
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

4-23-2010

A Data Acquisition System For The NASA
Specialized Center Of Research And Training
Cuvette
Benjamin A. Riggs
Purdue University - Main Campus, bariggs@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Riggs, Benjamin A., "A Data Acquisition System For The NASA Specialized Center Of Research And Training Cuvette" (2010). College
of Technology Masters Theses. Paper 5.
http://docs.lib.purdue.edu/techmasters/5

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Benjamin A. Riggs

A Data Acquisition System for the NASA Specialized Center of Research and Training
Cuvette

Master of Science

Jeffrey Honchell

Cary Mitchell

Neal Widmer

Jeffrey Honchell

Gary Bertoline 04/19/2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

A Data Acquisition System for the NASA Specialized Center of Research and
Training Cuvette

Master of Science

Benjamin A. Riggs

4/13/2010

A DATA ACQUISITION SYSTEM FOR THE NASA SPECIALIZED CENTER OF
RESEARCH AND TRAINING CUVETTE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Benjamin A. Riggs

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I would like to begin by thanking my beautiful wife Armonda. Her love,

support, and amazing patience helped guide me through this endeavor. Thank

you for indulging me all of the times I solved a complex problem and had only a

blinking light to show for it.

I would also like to thank my committee members: Professor Jeffrey

Honchell, Dr. Cary Mitchell, and Professor Neal Widmer. Professor Honchell

encouraged me to push myself further than I ever thought I could go and taught

me how to find creative solutions to unconventional problems. Dr. Mitchell

introduced me to the world of horticulture, thoroughly reviewed this thesis, and

helped me reach outside of my field of study by “taking me outside my comfort

zone.” Professor Widmer introduced me to the digital world and supported me

throughout this thesis.

In addition, I would like to thank Dr. Gioia Masa and Keith Spence. Gioia

provided much encouragement and was a great horticulture translator. Keith and

I worked many long hours together on the cuvette system, and he often provided

much needed support and ideas.

Thank you also to NASA, Jerry Shepard, Elaine Chase, Dr. Changhoo

Chun, and the makers of Apache HTTP Server, Avacam, and ZedGraph.

Finally, I’d like to thank Purdue University and some of the faculty and

staff in the Electrical and Computer Engineering Technology department for the

past 7 years: Prof. Herrick, Nancy Tucker, Sandy Schnebly, Prof. Oxtoby, Prof.

Blackwell, Prof. Robertson, Prof. Richardson, and Prof. Moss.

iii

TABLE OF CONTENTS

 Page
LIST OF TABLES ... v
LIST OF FIGURES ...vi
LIST OF NOMENCLATURE ... viii
ABSTRACT ..xi
CHAPTER 1. INTRODUCTION .. 1

1.1. Scope ... 1
1.2. Statement of Problem ... 2

1.3. Significance of the Problem .. 2
1.4. Statement of the Purpose ... 3

1.5. Assumptions ... 3
1.6. Delimitations ... 4
1.7. Limitations .. 4

CHAPTER 2. LITERATURE REVIEW .. 5
2.1. Costs of space travel .. 5

2.2. Cuvettes ... 9

2.3. Data acquisition systems .. 13

2.3.1. Data acquisition in agriculture ... 13
2.3.2. Other applications for data acquisition .. 16

2.3.3. Data acquisition concepts ... 17
CHAPTER 3. METHODOLOGY ... 23

3.1. Cuvette system ... 27
3.2. Cuvette system components .. 27

3.2.1. Supervisory unit .. 29
3.2.2. Serial Switches ... 29
3.2.3. Webcam and stage ... 31
3.2.4. Absolute Gas Analyzer ... 32
3.2.5. Differential Gas Analyzer .. 35

3.2.6. Temperature and relative humidity ... 37
3.2.7. Mass Flow Controller .. 39

3.3. Cuvette system software .. 43
3.3.1. Graphical User Interface ... 43
3.3.2. Main software flow .. 48
3.3.3. Feedback loop addition... 66
3.3.4. Additional cuvette system software .. 68

CHAPTER 4. FINDINGS .. 69

iv

Page

4.1. Initial Findings ... 69
4.2. Findings with a feedback loop .. 80

CHAPTER 5. CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS ... 83
LIST OF REFERENCES .. 86

APPENDIX 90

 v

LIST OF TABLES

Table Page
Table 2-1 Launch cost for small launch vehicles .. 6

Table 2-2 Launch cost for medium launch vehicles .. 6
Table 2-3 Launch cost for large launch vehicles... 6

Table 2-4 Price per pound for small launch vehicles .. 7
Table 2-5 Price per pound for medium launch vehicles .. 7
Table 2-6 Price per pound for large launch vehicles ... 7
Table 3-1 Serial switch data format .. 30

Table 3-2 Servo controller data format ... 32
Table 3-3 Absolute IRGA data format ... 34

Table 3-4 Analog-to-digital converter data format... 38
Table 4-1 Differential IRGA statistics .. 71
Table 4-2 Absolute IRGA statistics ... 73

Table 4-3 CO2 MFC statistics ... 75
Table 4-4 Air MFC statistics.. 77

Table 4-5 Temperature and relative humidity correlation 79
Table 4-6 Absolute IRGA statistics during 1000µmol/mol setpoint 82

Table 4-7 CO2 MFC statistics during 1000µmol/mol setpoint 82

 vi

LIST OF FIGURES

Figure Page
Figure 2-1 Internal and external workings of the Minitron 11

Figure 2-2 Internal and external workings of the Minitron II 12
Figure 2-3 Analog sine wave .. 18

Figure 2-4 Quantization of sine wave ... 18

Figure 2-5 Aliasing (10 cycle signal and 8 sampling points per frame) 19
Figure 2-6 Counting ADC ... 21
Figure 2-7 Successive Approximation ADC .. 21

Figure 3-1 Cuvette front .. 24
Figure 3-2 Cuvette Side .. 25
Figure 3-3 Unilluminated “light-sicles” .. 26

Figure 3-4 Illuminated “light-sicles” ... 26
Figure 3-5 Cuvette system ... 27

Figure 3-6 Cuvette network wiring diagram .. 28
Figure 3-7 Serial switches .. 30
Figure 3-8 Two axis servo stage ... 31

Figure 3-9 Absolute IRGA .. 33

Figure 3-10 Absolute IRGA measurement chamber ... 34
Figure 3-11 Differential IRGA ... 36
Figure 3-12 Differential IRGA measurement chamber .. 36

Figure 3-13 ADC module .. 38
Figure 3-14 Mass flow controller ... 39

Figure 3-15 Mass flow controller operation ... 41
Figure 3-16 Temperature shift .. 41
Figure 3-17 MFC valve menu ... 42
Figure 3-18 Initial GUI and IRGA tabs .. 44
Figure 3-19 MFC tabs ... 44

Figure 3-20 MFC Status window .. 45
Figure 3-21 Temperature and RH tab ... 46

Figure 3-22 Webcam stage tab .. 46
Figure 3-23 Lights tab (PC time = 1:08 p.m.) .. 47
Figure 3-24 Load flowchart ... 49
Figure 3-25 Excel save flowchart .. 49
Figure 3-26 Excel saveas flowchart .. 50

Figure 3-27 Excel new file flowchart ... 51
Figure 3-28 First Excel append file flowchart .. 53

 vii

Figure Page
Figure 3-29 Second Excel append file flowchart... 54
Figure 3-30 Excel closing flowchart .. 55

Figure 3-31 Main GUI window .. 56
Figure 3-32 First data collection flowchart .. 59
Figure 3-33 Second data collection flowchart ... 60
Figure 3-34 Third data collection flowchart ... 61
Figure 3-35 First general data read flowchart ... 63

