characteristics of datasets. Appendix C provides an overview of the
datasets’ temporal characteristics. Having self-loops within all time-layers increases the controllability of
temporal networks since there will be more possible combinations (i.e., |V | independent time-respecting
paths) to satisfy the independent path theorem (Section 2.2.1). Also, this is intensified by the rate of
interactions in the ants network (small average inter-event gap) as illustrated in Fig. A.13. Plus, the ants’
networks have many more time-layers (timestamps) compared to their number of nodes (Fig. A.14).

5.3 Evaluating Synthetic Temporal Networks

We evaluate the performance of our heuristic approach on Erdős-Reńyi and Barabási–Albert synthetic
temporal networks with various sizes [19]. To build the synthetic networks, we generated a single
Erdős-Reńyi or Barabási–Albert network for each time-layer. All temporal networks have 15 nodes and
50 time-layers; we chose 15 nodes due to the exponential cost of identifying Nc with brute force. Fig.
10 presents the minimum number of driver nodes Nc and the size of smallest SMDS, Ns, versus average
degree 〈k〉 of the time-aggregated networks. All results are averaged within 10 synthetic networks for
each 〈k〉. The heuristic results converge with the optimal solution as the size of networks grows (the
convergence points are marked with an arrow). Overall, compared to Erdős-Reńyi, Barabási-Albert
model requires requires more driver nodes and Ns converges with Nc within a slightly smaller average
degree 〈k〉.

✭❛✮ �✁✂✄☎✆❘�♥✁✂ ✭❜✮ ❇✄☎✄✆✝s✂✆❆✞✆✟☎✠

✵

✶

✷

✸

✹

✺

✻

✡
☛☞
✡

✡
☛ ✌
✡

✡
☛✍
✡

✎
✏✑
✎

✡
☛✒
✡

✡
☛ ✓
✡

✡
☛✔
✡

✡
☛✕
✡

✖
✏✎
✎

✗
☛ ✗
✡

✗
☛☞
✡

✗
☛ ✌
✡

✗
☛✍
✡

✖
✏✑
✎

▼
✘✙
✘♠
✚
♠
✥
✛ ✘
✜❡
✛
✢
✣
✤
❡
✦

✧✈★✩✪✫★ ✬★✫✩★★ ❁✯❃ ♦✰ ★✪✱❤ ✲✳✴★✼❧✪✽★✩

✵

✶

✷

✸

✹

✾

✻

✡
☛☞
✡

✡
☛ ✌
✡

✡
☛✍
✡

✡
☛✿
✡

✡
☛✒
✡

✡
☛ ✓
✡

✎
✏ ❀
✎

✡
☛✕
✡

✗
☛✡
✡

✗
☛ ✗
✡

✗
☛☞
✡

✗
☛ ✌
✡

✗
☛✍
✡

✖
✏✑
✎

▼
✘✙
✘♠
✚
♠
✥
✛ ✘
✜
❡
✛
✢
✣
✤
❡
✦

✧✈★✩✪✫★ ✬★✫✩★★ ❁✯❃ ♦✰ ★✪✱❤ ✲✳✴★✼❧✪✽★✩

❁✝❃ ❂ ✵✞✟✠✺ ✡☛☞ ✌ ✍✳✎✎✍

❍★❂✩✳❄✲✳✱ ✏✑

❖♣✲✳✴✪❧ ✏✒

FIG. 10. Synthetic temporal networks. All networks have 15 nodes and 50 time-layers and the results are averaged within 10
networks for each average degree 〈k〉. (a) Each time-layer is connected by an Erdős-Reńyi network. (b) Time-layers are connected
by generating Barabási–Albert networks.

20 of 29 B. RAVANDI ET AL.

6. Discussion

We conducted experiments assuming all nodes have strong state retention (by adding self-loops to all
the nodes). Consequently, this allows nodes to carry their previous state in time in the absence of edges
between time-layers (or lack of observations). In other words, lift the modeling constraint that the flow of
influence or information depends on the existence of observations’ chains.

Within the experimented datasets, the gap between interactions is relatively short compared to their
observation periods (Appendix C). Therefore, we allowed strong state retention. There is no loss of
generality since by removing the self-loops, analysis without state retention or with conditions to allow
state retentions can be conducted with the proposed framework. However, including self-loops in the
structure of networks is in line with the behavior of physical systems [22]. For example, in the e-mails
dataset, lack of interactions during weekends and holidays does not convey that information from previous
e-mails is forgotten.

Furthermore, the empirical results are aligned with the behavior of complex systems that shows
the effectiveness of the proposed heuristic approach and network modeling. For instance, our analysis
on ant networks shows queen ants tend to avoid being a driver node. This is in line with the primary
responsibility of the queen that is reproduction rather than managing the colony (e.g., task management or
temperature maintenance). Ant societies optimize their workforce between maintaining exploration (e.g.,
to forage) and exploitation (e.g., to transfer discovered food) [47]. Achieving the mentioned optimization
requires an architecture that is in a highly distributed control regime. In such a society, relatively large
groups of ants with few members have the ability to diffuse information fast enough within the scope of
their colony.