Figure 3-36 Second general data read flowchart .. 64
Figure 3-37 Third general data read flowchart .. 65
Figure 3-38 Modified overall software flow ... 66
Figure 4-1 Differential data with erroneous data ... 69
Figure 4-2 Normalized differential data ... 70

Figure 4-3 Steady differential concentration ... 71
Figure 4-4 Normalized absolute data .. 72

Figure 4-5 Steady absolute concentration .. 73
Figure 4-6 CO2 MFC data ... 74

Figure 4-7 CO2 MFC setpoint delay .. 75
Figure 4-8 Air MFC data ... 76

Figure 4-9 Air MFC setpoint delay .. 76
Figure 4-10 First webcam picture ... 77
Figure 4-11 Second webcam picture .. 78

Figure 4-12 Cuvette temperature .. 79
Figure 4-13 Cuvette humidity.. 79

Figure 4-14 Absolute IRGA with feedback .. 80

Figure 4-15 CO2 MFC with feedback .. 81

Figure 4-16 Zoomed in Absolute IRGA with feedback .. 81
Figure 4-17 Zoomed in CO2 MFC with feedback .. 82

 viii

LIST OF NOMENCLATURE

ADC – analog-to-digital converter

Advanced Life Support (ALS) – regenerative life-support systems (AMES

Research Center)

Cuvette - “controlled environment chambers” used to determine “the net rate of

carbon dioxide uptake by plants under different environmental regimes”

(Bowman, 1968)

DAC – digital-to-analog converter

Data Acquisition system (DAQ) - “products and/or processes used to collect

information to document or analyze some phenomenon” (Omega.com)

Datalogger – “A device that can read various types of electrical signals and store

the data in internal memory for later download to a computer” (Omega.com)

DLL – dynamically linked library

Equivalent System Mass (ESM) – a transportation cost measure in ALS trade

studies (Levri et al., 2003)

GTO – Geosynchronous Transfer Orbit (Futron Corporation, 2002)

 ix

GUI – graphical user interface

Hydroponics – “… a method of growing plants with their roots in a solution

containing the mineral nutrients essential for plant growth.” (Hoagland & Arnon,

1950)

Infrared Gas Analyzer (IRGA) – “an instrument that measures air samples for

CO2 content” (Oak Ridge National Laboratory)

LED – Light Emitting Diode (Bourget, 2008)

LEO – Low Earth Orbit (Futron Corporation, 2002)

LGPL – Lesser General Public License

NiMH – Nickel Metal Hydride (Energizer Battery, 2001)

NSCORT – NASA Specialized Center of Research and Training

Photosynthesis – “the synthesis by organisms of organic chemical compounds,

esp. carbohydrates, from carbon dioxide using energy obtained from light rather

than the oxidation of chemical compounds.” (Smith, 1997)

ppm – parts per million

RS232 – a standard for serial, binary data communication (Electronics Industries

Association)

SCADA – Supervisory Control and Data Acquisition

 x

Server – “a computer program that provides services to other computer programs

(and their users) in the same or other computers” (WhatIs.com)

slm – Standard Liters per Minute

USB – Universal Serial Bus

Zigbee – “ZigBee is a wireless technology developed as an open global standard

to address the unique needs of low-cost, low-power, wireless sensor networks.”

(Digi.com)

xi

ABSTRACT

Riggs, Benjamin A. M.S., Purdue University, May, 2010. A Data Acquisition
System for the NASA Specialized Center of Research and Training Cuvette.
Major Professor: Jeffrey Honchell.

This study explored the use of newer techniques to create a custom data

acquisition system for horticultural purposes. Common horticultural lab

equipment was used to measure environmental variables within a plant growth

chamber, known as a cuvette. The cuvette was used to test various combinations

of growing conditions and plant crops to gather data on the most feasible scheme

for astronauts to remain in space in perpetuity. The lab equipment was

networked to a common personal computer running custom software. The

software developed is a multithreaded program making use of the Microsoft .Net

framework. It periodically gathers and charts data from the horticulture lab

equipment, saves the data to a Microsoft Excel spreadsheet, and disseminates

the data via the Internet.

1

CHAPTER 1. INTRODUCTION

This section of the document discusses the scope and significance of the

data acquisition system used for the cuvette (pronounced q-vette). It also

investigates how this system was designed and implemented. Finally, any

assumptions, delimitations, and limitations are listed.

In plant sciences, a cuvette is an enclosure for measuring real-time gas

exchange of plants. The environmental variables inside the cuvette can be

altered by the researchers to observe how different plants react to different

conditions. The extent to which the environment can be controlled within the

cuvette will determine the accuracy, precision, and amount of gas exchange (C.

Mitchell, personal communication, December 8, 2009). In order to record and

control these variables, a data acquisition system is needed.

1.1. Scope

When engineers, scientists, and other professionals need to reliably

gather data from remote locations or over long periods of time, they often make

use of a data acquisition system. This thesis explores the development of a data

acquisition system for a small crop-stand cuvette. The construction and

mechanics of the cuvette involved will largely not be covered. What will be

covered are the various measurements and controls used in the cuvette, the

networking involved in gathering the data, the data acquisition system used to

gather and store the data, and the methods used to convey that data to users.

This thesis will cover the instruments used to measure temperature,

humidity, mass airflow, and CO2 and H2O concentration in the system.

Parameters to be controlled by the data acquisition system include adjustment of

2

the CO2 concentration in the cuvette chamber using the mass air-flow controllers

and control to adjust the angle of a camera within the cuvette. The camera will

provide pictures of the plant canopy, including the hue of the leaves.

It will be necessary to coordinate the data gathering to a central location.

This thesis will discuss a method to network the various measurement

instruments and controls. It will also describe how the data will be collected,

stored, and organized. Finally, the data will be accessible to users locally or

remotely using the Internet.

1.2. Statement of Problem

The problem being addressed in this thesis is a need for a data acquisition

system for a small crop-stand cuvette. Data needs to be gathered about the

environment within the cuvette that the plants are growing in, how quickly they

grow under different conditions, and their general health.

1.3. Significance of the Problem

The cuvette project is being implemented to explore the growth of plants in

space by astronauts. These plants would provide the astronauts’ nourishment. In

addition, plants in space would act as natural CO2 scrubbers, removing the CO2

and replacing it with oxygen. Another benefit of plants in space would be to break

down and dispose of all of the different kinds of waste produced by the

astronauts.

Cuvettes are typically small in size and, when used for horticulture

purposes, are used to enclose one leaf. The cuvette discussed in this thesis,

however, houses a small stand of multiple plants. By enclosing the entire stand,

the net photosynthetic activity of the crop can be measured, as opposed to just

the photosynthetic rate of one leaf. This is accomplished by measuring the CO2

consumption of the stand.

3

In similar situations, researchers would use commercial dataloggers to

gather and control data. These devices can be left outside of buildings and store

the data in memory until the researcher physically retrieves it. They are also quite

expensive. The data acquisition system being employed for this cuvette runs on

a standard personal computer and could potentially be migrated to a

microcontroller integrated circuit, drastically reducing cost. In addition, the initial

prototype would store the data in an easy to retrieve spreadsheet format. This

data could be viewed locally via a graphical user interface or remotely via the

Internet.

1.4. Statement of the Purpose

The purpose of this thesis is to design, assemble, and program a data

acquisition system that can be used for a cuvette. Previously purchased

horticulture equipment will be networked to a desktop computer. Some of this

equipment includes a differential CO2 analyzer, an absolute CO2 analyzer, mass

air-flow controllers, a camera, a two axis stage to move said camera, and various

temperature and humidity probes. The data is collected using a custom program

written in Visual C#. The program collects data from the networked equipment,

organizes and formats the desired data from the raw data, and saves it into a

spreadsheet format. Finally, the data is available via the Internet.

1.5. Assumptions

Assumptions for this project include:

 The software written for this project will be run only on modern Windows

operating systems.