In contrast, the hierarchical organizations depend on certain employees (e.g., managers) to make an
influence and spread information. Our empirical results from the e-mails of a manufacturing company
reflect that behavior. The analysis shows a few groups of employees with a large number of members are
required to achieve full control. Furthermore, there is a large intersection between those groups indicating
the existence of critical employees (e.g., managers) for spreading information; showing the system is in a
centralized control regime as expected in the hierarchical organizations.

6.1 Distributed and Centralized Control Regimes

The aforementioned categories of driver nodes (critical, intermittent, and redundant) form two control
regimes, namely centralized and distributed [43, 44]. A centralized control regime indicates redundant
nodes are dominant in a network. In contrast, a distributed regime indicates intermittent and critical
nodes are dominant. However, defining a universal definition for the distributed and centralized control
regime is challenging because a definition needs to be relative to the size and state of a system. For
instance, consider the ant colonies datasets that lack information about in what state a colony was during
the data collection (e.g., foraging to find food or exploiting discovered food resources, etc.). Plus, the
individual dynamics of the ants (nodal dynamics) such as their state retention strength/existence modeled
by self-loops are unknown. Moreover, in the ant datasets, the observation period is on average 1800
seconds for all colonies (Appendix C).

Prior work classified the control regime only based on the fraction of redundant nodes fr [43, 44]. A
large fr would indicate the centralized regime since a smaller number of nodes could be a driver node.
Based on that definition, the ant colony 1-2, presented by Table 1, is in a centralized control regime since
fr(0.8)> fi(0.2). However, we argue the ant colony 1-2 is in a distributed control regime since there
are 21 (NMDS) unique groups of ants with only 2 members (Ns) that can fully control their colony. Plus,
consider that only 15 ants (= d fi ∗ |V |e) are the possible minimum drivers (i.e., intermittent nodes). If we

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 21 of 29

consider some ants permanently stay inside their colony (i.e., they are not exposed to the external factors
directly), 15 ants are still roughly 20% of the colony (with 72 ants) who have the capacity to reach a
large percentage of control (if not full control) with groups of 3 ants (Nc = 3). Therefore, we propose
Statement 1 in an attempt to formalize the control regime of a network.

Statement 1 The distributed regime refers to the ability to control a network with a relatively large
number of unique groups of nodes that have a small number of members, that is, large NMDS and small
Nc relative to size of the network.

According to this statement, except the colony 6-1, all ant colonies are in a distributed control regime
since relative to their number of ants they have a large number of MDSs with a small size (Nc). In the
colony 6-1, a single ant is capable of controlling the entire colony since the minimum number of driver
nodes is equal to one (Nc = 1). However, only three ants (NMDS = 3) out of 33 have the capability to
solely control the colony. In contrast, the e-mails dataset is in a centralized control regime since a large
number of key employees (39% critical nodes) must be stimulated to reach controllability (Table 1).

Next, we analyzed the behavior of our heuristic approach toward identifying the control regime of
a network. Table 1 provides comparisons between the heuristic’s suboptimal and the optimal (MDS)
solutions for the ants datasets. To increase the accuracy of heuristic, we provide the number of SMDSs
discovered with size Ns and Ns + 1, and we consider their average values in our analysis. Overall,
according to Statement 1 the heuristic identifies that all colonies are in a distributed control regime with
the exception of the colony 1-1. In this particular colony, the brute force approach identified 153 MDSs
with optimal size Nc = 3, and naturally this indicates a highly distributed control regime. However, the
heuristic in total identified 2+11 = 13 SMDSs with size Ns = 7 and 8, and based on Statement 1, we
would consider this to be a centralized control regime.

In contrast, based on the optimal solutions, the colony 6-1 is in a centralized regime since with Nc = 1
only three individuals are capable of solely controlling the network. But, the heuristic found 19 SMDSs
with size Ns = 2 that is considered as the distributed control regime. Therefore, applying Statement 1 to
the heuristic and optimal solutions must be done with cautions. For instance, by running the heuristic
with different initial ordering, we can increase the number of SMDSs and hence increase the chance of
finding optimal solutions. Currently, the initial ordering is a descending sort based on the cardinalities of
the MCSs in the MCS list C (Step 4 of Algorithm 1). Instead, we could try an ascending sort or randomly
positioning of the MCSs in C.

Moreover, compared to the optimal solutions in Table 1, the heuristic’s behavior regarding the number
of driver node sets (the count SMDSs column) and the fractions of control categories (columns f ′i , f ′r , and
f ′c) varies. For instance, in the ant colony 1-1 the optimal solutions indicate fi(0.59)> fr(0.41) with 153
MDS of size Nc = 3 and without any critical node (fc = 0). However, on average the heuristic shows 6%
of the nodes are critical (f ′c = 0.06) and f ′i (0.07)� f ′r(0.86) within total of 13 SMDSs with their size
Ns = 7 and Ns = 8. In the ant colony 3-1, we see an interesting behavior, the fractions of intermittent
and redundant nodes are switched between the optimal and heuristic approach solutions. The optimal
solutions indicate fi(0.54)> fr(0.46) with 7 MDSs of size Nc = 2, but on average the heuristic shows
f ′i (0.32)+ f ′c(0.13) < f ′r(0.54) with 1+ 6 = 7 SMDSs of size Ns = 1 and Ns = 2. For the rest of ant
colonies, the optimal and heuristic solutions behave similarly regarding the inequalities between their
corresponding fractions of control categories. Furthermore, due to the lack of information about the state
of colonies during the observation periods, it is challenging to confirm whether utilizing MDS or SMDS
is more effective in identifying the control regimes of the ant networks.