 The computer will have Microsoft Office 2003 or later installed.

 The computer will have Internet access.

4

1.6. Delimitations

Delimitations include:

 Only a brief summary of the mechanical system will be included.

 The software will be limited to Windows Operating Systems.

 The electrical system will not be controllable from the Internet, but data will

be viewable.

 The camera used will use a separate freeware program.

 The electrical system will not operate wirelessly.

1.7. Limitations

Limitations for this project include:

 Some of the equipment was purchased prior to this researcher's

involvement.

 The electronic system cannot be fully integrated and tested until the

mechanical system is finished.

In this section, the scope and significance of the data acquisition system

were discussed. The design and implementation were also investigated. Finally,

any assumptions, delimitations, and limitations were listed.

5

CHAPTER 2. LITERATURE REVIEW

One of the greatest challenges facing scientists, engineers, and

astronauts is creating and maintaining a habitable ecosystem in space.

Considerations include carbon dioxide and oxygen exchange, disposal of waste

products, and nutrition for the crew (Kliss, Heyenga, Hoehn,& Stodieck, 2000).

All of these factors contribute to a balance between the cost of resupplying

astronauts from Earth, having the astronauts resupply themselves by recycling

products they have with them (bioregeneration), or various other combinations.

To that end, Purdue University was given the task of leading research into

methods of helping future astronauts maintain a viable, bioregenerative

ecosystem in space (Venere, 2002), also known as a controlled ecological life-

support system (Mitchell, 1994). To investigate these possible methods, a plant

growth chamber, known as a cuvette (Bowman & Hand, 1968), was built at

Purdue University. Various crops are placed inside, and it controls its internal

environment while gathering internal environmental data utilizing a Data

Acquisition system. This data allows scientists to characterize the net

photosynthetic rates of the plants under different environmental conditions. This

thesis will cover why this project as a whole is being undertaken, the purpose of

cuvettes and how they are used, how data acquisition systems can be used to

collect data and control systems, and concepts inherent to data acquisition

systems.

2.1. Costs of space travel

The need for plants aboard spacecraft and bases comes from a need to

reduce the cost of transporting goods to and from space. Monetary costs

6

associated with various spacecraft have been investigated by the Futron

Corporation (2002). Tables 2-1, 2-2, and 2-3 demonstrate the operating costs

involved with sending payloads into space, while Tables 2-4, 2-5, and 2-6 show

the price per pound of Low Earth Orbits (LEO) and Geosynchronous Transfer

Orbits (GTO).

Table 2-1
Launch cost for small launch vehicles (Futron, 2002)

Name Athena
2

Cosmos Pegasus
XL

Rockot START Taurus

Country USA Russia USA Russia Russia USA

Launch
Cost($mil)

24 13 13.5 13.5 7.5 19

Table 2-2
Launch cost for medium launch vehicles (Futron, 2002)

Name Ariane
44L

Atlas 2AS Delta 2 Dnepr Long
March 2E

Soyuz

Country Europe USA USA Russia China Russia

Launch
Cost($mil)

112.5 97.5 55 15 50 37.5

Table 2-3
Launch cost for large launch vehicles (Futron, 2002)

Name Ariane
5G

Long
March

3B

Proton Space
Shuttle

Zenit 2 Zenit 3SL

Country Europe China Russia USA Ukraine Multinational

Launch
Cost($mil)

165 60 85 300 42.5 85

7

Table 2-4
Price per pound for small launch vehicles (Futron, 2002)

Name Athena
2

Cosmos Pegasus
XL

Rockot START Taurus

Country USA Russia USA Russia Russia USA

LEO
price/lb.($)

5,310 3,939 13,832 3,313 5,388 6,258

GTO
price/lb.($)

18,448 N/A N/A N/A N/A 19,234

Table 2-5
Price per pound for medium launch vehicles (Futron, 2002)

Name Ariane
44L

Atlas 2AS Delta 2 Dnepr Long
March 2E

Soyuz

Country Europe USA USA Russia China Russia

LEO
price/lb.($)

5,007 5,136 4,854 1,548 2,467 2,432

GTO
price/lb. ($)

10,651 11,890 13,857 N/A 6,729 12,598

Table 2-6
Price per pound for large launch vehicles (Futron, 2002)

Name Ariane
5G

Long
March

3B

Proton Space
Shuttle

Zenit 2 Zenit 3SL

Country Europe China Russia USA Ukraine Multinational

LEO
price/lb. ($)

4,162 2,003 1,953 4,729 1,404 2,431

GTO
price/lb. ($)

11,004 5,233 8,326 23,060 N/A 7,343

For technical and political reasons, the cost of transporting goods to and

from space is often measured using an equivalent system mass (ESM)

calculation. ESM is a way of converting the various factors that increase the

payload of spacecraft into measures of mass and simple example is shown in

Equation 1 (Levri, Fisher, Jones, Drysdale, Ewert, Hanford, et al., 2003). By

8

using plants to nourish the astronauts and recycle waste, space missions will be

able to decrease the ESM of each mission.

 eqeqeqeq CT D CT C C P P V V M ESM (1)

where

ESM = equivalent system mass value of the system of interest [kg],

M = total mass of the system [kg],

V = total pressurized volume of system [m3],

Veq = mass equivalency factor for the pressurized volume infrastructure [kg/m3],

P = total power requirement of the system [kW],

Peq = mass equivalency factor for the power generation infrastructure [kg/kW],

C = total cooling requirement of the system [kw],

Ceq = mass equivalency factor for the cooling infrastructure [kg/kW],

CT = total crewtime requirement of the system [CM-h/y],

D = duration of the mission segment of interest [y],

CTeq = mass equivalency factor for the crewtime support [kg/CM-h].

The benefits for creating a bioregenerative ecosystem in space lie largely

in the realm of long-term missions. Plants would largely consume harmful

substances from the ecosystem and provide essential substances for the

astronauts. These benefits would be offset by initial equivalent mass costs.

Pressurized growth chambers and temperature control would be essential to

house the plants and produce the maximal yield. Current studies have examined

the feasibility of different types of life-support systems: direct resupply from

Earth, physical/chemical systems, or varying degrees of bioregenerative

systems. Findings are mixed with some predicting bioregenerative system

breakeven points at 29 years (Jones, 2006), and others indicating breakeven

9

points at approximately three years (Drysdale, 2001; Ferl, Wheeler, Levine, &

Paul, 2002). As space missions increase in length, it will be inevitable that some

or all of the crew’s resupply needs will be facilitated by plants.

In addition to mission length versus the type of life support system, crop

selection will be crucial. Drysdale (2001) has shown that crop selection can

determine the “goodness” of various crops over various mission lengths. This

“goodness” number was defined “by dividing the supply ESM by the local-

production ESM.” The supply ESM is the value of supplying astronauts from

Earth, while the local-production ESM is the value of astronauts supplying

themselves on Mars. As the system mass for resupply from Earth increases, a

factor directly related to mission duration, the above goodness number will at

some point exceed the number one, meaning it is more efficient to grow locally

than with resupply from Earth. In approximately half the crops listed (obtained

from a draft of the KSC Crop Handbook or the University of Florida EDIS

database), “goodness” exceeded one after missions lasting 600 days.

2.2. Cuvettes

One of the main issues with growing plants in space is providing

consistent lighting for the plants to survive and flourish. While natural sunlight

may be sporadically available, electrical lighting will almost certainly be needed

for photosynthesis to occur. Using current lighting technology, LED’s will most

likely provide that light as they are more efficient and rugged than other lighting

technologies (Bourget, 2006). LED’s can provide light at various wavelengths

essential to plant growth, without contributing to a greater heat load to the

canopy of plants. Our cuvette utilizes LED banks (called “light-sicles”) containing

red and blue LED’s suspended amongst the plants. This provides the maximal

amount of red and blue light (approximately 640nm and 440nm respectively)

needed for photosynthesis without exposing the environment of the cuvette to the

additional heat load.