22 of 29 B. RAVANDI ET AL.

7. Conclusion

Temporal networks capture the time dimension in the network’s structure and thus permit the study
of systems with changing topologies. We focus on the controllability of this class of networks, that
is, the study of steering the state of a network within a desired ∆ t steps to a targeted state at deadline
t f . Controlling a network is done by stimulating key nodes called driver nodes. Finding the minimum
number of driver nodes, Nc, requires testing O(2N∆ t) configurations that is computationally infeasible.
Therefore, we propose a heuristic algorithm to find a set of driver nodes with suboptimal size Ns > Nc.

We evaluated our proposed heuristic algorithm on Erdős–Rényi and Barabási–Albert synthetic
temporal networks as well as real-world temporal networks created from six ant colonies and e-mail
communications in a manufacturing company. The heuristic was able to identify multiple driver node sets
that can fully control the networks on t f in ∆ t steps. For the ants’ interactions datasets, we computed Nc
by brute force. The results show the heuristic requires few more driver nodes than the optimal in the ant
colonies networks. Moreover, the driver nodes in all MDSs and SMDSs tend to have a larger in-out-total
degree than the average degrees of these networks. Also, the results are in line with key behaviors of the
complex systems modeled by the datasets. We show that the ants’ networks are in a distributed control
regime; that is, a large number of unique groups of ants with a few members can fully control the colony.
Also, the queen ants tend to avoid becoming a driver node. In contrast, we show the e-mails network is in
a centralized control regime; that is, a small number of unique groups of employees with large members
can fully control the network. Those groups of employees (SMDSs) that can fully control the e-mails
network have a large intersection with each other. This intersection could represent the employees who
manage the company.

8. Acknowledgements

The authors acknowledge Mr. Javad Darivandpour, Ph.D. candidate in the Department of Computer
Science at Purdue University, West Lafayette for his help and guidance on this article.

REFERENCES

1. Steven Strogatz. Sync: The emerging science of spontaneous order. Penguin, London, 2004.
2. Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and interpretations.

Neuroimage, 52(3):1059–1069, 2010.
3. Danuta Makowiec. The heart pacemaker by cellular automata on complex networks. In Hiroshi Umeo, Shin

Morishita, Katsuhiro Nishinari, Toshihiko Komatsuzaki, and Stefania Bandini, editors, Cellular Automata,
volume 5191, pages 291–298, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

4. Lucia Carlucci, Gianfranco Ciani, and Davide M Proserpio. Polycatenation, polythreading and polyknotting in
coordination network chemistry. Coordination Chemistry Reviews, 246(1-2):247–289, 2003.

5. Pahola T. Benavides, Urmila Diwekar, and Heriberto Cabezas. Controllability of complex networks for
sustainable system dynamics. Journal of Complex Networks, 3(4):566–583, 2015.

6. Zhengzhong Yuan, Chen Zhao, Zengru Di, Wen-Xu Wang, and Ying-Cheng Lai. Exact controllability of
complex networks. Nature Communications, 4:2447, Sep 2013. Article.

7. Jose C. Nacher and Tatsuya Akutsu. Analysis of critical and redundant nodes in controlling directed and
undirected complex networks using dominating sets. Journal of Complex Networks, 2(4):394–412, 2014.

8. Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97 – 125, 2012. Temporal
Networks.

9. Raj Kumar Pan and Jari Saramäki. Path lengths, correlations, and centrality in temporal networks. Phys. Rev.
E, 84:016105, Jul 2011.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 23 of 29

10. Ingo Scholtes, Nicolas Wider, René Pfitzner, Antonios Garas, Claudio J. Tessone, and Frank Schweitzer.
Causality-driven slow-down and speed-up of diffusion in non-markovian temporal networks. Nature Communi-
cations, 5:5024 EP –, Sep 2014. Article.

11. Teresa M. Przytycka, Mona Singh, and Donna K. Slonim. Toward the dynamic interactome: it’s about time.
Briefings in Bioinformatics, 11(1):15–29, 2010.

12. Stavros I. Dimitriadis, Nikolaos A. Laskaris, Vasso Tsirka, Michael Vourkas, Sifis Micheloyannis, and Spiros
Fotopoulos. Tracking brain dynamics via time-dependent network analysis. Journal of Neuroscience Methods,
193(1):145 – 155, 2010.

13. M. Karsai, M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, and J. Saramäki. Small but slow world:
How network topology and burstiness slow down spreading. Phys. Rev. E, 83:025102, Feb 2011.

14. Ching-Tai Lin. Structural controllability. IEEE Transactions on Automatic Control, 19(3):201–208, 1974.
15. Kazuo Murota. Matrices and Matroids for Systems Analysis, volume 20. Springer, New York, 2009.
16. A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási. The fundamental advantages of temporal

networks. Science, 358(6366):1042–1046, 2017.
17. Márton Pósfai and Philipp Hövel. Structural controllability of temporal networks. New Journal of Physics,

16(12):123055, 2014.
18. Yan Zhang, Antonios Garas, and Ingo Scholtes. Controllability of temporal networks: An analysis using

higher-order networks. arXiv preprint arXiv:1701.06331, 2017.
19. Mark Newman. Networks: an introduction. Oxford university press, 2010.
20. Ingo Scholtes. When is a network a network?: Multi-order graphical model selection in pathways and temporal

networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 1037–1046, New York, NY, USA, 2017. ACM.

21. Chen Zhao, Wen-Xu Wang, Yang-Yu Liu, and Jean-Jacques Slotine. Intrinsic dynamics induce global symmetry
in network controllability. Scientific Reports, 5:8422 EP –, Feb 2015. Article.

22. Noah J. Cowan, Erick J. Chastain, Daril A. Vilhena, James S. Freudenberg, and Carl T. Bergstrom. Nodal
dynamics, not degree distributions, determine the structural controllability of complex networks. PLOS ONE,
7(6):1–5, 06 2012.

23. Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, and Renaud Lambiotte. Memory
in network flows and its effects on spreading dynamics and community detection. Nature Communications,
5:4630 EP –, Aug 2014. Article.

24. Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199. Prentice hall Englewood
Cliffs, NJ, 1991.

25. Fabio Pasqualetti, Sandro Zampieri, and Francesco Bullo. Controllability metrics, limitations and algorithms
for complex networks. IEEE Transactions on Control of Network Systems, 1(1):40–52, March 2014.

26. Tao Jia and Márton Pósfai. Connecting core percolation and controllability of complex networks. Scientific
Reports, 4:5379, Jun 2014. Article.

27. Airlie Chapman, Marzieh Nabi-Abdolyousefi, and Mehran Mesbahi. Controllability and observability of
network-of-networks via cartesian products. IEEE Transactions on Automatic Control, 59(10):2668–2679, Oct
2014.

28. Mohsen Zamani and Hai Lin. Structural controllability of multi-agent systems. In 2009 American Control
Conference, pages 5743–5748, June 2009.

29. R. Kalman. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and
Applied Mathematics Series A Control, 1(2):152–192, 1963.

30. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms. MIT
press, 2009.

31. Sérgio Pequito, Victor M. Preciado, Albert-László Barabási, and George J. Pappas. Trade-offs between driving
nodes and time-to-control in complex networks. Scientific Reports, 7:39978, jan 2017.

32. Huibert Kwakernaak and Raphael Sivan. Linear optimal control systems, volume 1. Wiley-interscience New
York, 1972.

33. Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-

24 of 29 B. RAVANDI ET AL.

Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
34. Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations, pages

85–103. Springer, 1972.
35. Chandra Chekuri and Alina Ene. Poly-logarithmic Approximation for Maximum Node Disjoint Paths with

Constant Congestion, pages 326–341.
36. Chandra Chekuri and Sanjeev Khanna. Edge disjoint paths revisited. In Proceedings of the Fourteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA ’03, pages 628–637, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

37. Anand Srinivas and Eytan Modiano. Minimum energy disjoint path routing in wireless ad-hoc networks. In
Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, MobiCom ’03,
pages 122–133, New York, NY, USA, 2003. ACM.

38. Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian journal of Mathematics,
8(3):399–404, 1956.

39. Saı̈d Salhi. Population-Based Heuristics, pages 77–128. Springer International Publishing, Cham, 2017.
40. Benjamin Blonder and Anna Dornhaus. Time-ordered networks reveal limitations to information flow in ant

colonies. PLOS ONE, 6(5):1–8, 05 2011.
41. Radosław Michalski, Sebastian Palus, and Przemysław Kazienko. Matching organizational structure and social

network extracted from email communication. In Witold Abramowicz, editor, Business Information Systems,
volume 87, pages 197–206. Springer Berlin Heidelberg, 2011.

42. Manufacturing emails network dataset. http://konect.uni-koblenz.de/networks/radoslaw_
email. Accessed: 2018-06-03.

43. Tao Jia, Yang-Yu Liu, Endre Csóka, Márton Pósfai, Jean-Jacques Slotine, and Albert-László Barabási. Emer-
gence of bimodality in controlling complex networks. Nature Communications, 4, jun 2013.

44. Xizhe Zhang and Qian Li. Altering control modes of complex networks based on edge removal. Physica A:
Statistical Mechanics and its Applications, 516:185 – 193, 2019.