10

In order to test different lighting schemes, CO2 concentrations, and other

environmental variables on the types of plants destined for space, scientists

make use of cuvettes here on Earth, using either soil or hydroponics as a

growing medium. By varying variables such as light, temperature and CO2

concentration, scientists can adjust the rate of photosynthesis. Methods used to

measure photosynthesis have come a long way in the last few decades. Long,

Farage, and Garcia (1996) describe how previously the only way to determine

photosynthesis rates was with mobile laboratories. They go on to say:

Measurement of photosynthesis then required an intricate knowledge of
the infrared gas analyser, its daily or hourly calibration, flowmeters,
properties of the materials used, and vigilant leak detection. Similarly,
calculation of CO2 uptake from measured CO2 mole fractions, flow rate,
pressure, temperature, humidity, leaf area, etc. would require an intricate
knowledge of the equations and corrections, and probably access to a
mainframe computer. (p. 1629)

In more recent times, much of this complexity has been simplified.

Scientists are able to purchase off-the-shelf infrared CO2 gas analyzers, LED

arrays, mass airflow valves, etc. Initially, this led to largely mechanical cuvettes

using electronic measuring devices (C.P. Akers, S.W. Akers, & Mitchell, 1985).

As computers began to become more common in the 1980’s, they began to

assist scientists in controlling cuvettes (Knight, C.P. Akers, S.W. Akers, &

Mitchell, 1988). Examples of both can be seen in Figures 2-1 and 2-2.

11

Figure 2-1 Internal and external workings of the Minitron1

1 From “The Minitron System for Growth of Small Plants under Controlled

Environment Conditions,” by C.P. Akers, S.W. Akers, and C.A.Mitchell, 1985,

Journal of the American Society for Horticultural Science, 110(3), p. 354.

Reprinted with permission.

12

Figure 2-2 Internal and external workings of the Minitron II2

Both Minitrons make use of an open system, where atmosphere is blown

into the cuvette, after being thoroughly mixed, and then exits the cuvette. A

similar system is a semi-open system. The semi-open system uses atmosphere

and separate injection of CO2, which maintains an enriched concentration. Both

systems use differential gas analyzers to compare the reference air entering the

cuvette with samples from the outlet of the cuvette to determine the net

photosynthetic rate. Other systems include closed and semi-closed systems.

These systems suffer from problems with H2O absorption by the gas analyzers,

making for inaccurate readings (Mitchell, 1992). The new cuvette developed for

Purdue University is a semi-open system. Known amounts of CO2 are mixed with

ambient atmosphere, injected into the cuvette, and measured using gas

analyzers on the outlet. Like the Minitrons, plants will be grown hydroponically.

2 From “Minitron II System for Precise Control of the Plant Growth Environment,”

by S.L. Knight, C.P. Akers, S.W. Akers, and C.A.Mitchell, 1988, Photosynthetica

22(1), p. 90-98. Reprinted with permission.

13

2.3. Data acquisition systems

Data acquisition systems (DAQ) gather data from various sources, format

it into a desired manner, and present it for analysis. This section will discuss how

data acquisition systems have been used in the realm of agriculture, have been

used in other applications, and finally, some key concepts related to data

acquisition systems.

2.3.1. Data acquisition in agriculture

The Minitrons and other early cuvettes showed continuing progress from

the early days of calculating photosynthesis described by Long et. al (1996). In

more modern times, scientists have begun utilizing data acquisition systems

previously developed for monitoring greenhouses or agricultural fields. DAQs

remove the need for personnel to constantly monitor and control these types of

environments. However, there isn’t just one approach to constructing or using a

DAQ.

One approach includes multiplexing analog signals from multiple

chambers and storing the data on a datalogger for later download to a personal

computer (van Iersel & Bugbee, 2000; Wünsche & Palmer, 1997). As this method

was used in multi-chambered projects, if signal wires are too long it is possible

the analog signals could be corrupted by electromagnetic interference. This is

largely avoided in our design by using shielded, digital signals. When analog

signals are used, they are also shielded and passed through a buffer to provide

proper impedance characteristics.

Timlin et al. (2006) performed experiments examining carbon partitioning

using potato crops. The crops were placed in a transparent outdoor enclosure

allowing the sun to provide light needed for photosynthesis. The potatoes were

grown in that chamber using soil. Resistive heaters and heat exchangers were

used to maintain constant humidity and temperature. CO2 injectors utilized

proportional-integral-derivative algorithms to control the amount of CO2 injected

during the day. The chamber’s control and data collection were performed using

14

a SPARC 5 workstation. Our cuvette consists of an opaque indoor structure.

Lighting, including luminous intensity and wavelength, can be precisely controlled

by the operator via LED banks. We also make use of heat exchangers to

maintain constant humidity and temperature. Mass air flow valves contain

firmware that utilizes proportional-integral-derivative control, with setpoints

entered by the user. As control and data collection are not computationally

expensive in our project, an inexpensive personal computer will be used in lieu of

an expensive workstation.

Mendoza-Jasso et al. (2005) focused on how to implement a DAQ that

could concurrently gather data from several sensors in a greenhouse. This was

accomplished with the use of a Field Programmable Gate Array (FPGA). This

device is unique from other programmable electronic devices in that once

programmed, it doesn’t perform its function using lines of instructions. Rather, the

program interconnects transistors inside to function like a hardwired circuit. This

allows the device to process data much more quickly than traditional electronics,

which rely on instructions that must be sequentially processed at a

predetermined clock frequency. A similar implementation consisted of an FPGA

using a fuzzy logic algorithm (Castañeda-Miranda, Ventura-Ramos, del Rocío

Peniche-Vera, & Herrera-Ruiz, 2006). However, in agriculture there is rarely a

need for concurrent data collection. As plants typically grow or change very little

over relatively short periods of time, sampling periods need only be on the order

of minutes. If multiple sensors are used, collecting their data sequentially within

seconds of each other should not produce erroneous results.

Helmer, Ehret, & Bittman (2005) made use of commercial dataloggers,

with included software, and customized software. Tomato crops were grown in a

greenhouse, and the vines were suspended from overhead crossbeams using

load cells. Load cells were also placed under the crop and, in concert with the

upper load cells, measured the mass of the growing media. Commercial

software, included with the datalogger, was used to measure and collect data

from the load cells and other support sensors. Also, the software allowed users

15

to create and edit the datalogger data collection and control routines. Large data

files could also be partitioned into smaller, more manageable files. It also

contained a graphical user interface for displaying the data real time on a

personal computer. Helmer et al. (2005) then created their own custom software,

written in Visual Basic 6. These performed routine tasks such as file renaming

and file copying and displaying. Our data acquisition system excludes

dataloggers, in part, due to their expense. Also, dataloggers do not provide as

much flexibility, as part or all of their software is previously written. Our data

acquisition system is largely composed of custom software to fully meet the

needs of the scientists involved. Support for Visual Basic 6 ended entirely by

March 2008. Visual C# was used in our system due to continued support and the

availability of the Microsoft .NET framework.

DAQs can also be used in agricultural fields to gather data; however, it is

impractical in these situations to use wires to power and gather data from

sensors. In these cases, data-gathering sensors need to be powered using

batteries or nearby renewable energy. Morais et al. (2008) utilized three nearby

energy sources for their sensors. Sunlight was gathered with a solar panel, wind

energy was captured with a wind turbine, and water-flow energy was gathered

from irrigation pipes using a water turbine. This energy charged a nickel-metal

hydride (NiMH) battery pack and provided weather data without using additional

sensors. These data were then transmitted wirelessly using Zigbee modems to a

data collecting receiver. Vellidis, Tucker, Perry, Kvien, and Bednarz (2008) take a

slightly different approach to a DAQ. Renewable energies were not used, instead

relying on high energy density lithium batteries that last one full growing season.