45. Xizhe Zhang, Tianyang Lv, and Yuanyuan Pu. Input graph: the hidden geometry in controlling complex
networks. Scientific Reports, 6(1), nov 2016.

46. Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of complex networks. nature,
473(7346):167, 2011.

47. Melanie Mitchell. Complexity: A guided tour. Oxford University Press, 2009.

A. Maximum Flow Reduction

The problem of finding an MCS, denoted by MC(D, t f ,∆ t) for an arbitrary set of driver nodes D can
be reduced to the maximum flow problem where the target is to reach control at deadline t f within
∆ t = t f − t0 steps. In other words, we need to find |V | independent time-respecting paths (vertex disjoint
paths) that a) start from intervention points (d ∈ D, t) for any interval within (t f −∆ t < t 6 t f], and b)
end at all nodes in deadline layer t f .

To prepare the time-layered network for this reduction, we begin by connecting the source node s to
the nodes in all time-layers in interval (t0, t f] and connecting all the nodes in the t f layer to the sink node
t, and then, to ensure finding vertex disjoint paths, we establish that the maximum flow that can pass
through each node must be one. As a result, we introduce an augmented time-layered network by adding
regulatory nodes between all time-layers as more formally stated in the following:

1. For each node vt
i at layer t add a new node v′i and add all out-links vt

i → ut+1
j to v′i such that

v′i→ ut+1
j

2. Connect vt
i to v′i such that vi→ v′i and remove all out-links vt

i → ut+1
j

3. Repeat Steps 1-2 for all time-layers

http://konect.uni-koblenz.de/networks/radoslaw_email
http://konect.uni-koblenz.de/networks/radoslaw_email

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 25 of 29

4. Set the maximum capacity of all edges in the network to one

The above process is illustrated in Fig. A.11 (c) with the regulatory nodes marked by color green.
In Fig. A.11, we run the maximum flow algorithm on the augmented time-layered network to find an
MCS MC(D, t f ,∆ t) for two driver sets D1 = {v1} and D2 = {v1,v4}, deadline t f = 3, and ∆ t = 3 steps.
Fig. A.11 (d-e) shows a maximum controllable space for D1 and D2 respectively with their independent
time-respecting paths distinguished with distinct colors (that is, disjoint paths with flow one). For better
visualization, the regulatory nodes are not shown in Figure A.11 (d-e).

❛ ❜

❝

❞ ❡

3

t = 1
t = 1,2,3

t = 1,2,3 t = 1,2,3

t = 1,2,3

t
=

 1

t
=

 2

t = 2

t = 3

t = 3

t
=

 3

2 4

1 t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

t = 1

t = 2

t = 3

FIG. A.11. Maximum flow reduction. Identifying an MCS for a set of driver nodes on deadline t f = 3 and within ∆ t = 3 steps. (a)
Time-aggregated network with timestamped edges and observation period 16 t 6 3. (b) Time-layered network visualizing the
temporal pathways. (c) Augmented time-layered network with the capacity-regulator nodes marked by color green. (d) Driver set
D1 = {v1} at most can control 75% of the network (v4 is not controlled). (e) Driver set D2 = {v1,v4} fully control the network.

26 of 29 B. RAVANDI ET AL.

B. Branching Process

Fig. A.12 illustrates the execution of the proposed heuristic on all of the stems in Fig. 6. All derived
SMDSs can fully control the network of Fig. 5.

✆☛
✑
❂

✆�
✑
❂

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✡✂✄☎✌✱☎✍⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄☎✍⑥

✞✁✎✂✄✓✔✱✓✕⑥✱

✞✁☞✂✄✓✔✱☎✟✱☎✠⑥✱

✞✁✡✂✄✓✕✱ ☎✍⑥✱

✞✁✏✂✄☎✠⑥✱

✞✁✖✂✄☎✍⑥

✞✁✎✂✄☎✝✱☎✌⑥✱

✞✁☞✂✄☎✟✱✓✗⑥✱

✞✁✡✂✄☎✍⑥✱

✞✁✏✂✄✓✗⑥✱

✞✁✖✂✄☎✍⑥

✞✁✎✂✄☎✝✱☎✌⑥✱

✞✁☞✂✄☎✟✱☎✠⑥✱

✞✁✡✂✄✓✘⑥✱

✞✁✏✂✄⑥✱

✞✁✖✂✄✓✘⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✡✂✄✓✕✱✓✘⑥✱

✞✁✎✂✄✓✕⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄✓✘⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✡✂✄☎✌✱☎✍⑥✱

✞✁✎✂✄⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄⑥

✙✚✛✙✜ ❂ ▼✢❙

④✣✤✥ ✣✦✧

✙✚✛✙�

★✩✪✫ ✩�✫ ✩✜✬

✭ ✮ ✯✰✲✳
✴ ✣�✵ ✣✪✵ ✣☛ ✵ ✰✲✶

✴ ✣�✵ ✣✜ ✵ ✰✲✷
✴ ✣✜✵ ✣✸ ✵ ✰✲✹

✴ ✣☛ ✵ ✰✲✺
✴ ✣✸ ✻

✞✁✎✂✄☎✝✱☎✌⑥✱

✞✁☞✂✄☎✟✱☎✠⑥✱

✞✁✡✂✄☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✖✂✄⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✒✂✄☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✡✂✄☎✍⑥

✭✦
✑
✼

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✒✂✄☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✡✂✄☎✍⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✒✂✄✓✘⑥✱

✞✁✏✂✄⑥✱

✞✁✡✂✄✓✘⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✒✂✄☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✡✂✄⑥

✽✾✿✽✸

★✩�✫ ✩✪✫ ✩✸✬

✞✁☞✂✄✓✔✱☎✟✱✓✗⑥✱

✞✁✎✂✄✓✔✱ ☎✌⑥✱

✞✁✡✂✄☎✌✱☎✍⑥✱

✞✁✏✂✄✓✗⑥✱

✞✁✒✂✄☎✍⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄✓✕⑥✱

✞✁✡✂✄✓✕✱☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄☎✍⑥

✆❂

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✡✂✄✓✘⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄✓✘⑥

✞✁☞✂✄☎✝✱☎✟✱☎✠⑥✱

✞✁✎✂✄☎✌⑥✱

✞✁✡✂✄☎✍⑥✱

✞✁✏✂✄⑥✱

✞✁✒✂✄⑥

✆✪
✑
❂

✞✁✏✂✄✓✗⑥✱

✞✁✎✂✄☎✝✱ ☎✌⑥✱

✞✁✡✂✄☎✌✱☎✍⑥✱

✞✁☞✂✄☎✝✱☎✟✱✓✗⑥✱

✞✁✒✂✄☎✍⑥

✞✁✏✂✄☎✠⑥✱

✞✁✎✂✄✓✔✱ ✓✕⑥✱

✞✁✡✂✄✓✕✱☎✍⑥✱

✞✁☞✂✄✓✔✱☎✟⑥✱

✞✁✒✂✄☎✍⑥

✞✁✏✂✄☎✠⑥✱

✞✁✎✂✄☎✝✱ ☎✌⑥✱

✞✁✡✂✄✓✘⑥✱

✞✁☞✂✄☎✟⑥✱

✞✁✒✂✄✓✘⑥

✞✁✏✂✄☎✠⑥✱

✞✁✎✂✄☎✝✱ ☎✌⑥✱

✞✁✡✂✄☎✍⑥✱

✞✁☞✂✄☎✟⑥✱

✞✁✒✂✄⑥

✙✚✛✙☛

★✩�✫ ✩✪✫ ✩☛✫ ✩✜✬

■t❡�✁t✐✂♥ ✶ ■t❡�✁t✐✂♥ ✸ ■t❡�✁t✐✂♥✄ ✹ ✫ ✺■t❡�✁t✐✂♥ ✷

✙✚✛✙✪❂ ✙✚✛✙�

★✩�✫ ✩✪✫ ✩✜✬

FIG. A.12. Illustration of the branching process plus the executions of the proposed heuristic for C and its stems C′. The MCS
list C is constructed based on the MCSs of nodes in the network of Fig. 5. Each row presents an execution of the heuristic that
derives an SMDS. The red arrows indicate the controllable subspace set being processed by the heuristic in its iterations. Each stem
(marked with blue arrows) initiates from switching the position of two controllable subspace sets that have non-empty intersection
with the sets that are located after the red arrows. In total, the process creates four unique possibles SMDSs and all of them are
actual SMDSs that can fully control the network in Fig. 5.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 27 of 29

C. Datasets Temporal Characteristics

Figure A.13 illustrates the observation periods and frequency of interactions for Ants and Emails datasets.

❋
�✁
✂
✄
✁
☎
❝
✆

✭❡✮ ❆✝✞✟ ✠✡☛✡✝♦ ✻☞✶ ✇✌✞t ✸✸ ❛✝✞✟ ❛✝✍ ✻✎✏ ✞✌✑✒ ✟✞❛✑s✒✍ ✌✝✞✒✐❛✠✞✌✡✝✟

❙✓✔✕♥✖

❋
�✁
✂
✄
✁
☎
❝
✆

✭❣✮ ❊☞✑❛✌☛✟ ✠✡✑✑✗✝✌✠❛✞✌✡✝✟ ✍❛✞❛✟✒✞ ✇✌✞t ✶✘✙ ✒✑s☛✡♦✒✒✟ ❛✝✍ ✏✎✘ ✞✌✑✒✟✞❛✑s✒✍ ✒☞✑❛✌☛✟