They also made unconventional use of commercial Radio Frequency

IDentification (RFID) devices. Normally, RFID devices simply return their

identification number when queried by a wireless transceiver. Vellidis et al.

(2008) encoded environmental data from sensors into this identification number.

Both strategies show different ways of using DAQs for agricultural purposes.

16

2.3.2. Other applications for data acquisition

The emerging field of renewable energy has also benefited from data

acquisition systems. As renewable energy sources are often in remote locations,

it is often beneficial to connect data measuring sensors, attached to the energy

sources, wirelessly to data acquisition systems.

Kalaitzakis, Koutroulis, and Vlachos (2003) designed such a system with

two key elements. The first involved using the JAVA platform. JAVA is a system

and programming language that allows for cross-platform implementation (i.e. the

programs can run independent of the hardware it’s run on, using a virtual

machine, and independent of the operating system used). In their system, they

implemented a JAVA collection program, which gathered the data from the data

acquisition systems for storage on a server. Their second element included using

the server to make the data available to remote viewers who used a JAVA applet

to access the server from anywhere in the world via the Internet. While the

aspect of a cross-platform system could be appealing, it was deemed

unnecessary for our applications. We did, however, implement an Internet server

to allow remote viewers read-only access to the data.

Another use of data acquisition systems for renewable energy included

the use of LabVIEW (Koutroulis & Kalaitzakis, 2003). LabVIEW is a proprietary

product from National Instruments that allows scientists and engineers to create

various programs, such as data acquisition and industrial automation, using a

visual programming language (i.e. non-textual programming). This allows those

not trained in traditional programming to develop programs using representations

of equipment or objects they are familiar with into block diagrams, which then

implement the algorithm of their program. Signals for this data acquisition system

come from various sensors which must be properly interfaced with the data

acquisition card installed in a personal computer. The DAQ card is purchased

from National Instruments. This interface is accomplished using filters, amplifiers,

and various other signal conditioning circuits. This approach can be an excellent

alternative for non-traditional programmers. However, LabVIEW programs cannot

17

run independently of the LABVIEW development environment without purchasing

additional components. Even when standalone programs are developed, most

operating systems don’t have the LabVIEW runtime library installed by default.

This would cause problems if a new computer was used or the program was

transferred to another researcher. The DAQ developed at Purdue University was

developed using Visual C# and the Microsoft .NET framework. This will prevent

the software from being used on computers using non-Windows operating

systems, but that comprises less than 10% of personal computers (Net

Applications, 2009), meaning excellent compatibility.

The previous two sections discussed applications of data acquisition

systems. The next section will describe concepts relating to how they work.

2.3.3. Data acquisition concepts

Data acquisition systems are used to gather data, often from analog

sensors, and store or process that data. To do this, the analog information must

be converted into digital data. This task is frequently carried out by an analog-to-

digital converter (ADC).

Most data we gather begins as an analog signal such as the one shown in

Figure 2-3. In order for data to be saved or manipulated by digital machines,

these continuous time signals must be sampled into finite, binary values. This

process is called quantization and is shown in Figure 2-4. The dashed line

represents the digital values stored each time the analog signal is sampled. The

time between these samples is called the sampling period and inversely the

sampling frequency. It is critical that the sampling frequency is at or above the

Nyquist rate, defined as two times the highest frequency in the signal being

measured. This prevents aliasing, an example of which is shown in Figure 2-5

(Burr-Brown, 1994). The asterisks indicate samples from the original signal at an

inadequate sampling period, and the dotted line represents the perceived

waveform.

18

0 1 2 3 4 5 6 7
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2-3 Analog sine wave

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Digital

Value

Digital

Value

Sampling

Period

Figure 2-4 Quantization of sine wave

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2-5 Aliasing (10 cycle signal and 8 sampling points per frame)

As mentioned previously, quantization converts continuous time signals

into discrete time signals. However, the act of quantizing introduces errors. Any

given ADC contains a finite set of binary values to approximate the continuous

signal to. This can be seen in Figure 2-4 as the dotted line rarely equals the

magnitude of the actual signal at any given point in time. The size of the set of

binary values for an ADC is a function of its resolution, as seen in Equation 2

(Tocci, Widmer, & Moss, 2004).

20

)12(n

REFERENCEVRESOLUTION (2)

where

VREFERENCE = voltage differential applied to the reference(s) of the ADC

n = number of binary bits used in the ADC

For example, in an eight bit ADC with 2.55VDC applied to the reference and 1V

applied to the input, each binary bit in the binary number would represent 1mV,

as shown in Equation 3, and the binary number stored would be 100, as shown

in Equation 4.

bitV /001.0)12(55.2 8 (3)

210 01100100100/001.01 bitVV (4)

Typically, in order to quantize an analog signal, a sample is taken using a

sample and hold circuit, so that the ADC can then calculate a proper binary

value. This calculation is most commonly performed with a ramp ADC (also

known as a counting ADC) or a successive approximation ADC. A ramp ADC

uses a clock to increment a voltage from 0V by small steps until that voltage

exceeds the input signal voltage, as seen in Figure 2-6. A successive

approximation ADC uses each bit individually to narrow in on the input signal

voltage. It begins by setting the most significant bit on a digital to analog

convertor (DAC) high, corresponding to one-half of the reference voltage. This

voltage is then compared to the input signal. If the DAC voltage is less than the

signal voltage then the bit remains high, and vice versa. Then the next most

21

significant bit of the DAC is set high, corresponding to any previous voltage that

remained plus one-quarter of the reference voltage, and the voltages are

compared. This continues through to the least significant bit, as shown in Figure

2-7 (Tocci et al, 2004; Maxim, 2001).

Figure 2-6 Counting ADC

Figure 2-7 Successive Approximation ADC

22

This section described how analog information can be converted into

digital data, in a process called quantization. In addition, techniques were

discussed for how ADC’s perform this conversion.

The previous three sections have shown how data acquisition systems are

used to gather data from various sources, format it into a desired manner, and

present it for analysis. They have also shown how data acquisition systems have

been used in the realm of agriculture, have been used in other applications, and

shown some concepts used in data acquisition systems.

In order for mankind to exist long periods of time in space, scientists and

engineers will need to develop new methods of using plants to provide for our

needs and remove our wastes. Plants will need to provide nutrition and oxygen to

astronauts while removing carbon dioxide and various forms of waste. To

develop these new methods, scientists will need to experiment on Earth using

cuvettes. These cuvettes are able to precisely control plant photosynthesis rates

by varying CO2 levels, light levels, and other environmental variables. In order to

measure these variables, a data acquisition system needs to be developed to

properly gather data and control variables inside the cuvette. Different

implementations of DAQs have been explored here with each suited to address

the needs of the researchers. Various concepts associated with DAQs were also

presented.

23

CHAPTER 3. METHODOLOGY

In plant sciences, a cuvette is an enclosure for measuring real-time gas

exchange of plants. The extent to which the environment can be controlled within

the cuvette will determine the accuracy, precision, and amount of gas exchange

(C. Mitchell, personal communication, December 8, 2009).

Essentially, a cuvette is some type of container that surrounds a plant,

part of a plant, or a crop of plants. The cuvette may be transparent or opaque,

indoors or outside, manually controlled or automated. Its purpose is to measure

the growth of a crop by determining its net photosynthetic rate under different

environmental conditions. These conditions may include luminous intensity,

temperature, humidity, soil composition, hydroponic mineral composition, or a

myriad of other factors that affect photosynthesis. Photosynthesis involves

capturing luminous energy and combining it with carbon dioxide and water to

produce carbohydrates, as a form of energy for the plant, with oxygen being a

byproduct. This is shown in Equation 5.

2612622 066 OOHCenergyHCO (5)

The most common way of determining a crop’s net photosynthetic rate, or

growth rate, is to determine the quantity of carbon dioxide consumed by the

plants. If a known amount of carbon dioxide is pumped into the cuvette, the

amount of carbon dioxide present at the outlet of the cuvette is an indicator of

how much was consumed by the crop inside the cuvette. In order to exactly

24

control the input carbon dioxide and exactly measure the output carbon dioxide,

the crop of plants must be isolated inside the cuvette to prevent contamination

from atmospheric air. This means the cuvette must be as close to an air-tight

container as possible, with a slight positive pressure added to prevent any

possible inward atmospheric leakage. Pictures of the cuvette can be seen in

Figures 3-1 and 3-2.

Figure 3-1 Cuvette front

25

Figure 3-2 Cuvette Side

As seen in the proceeding pictures, the cuvette is an opaque container

and is also housed indoors. In order for photosynthesis to take place inside the

cuvette, light must be supplied to the stand of plants inside. “Light-sicles” were

designed by Ortbital Technologies Corporation and suspended within the cuvette

to provide this light, as shown in Figures 3-3 and 3-4.

26

Figure 3-3 Unilluminated “light-sicles”

Figure 3-4 Illuminated “light-sicles”

27

3.1. Cuvette system

A simplified mechanical representation of the cuvette system is shown in

Figure 3-5. The flow from a canister of pure CO2 is controlled by a mass flow

controller. The pure CO2 then merges with ambient air collected from a blower.

This enriched mixture is further controlled by another mass flow controller. This

enriched mixture is split to pass through the cuvette and to bypass it. The

bypassed mixture is then compared, using the differential gas analyzer, to the

cuvette mixture to determine amount of CO2 absorbed by plants inside. The

absolute gas analyzer measures the bypassed mixture.

Figure 3-5 Cuvette system

3.2. Cuvette system components

The data acquisition and control system used for the cuvette is based on a

Supervisory Control and Data Acquisition (SCADA) model. A wiring diagram of

the system can be seen in Figure 3-6. A SCADA system includes several remote

units that perform their respective tasks independently. When a supervisory unit

requests data from a remote unit or sends control commands to the remote unit,

the remote unit responds appropriately and then continues with its original task.

28

Figure 3-6 Cuvette network wiring diagram

29

3.2.1. Supervisory unit

A personal computer, running on Microsoft Windows XP, is used as the

supervisory unit. This supervisory unit runs a custom written program that

collects data and sends control signals, as necessary. In addition to the custom

program, a freeware program was used with the webcamera to take periodic

pictures inside the cuvette.

3.2.2. Serial Switches

Two serial switches, Figure 3-7, are used for communication between the

supervisory unit and its remote units. These switches are five port, expandable

smart switches (Model 232XS5) developed by B & B Electronics Manufacturing

Company. Each switch contains a master port and five slave ports (Ports A-E). A

host device (e.g. a personal computer or another switch) is connected to the

master port. Up to 5 slave devices can be connected to the slave ports on a

single switch. The switches can also be daisy-chained together by connecting the

master port on one switch to Port C of a previous switch. Up to four switches can

be daisy-chained to provide up to 17 serial ports (4 switches * 4 ports + 1 Port C).

Various dipswitches and jumpers are physically set inside each switch to

determine RS232 serial parameters (e.g. BAUD rate, number of data bits, and

parity) and to determine the switch’s expansion address.

In order to switch communications to a particular port, a series of

characters, known as a preamble, must be sent to the switch to inform it that the

following characters are a command for it to follow, as opposed to data to pass

on to a slave device. Following the preamble is the expansion address character

(A-E), if more than one switch is used. Finally, the character corresponding with

the desired serial port is sent. The data format for the serial switches is shown in

Table 3-1.

30

Figure 3-7 Serial switches

Table 3-1
Serial switch data format

Escape Preamble User-defined

Preamble

Expansion

Address (optional)

Port

ESC STX <x> <x>

where

ESC = ASCII escape character

STX = ASCII start of text character

<x> = ASCII capital letters A, B, C, D, or E

31

3.2.3. Webcam and stage

The webcam unit consists of a webcam, a two axis servo motor stage, and

a servo controller. The webcam is a 3.0 megapixel USB webcam (Item: 460668)

from Manhattan Computer Products. A freeware program is used to periodically

or manually collect snapshots from the webcam. The two axis servo motor stage

(Model Number: BPT-KT) and servo controller (Model Number: SSC-32), from

Lynxmotion, are used to adjust the pan and tilt of the webcam, and can be seen

in Figure 3-8. Serial commands (RS232) are sent, via the serial switches, to the

servo controller to adjust the axes. These serial commands are converted to

pulse-width modulated signals needed to command the servo motor stage to new

positions. The positive pulse-width range for the servos is 500-2500

microseconds. The data format for the servo controller is shown in Table 3-2.

Figure 3-8 Two axis servo stage

32

Table 3-2
Servo controller data format

Servo Number Pulse Width (µsec) Carriage Return

#<ch> <i> <cr>

where

<ch> = channel number (0 or 1)

<i> = integer number between 500 and 2500

<cr> = ASCII carriage return

3.2.4. Absolute Gas Analyzer

The absolute infrared gas analyzer (IRGA) is an original equipment

manufacturer, non-dispersive, CO2 gas concentration analyzer (Model: SBA-4)

developed by PP Systems. Since it was an original equipment manufacturer

device (i.e. a circuit board) it was placed inside a metal enclosure with basic

connections for power and communication, as shown in Figure 3-9. The absolute

IRGA works on the premise that di-atomic molecules, such as CO2, absorb

photons in the infrared range. By placing a gas through a chamber with an

infrared source and an infrared detector, measurements can be made about the

photon absorption. The absolute IRGA contains an infrared source and an

infrared detector sensitive to photons at 4.26 microns. The internal chamber is

also heated to 55°C, providing constant temperature within the chamber. To help

alleviate problems associated with changes in gas stagnation in the measuring

chamber, atmospheric pressure, infrared detector sensitivity, etc., the absolute

IRGA implements an Auto-Zero function. The Auto-Zero function activates a

solenoid, as shown in Figure 3-10, which normally connects the CO2 source gas

to the measuring chamber, to temporarily connect a gas containing zero

concentrations of CO2. This allows any CO2 in the chamber to be evacuated out

of the outlet. When in measurement mode, the IRGA measures over a range of

33

0-5000 ppm. In the cuvette system, the absolute IRGA is used to measure the

CO2 concentration of the bypass stream. The data format for the absolute IRGA

is shown in Table 3-3.

Figure 3-9 Absolute IRGA

34

Figure 3-10 Absolute IRGA measurement chamber

Table 3-3
Absolute IRGA data format

M ZERO CO2M CO2AV ANLT MB HT A B C D E ATMP

where

M – represents the current mode (B-Begin, I-Initialization,…, M-Measurement)

ZERO – is a 16-bit value from the ADC the last time the IRGA Auto-Zeroed

CO2M – is a 16-bit value from the ADC at each sampling period

CO2AV – is a 16-bit running average of the CO2M readings

ANLT – is the temperature in Celsius of the measurement chamber

MB – not used in this experiment

HT – not used in this experiment

A through E – not used in this experiment

ATMP – barometric pressure (mbar)

35

3.2.5. Differential Gas Analyzer

The differential infrared gas analyzer (IRGA), Figure 3-11, is a differential,

non-dispersive, CO2 and H2O gas concentration analyzer (Model: LI-6262) made

by LI-COR. The differential IRGA works on a similar principle as the absolute

IRGA in that di-atomic molecules, such as CO2 and H2O, absorb photons in the

infrared range. However, in addition to measuring the absolute CO2

concentration entering the cuvette, the differential IRGA also measures the CO2

from the outlet of the cuvette and collects the difference of the two. It does this by

placing an infrared source on one end of the chamber, as shown in Figure 3-12.