❉✚✛

❋
�✁
✂
✄
✁
☎
❝
✆

✭❢✮ ❆✝✞✟ ✠✡☛✡✝♦ ✻☞✏ ✇✌✞t ✸✏ ❛✝✞✟ ❛✝✍ ✸✻✜ ✞✌✑✒ ✟✞❛✑s✒✍ ✌✝✞✒✐❛✠✞✌✡✝✟

❙✓✔✕♥✖

❋
�✁
✂
✄
✁
☎
❝
✆

✭✢✮ ❆✝✞✟ ✠✡☛✡✝♦ ✶☞✶ ✇✌✞t ✽✙ ❛✝✞✟ ❛✝✍ ✶✙✶✶ ✞✌✑✒ ✟✞❛✑s✒✍ ✌✝✞✒✐❛✠✞✌✡✝✟

❙✓✔✕♥✖

❋
�✁
✂
✄
✁
☎
❝
✆

✣❜✤ ✥✦✧★ ✩✪✫✪✦② ✬✲✷ ✯✰✧✱ ✼✷ ✳✦✧★ ✳✦✴ ✬✵✷✹ ✧✰✺✾ ★✧✳✺♠✾✴ ✰✦✧✾✿✳✩✧✰✪✦★

❙✓✔✕♥✖

❋
�✁
✂
✄
✁
☎
❝
✆

✭❀✮ ❆✝✞✟ ✠✡☛✡✝♦ ✸☞✶ ✇✌✞t ✶✶ ❛✝✞✟ ❛✝✍ ✜✽ ✞✌✑✒ ✟✞❛✑s✒✍ ✌✝✞✒✐❛✠✞✌✡✝✟

❙✓✔✕♥✖

❋
�✁
✂
✄
✁
☎
❝
✆

✭❞✮ ❆✝✞✟ ✠✡☛✡✝♦ ✸☞✏ ✇✌✞t ✻ ❛✝✞✟ ❛✝✍ ✶✘❁ ✞✌✑✒ ✟✞❛✑s✒✍ ✌✝✞✒✐❛✠✞✌✡✝✟

❙✓✔✕♥✖

FIG. A.13. Frequency of interactions versus observation periods. (a-f) Ants’ interactions. (g) Daily e-mail communications with
frequency in 1h resolution between 2010-01-05 06:00 AM and 2010-09-29 11:00 AM.

28 of 29 B. RAVANDI ET AL.

Fig. A.14 illustrates the temporal characteristics of dataset including the number of time-layers (i.e.,
the number of timestamps) and inter-event gaps.

✭❛✮ ❆♥t� ✶✲✶

◆♦✁✂s✿ ✽✄

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✌✍✌✌

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✷✌✑✹✒

❚✐☎❡✆❧✟✓❡✔✝☞ ✕✕✖

❖✗✝❡✔✘✟✞✐✏✡ ♣❡✔✐✏✠☞ ❬✵ ✝✱ ✌✹✖✕ ✝❪

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✹✖✕ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✑✻✖ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✌✣ ✝

✭❜✮ ❆♥t� ✶✲✤

◆♦✁✂s✿ ✼✥

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✌✕✷✵

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✷✣✑✷✕

❚✐☎❡✆❧✟✓❡✔✝☞ ✌✵✹✕

❖✗✝❡✔✘✟✞✐✏✡ ♣❡✔✐✏✠☞ ❬✵ ✝✱ ✌✒✹✍ ✝❪

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✒✹✍ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✑✻✒ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✌✷ ✝

✭❝✮ ❆♥t� ✸✲✶

✎✏✠❡✝☞ ✌✌

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✒✕

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✒✑✵✍

❚✐☎❡✆❧✟✓❡✔✝☞ ✒✷

✦✧s✂★✩✪✫✬♦✯ ✰✂★✬♦✁✿ ✳✴✥ s✺ ✴✴✾✄ s❀

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✌✷✒ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✣✑✕✒ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✍✒ ✝

✭❞✮ ❆♥t� ✸✲✤

✎✏✠❡✝☞ ✻

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✌✵✹

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✌✒✑✖✖

❚✐☎❡✆❧✟✓❡✔✝☞ ✍✷

✦✧s✂★✩✪✫✬♦✯ ✰✂★✬♦✁✿ ✳✥ s✺ ✴❁✥❂ s❀

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✹✷✖ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✣✑✻✹ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✣✖✖ ✝

✭❃✮ ❆♥t� ❄✲✶

◆♦✁✂s✿ ✾✾

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✻✣✷

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✌✍✑✒✻

❚✐☎❡✆❧✟✓❡✔✝☞ ✣✖✒

❖✗✝❡✔✘✟✞✐✏✡ ♣❡✔✐✏✠☞ ❬✌ ✝✱ ✌✍✌✕ ✝❪

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✍✌✒ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✖✑✣✕ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✖✹ ✝

✭❢✮ ❆♥t� ❄✲✤

◆♦✁✂s✿ ✾✥

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✖✻✒

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✌✌✑✹✒

❚✐☎❡✆❧✟✓❡✔✝☞ ✖✌✷

❖✗✝❡✔✘✟✞✐✏✡ ♣❡✔✐✏✠☞ ❬✷ ✝✱ ✌✒✣✣ ✝❪

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✌✒✣✖ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✣✑✻✹ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✜✣✕ ✝