Inside the chamber, gas samples pass through reference (cuvette inlet) and

sample (cuvette outlet) cells. Since this is a CO2 and H2O IRGA, the radiation

from the infrared source needs to be split in order to measure both parameters.

At the other end of the chamber, the infrared radiation is passed through a

dichroic beam splitter. This splitter allows half of the radiation to pass, while

reflecting the remainder at a 45° angle. Half of the infrared light then passes

through a 150nm bandpass optical filter so that the CO2 detector can measure

the 4.26 micron absorption band. The other half of the infrared light passes

through a 50nm optical filter so that the H2O detector can measure the 2.59

micron absorption band. The differential IRGA measures over a range of 0-3000

ppm.

36

Figure 3-11 Differential IRGA

Figure 3-12 Differential IRGA measurement chamber

37

The data format for the differential IRGA is user-defined. It makes

extensive use of “functions” organized into lists. These functions perform a

variety of tasks from performing calibrations to setting the sampling period. They

can also be used to set the units for the CO2 and H2O readings. In other words,

the ADC values are converted into raw millivolts, µ(m)mol mol-1, (k)Pa, µ(m)g g-1,

or several other desired units before being displayed or transmitted.

3.2.6. Temperature and relative humidity

The temperature and relative humidity (RH) unit consists of two identical

temperature and RH probes and an analog-to-digital converter (ADC) module.

The temperature and RH probes (Model: HMP50) are produced by Vaisala. The

ADC module (Model: 232M1A0CT), Figure 3-13, is produced by Integrity

Instruments. The temperature and RH probes consist of a platinum resistance

thermometer (PRT) and a proprietary humidity probe. The PRT is classified as a

pt1000, meaning it is 1000Ω at 0°C. It also has a positive temperature coefficient,

meaning resistance rises with temperature. The temperature and RH probe

measure -10°C to 60°C at ±0.6°C and measure 0-98% humidity at approximately

±4% humidity. The ADC module has eight channels containing 10-bit ADCs that

convert analog signals to serial (RS232) communication. The temperature and

RH probes are buffered to the ADC module using a voltage follower to insure

proper impedance characteristics. The data format is shown in Table 3-4. The

ADC module also contains eight digital-to-analog convertors and a pulse-width

modulation channel for potential future use in the project.

38

Figure 3-13 ADC module

Table 3-4
Analog-to-digital converter data format

Command Sent Response Received

U<ch> U<ch><value>

where

<ch> = channel number between 0 and 7

<value> = integer value between 0 and 1023

39

3.2.7. Mass Flow Controller

The mass flow controller (MFC) units are digital mass flow controllers

(Model: HFC-D-302) developed by Teledyne Hastings. They are used to

measure and control the amount of mass of a given gas that passes through it

over a period of time. An MFC is shown in Figure 3-14. They differ from

volumetric flow controllers in that MFC’s control mass flow independently of

changes in the flow pressure or temperature. However, volumetric units of flow

rate are more familiar to most scientists and engineers, so the MFC’s convert

their mass units unto standard volumetric units. These volumetric units are

considered standard as the internal temperature and pressure of the MFC are

held constant.

Figure 3-14 Mass flow controller

40

The MFC’s begin by taking a small sample from the inlet gas, as shown in

Figure 3-15, while the remainder passes on to outlet. The sample is passed up a

stainless steel tube called the shunt. The shunt passes through an aluminum

block on both of its ends. The aluminum block, shown below the control circuitry,

is in turn in direct contact with the steel chassis of the MFC. This ensures that the

aluminum block, and in turn either end of the shunt, are constantly kept in

equilibrium with ambient temperature. Coils are wrapped around the aluminum

block in order to sense the ambient temperature, and therefore the temperature

of the incoming gas. Symmetric coils of wire are wrapped around the center of

the shunt and heated to 48°C above ambient temperature. These coils, and the

coils wound around the aluminum block, are resistance temperature detectors.

As temperature rises and falls, so too does the resistance of each coil. With no

gas flowing through the shunt, both of its two heated coils of wire remain at 48°C

above ambient, with more heat near the center, as shown in Figure 3-16. Once

gas does begin to flow, the upstream coil begins to lose heat to the gas. This

heat transfer is dependent on the type of gas. Some of the heat from gas is then

returned to the downstream coil, causing it to heat up. This results in a change in

the resistance both of the two coils, with one getting larger and the other getting

smaller. These resistance temperature detectors are each connected in a

Wheatstone bridge circuit along with one of the coils wrapped around the

aluminum block. These circuits ensure that each shunt coil remains at 48°C

above ambient temperature by adding or removing heat as necessary. The

difference of these signals is then compared to a set point voltage defined by the

user, using software. This comparison commands the control valve to open or

close more, setting the flow rate at the outlet of the MFC (Sierra, 2008; Teledyne,

2005).

41

Figure 3-15 Mass flow controller operation

Figure 3-16 Temperature shift

42

Software is used extensively by the MFCs to read/set parameters and to

read/clear error flags. These parameters are grouped into menus. These menus

include the sensor, calibration, gas, valve, and mode menus. An example of the

valve menu is shown in Figure 3-17. The sensor list includes generic information

about the MFC including serial number, firmware version, etc. The calibration list

consists of parameters defined by the manufacturer specific to each MFC. After

calibration, the gas list is filled with parameters to convert raw data measured by

the MFC into appropriate values for various different gases. This is needed as

different gases will react differently to the heating coils and measurement

devices. The valve list contains settings as to how the valve will react and to what

stimuli. The valve’s reaction can be altered by changing PID control coefficients.

In addition, the valve list allows the user to determine appropriate source for

commands. This can include using an external voltage signal or network defined

setpoints. The mode menu contains information about current or latched warning

and error flags set in internal registers.

Figure 3-17 MFC valve menu

43

3.3. Cuvette system software

The software used for the cuvette data acquisition and control system was

developed in Visual Studio and written in the Visual C# programming language.

First, the graphical user interface is discussed, followed by the main software

flow. A feedback loop added to the main software is then discussed. Additional

software used by the cuvette system will be briefly discussed at the end.

3.3.1. Graphical User Interface

An image of the initial graphical user interface (GUI) is shown in Figure 3-

18. Most of the remote units mentioned in earlier sections are represented in the

cuvette program by tabs, as shown in the picture. The tabs for differential and

absolute IRGAs are virtually identical with a graphing control on the left side and

a textbox on the right side. The graphing control, known as ZedGraph, uses a

dynamically linked library (DLL) that is licensed under the Lesser General Public

License (LGPL). This license allows other users to freely use the software library

as long as no changes are made to the library. The textbox is used to display the

raw data being read from the IRGAs.

44

Figure 3-18 Initial GUI and IRGA tabs

Figure 3-19 MFC tabs

45

The tabs for the CO2 and air MFCs are also virtually identical and can be

seen in Figure 3-19. There are controls on the upper left to read and set the

setpoints for each MFC over a period of time. On the right is a textbox, which is

used to display the raw data being read from the MFCs. The bottom left contains

a button used to open the MFC Status window, as shown in Figure 3-20. The

MFC are capable of storing and clearing present and latched warnings and

alarms within registers. The MFC Status window queries and clears these

registers in the upper portion of the window. User-defined setpoints, based on

flow through the device, are used to determine when these warnings or alarms

should be raised. These are set or read in the lower portion of the window.

Figure 3-20 MFC Status window

The tab for the temperature and relative humidity (RH) probes is shown in

Figure 3-21. The left portion of the tab displays the converted values of

temperature and RH for each probe. The right portion of the tab displays the raw

data being read from each probe.