✭❣✮ ❊✲♠❅❇❈ ❉❋♠♠●♥❇❍❅t❇❋♥� ❋■ ❅ ♠❇❏�❇③❑❏ ♠❅♥●■❅❍t●r❇♥P ❍❋♠◗❅♥②

✎✏✠❡✝☞ ✌✵✍

❚✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝☞ ✷✣✵

▲✐✡☛✝ ÷ ✎✏✠❡✝☞ ✷✑✖✵

❘✬❙✂❯❱✪❲✂★s✿ ✥✥❁

❖✗✝❡✔✘✟✞✐✏✡ ♣❡✔✐✏✠☞ ❬✌✷✻✷✻✒✌✷✵✵ ✝✱ ✌✷✕✣✒✣✕✵✵✵ ✝❪

❖✗✝❡✔✘✟✞✐✏✡ ❧❡✡✙✞✚☞ ✷✖✵✕✻✕✵✵ ✝

✛✘✙✑ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✌✵✖✣✷✕✑✷✣ ✝

▼✐✡✜▼✟✢ ✐✡✞❡✔✆❡✘❡✡✞ ✠✞☞ ✖✻✵✵✜✣✵✵✹✵✵ ✝

❳ ✐✡✞❡✔✆❡✘❡✡✞☞ ✛❧❧ ✞✐☎❡ ✠✐❨❨❡✔❡✡❩❡✝ ✗❡✞✇❡❡✡ ✟✡✓ ✞✇✏✆❩✏✡✝❡❩✉✞✐✘❡ ✞✐☎❡✆✝✞✟☎♣❡✠ ❧✐✡☛✝

❭✐✡✘✏❧✘✐✡✙ ✟✡✓ ✡✏✠❡❫✑

❴

❴

FIG. A.14. Temporal characteristics of datasets including the number of time-layers (i.e., number of timestamps) and inter-event
gaps.

IDENTIFYING AND USING DRIVER NODES IN TEMPORAL NETWORKS 29 of 29

D. Randomization Procedures

We used the below randomization techniques to randomize the ants and e-mail datasets. For a comprehen-
sive explanation of randomizing temporal networks refer to [8]. Also, Table A.3 provides a comparison
between these randomization techniques.

Randomized Edges (RE): This randomization can be used to study the effect of the network topology.
RE changes who contacts whom and it assumes the edges govern the time of contacts rather than the
vertices. This randomization changes the number of contacts and the timing of contacts for each vertex.
However, RE preserves the degree distribution of the time-aggregated network. Since the timestamps of
edges are not changed (contact sequence is preserved), all temporal correlations associated with edges
such as the average degree fluctuations are preserved. For the algorithm to implement RE refer to [8].

Randomly Permuted (RP): For this randomization, we shuffle the timestamps of temporal edges.
RP retains the time-aggregated network structure and the number of contacts for each edge. However,
this null model eliminates the temporal correlations such as the causal events, and it alters the degree
distribution of each time-layer.

Random Time (RT): In this randomization, we randomly assign a time to each temporal link. Therefore,
RT removes all temporal interactions, both the local correlations such as simultaneous events, and the
global correlations such as overall fluctuations in the degree distributions. However, RT does not change
the structure of time-aggregated network.

Degree Preserved Network (DPN): To apply this randomization, we randomly rewire the networks
between each time-layer using the original degree sequence of the time-layers (the timestamps of
interaction are not changed). Hence, this randomization only preserves the degree distribution in each
time-layer. However, all other temporal and structural correlations are eliminated.

Random Network (RN): For this randomization, we replace the network of each time-layer with an
Erdős-Reńyi network with the same number of links as the original network between each time-layer.
Therefore, RN removes all temporal correlations and the structure of time-aggregated network including
heterogeneity of in-out-total degree distributions. Similar to DPN, we do not change the timestamps of
interactions.

Table A.3. Randomization techniques. Green color indicated preservation and red color indicates elimination of network’s
characteristics.

Randomi-
zation

Aggregated
network
structurea

Aggregated
network
degree
distribution

Local
degree
distributionsb

Overall rate
of eventsc

Average
degree
fluctuations

Causal
chain of
events

RE
RP
RT
DPN
RN

a Preserves who contacts whom.
b Degree distribution of each time-layer.
c For example, the number of simultaneous interactions in a time-layer such as patterns in the rate

of daily or weekly interactions in communication networks.

	Purdue University
	Purdue e-Pubs
	3-8-2019

	Identifying and Using Driver Nodes in Temporal Networks
	Babak Ravandi
	Fatma Mili
	John Springer

	Introduction
	Innovation

	Complex Networks Controllability
	Controllability of Static Networks
	Controllability of Temporal Networks
	Independent Path Theorem
	MCS for a Set of Driver Nodes

	Problem
	Heuristic for Efficiently Control Temporal Networks
	Multiple SMDSs and Non-unique Controllable Subspace
	Algorithms and Complexity of the Heuristic
	Discussion on the Algorithms

	Results
	Analyzing Multiple Driver Node Sets
	Datasets Analysis
	Randomizations Analysis

	Evaluating Synthetic Temporal Networks

	Discussion
	Distributed and Centralized Control Regimes

	Conclusion
	Acknowledgements
	Maximum Flow Reduction
	Branching Process
	Datasets Temporal Characteristics
	Randomization Procedures