46

Figure 3-21 Temperature and RH tab

Figure 3-22 Webcam stage tab

47

The tab for the webcam stage is shown in Figure 3-22. It contains two

trackbars used for adjusting the stage forward/backward or right/left. Each time a

trackbar is moved its relative position is used to calculate the new position for the

appropriate servo on the stage.

One of features requested by scientists was an indicator showing when

lights inside of the cuvette should or should not be on. This was accomplished

using the Lights tab shown in Figure 3-23. The user sets each setpoint to create

the desired schedule. Each time data is collected, the cuvette program finds the

most recent setpoint time in the past or present, compares it to the current PC

time, and determines from that setpoint’s button whether the lights should be on

or off and displays this in the top right of the main GUI.

Figure 3-23 Lights tab (PC time = 1:08 p.m.)

Other features of the GUI include a pdf help file, about window, and

message box displaying how long the cuvette blower has been on. The blower

time is determined from the cumulative time the program has been running since

48

the last time it was reset by the user. While the program is not running, this value

is saved as an application setting on the user’s computer.

3.3.2. Main software flow

The cuvette program is composed of two main topics: data collection and

storage. Data collection is accomplished by periodically querying or reading each

data device in the system and updating the GUI. Data storage is accomplished

by storing the each new interval of data into an Excel spreadsheet format for later

analysis.

Before data collection can be discussed it is necessary to first describe its

storage. Figure 3-24 shows a flowchart for the load event. It should be noticed

that the very first thing the cuvette program does is query the operating system if

there are any processes called Excel and, if so, with the user’s permission, kill

those processes. This is necessary because if the cuvette program is running

(using Excel) and the user opens another spreadsheet file it will be opened in the

current instance of Excel, rather than opening a new instance. This becomes a

problem if the user inadvertently closes the Excel instance. The cuvette program

would no longer have an Excel instance to write to, causing crashes. So, Excel

should not be used by the user while the program is running. After this check, a

new workbook is opened, and the ZedGraph controls are initialized.

49

Figure 3-24 Load flowchart

Figure 3-25 Excel save flowchart

50

A couple of methods used throughout the cuvette program are saveExcel

and saveAsExcel, shown in Figures 3-25 and 3-26. The method saveExcel

ensures there is a workbook to save before saving. The method saveAsExcel

opens a file dialog to have the user save the filename. The cuvette program uses

separate worksheets for each of the five data devices. As will be below, these

workbooks may be new or preexisting. If they are new, Excel spreadsheets

default to only three worksheets. The cuvette program adds extra worksheets, if

they are needed, and then selects the first worksheet to be ready for data

collection.

Figure 3-26 Excel saveas flowchart

51

Before saving the data to a worksheet, the cuvette program must know

whether to start a new file or use an existing file. Figure 3-27 shows the program

flow if the user elects to start a new spreadsheet. First, the previously defined

saveAsExcel method is called. During this method the user has the option of

cancelling during the open file dialog. So, the program once again checks to see

that a workbook is present. It then activates the file’s hidden attribute in an

attempt to keep the user from manually opening and closing the file, for similar

reasons as the load event method. Then various buttons are enabled or disabled

to allow the program to begin data collection.

Figure 3-27 Excel new file flowchart

52

Figures 3-28 and 3-29 show the program flow to append new data onto a

file with existing data. A file dialog is opened to get the filename. The filename is

then checked to see if it’s empty. If the file exists, it’s then checked to see if it is

already in use by another user. As data files can get rather large, it may take

some time to find end of the file, so a “waiting” window is opened and the main

window minimized to discourage the user from closing the program during this

time. The spreadsheet file is then opened and checked to ensure it has the

proper number of worksheets. It then selects the first worksheet and selects cell

A1 as its range. The cell range is the collection of cells that can be manipulated

by giving a command or, in other words, the currently selected cells. The cuvette

program then sequentially checks each cell in column A for values. It continues

until an empty cell is found. That row is then used on all worksheets to begin

writing new data. The “waiting” window is then closed and the main window is

restored.

53

Figure 3-28 First Excel append file flowchart

54

Figure 3-29 Second Excel append file flowchart

55

After the data storage is completed, the Excel instance must be closed.

This is shown in Figure 3-30. The serial port is closed, if not closed already. The

spreadsheet’s hidden attribute is turned off. The workbooks and instance of

Excel are closed and told to quit. All of the Excel objects created in the load

method are set to null to allow garbage collection to reclaim their memory. It has

been noticed on various PC configurations (various Windows OS’s, versions of

Office, etc.) that this is not sufficient to close the Excel process. This can be seen

in the Windows Task Manager. Similar to the load method, at closing it is

necessary to close all open processes called Excel to ensure a proper exit of the

cuvette program.

Figure 3-30 Excel closing flowchart

56

Now that data storage has been discussed, it’s appropriate to discuss the

data collection procedure. As mentioned previously, the data collection

procedure is accomplished by periodically querying or reading each data device

in the system and updating the GUI. This sounds deceptively straightforward, as

will be shown in a moment.

After the user has started a new spreadsheet or appended to an existing

spreadsheet, the user begins data collection by pressing the Start button at the

bottom of the main window, as shown in Figure 3-31. This enables a timer within

the program. The timer’s period is determined by the Display Delay value at the

top of the window. Each time the timer completes a period data are collected and

displayed in the respective textboxes on each tab. The data are actually saved in

the spreadsheet less frequently. This “save” period is determined by the Save

Delay value at the top of the main window. The timer can be stopped by either

pressing the Stop button at the bottom of the main window or exiting the

program.

Figure 3-31 Main GUI window

57

The first issue that arises from attempting to collect data is an

unresponsive GUI. The data devices communicate through a serial port on the

personal computer. Serial ports are relatively slow to begin with. Add to that the

fact that one of the data devices, the absolute IRGA, is a read-only device that

transmits its data at a fixed period. This means the device can’t simply be

queried for its data. The probability is high that when the serial switches transfer

to the absolute IRGA and data are read that the absolute IRGA will not be

preparing to send its next message. It will already be at some stage of sending a

data message. If this is true, the first data message read will be a fragment of

data and must be thrown away. The cuvette program must then wait for the next

full string of data. The timer that initiates the data collection procedure uses the

same thread that the GUI uses, meaning it can’t do both things at the same time.

So, when the timer completes its period and the data collection procedure is

being run, the GUI of the cuvette program will be unresponsive. If the timer

period is long enough this would still allow the user to use the GUI, but only

between data collection procedures.

So, in order to allow the GUI to remain responsive at all times, the timer

must spawn a new thread for the data collection procedure to run on. Each

thread will take turns using the computer’s processor so that both can run

essentially at same time. However, multithreading introduces two new problems:

resource sharing and thread communication.

Since the timer spawns a new thread each time it completes a period,

there is the potential for more than one data collection procedure to be running at

once. This could happen when the computer is given a heavy workload, such as

opening another program. If the first data collection thread is using the serial port

and a second data collection thread tried to use it too, it would corrupt the data.

Part of the data message would be read to the first thread, with the remainder

going to the second thread. This section of the program is called a critical

section. To protect a critical section from other threads, a software lock is placed

around this section of the program. If the code is in use by a thread, no other

58

thread can access that part of the program until the lock is removed by the

original locking thread.

At this point we have the GUI thread and at least one data collection

thread. So, after the data collection thread is finished it should update the

controls on the GUI. Wrong! The controls on the GUI are not thread safe,

meaning if multiple threads try to change a control the results are unpredictable.

The only thread that should manipulate the GUI controls is the GUI thread. In

order for the data collection thread to safely change the GUI controls it must

invoke the changes through the GUI thread (H. M. Deitel & P. J. Deitel, 2006).

Wergerson (2007) provides an excellent example of how to make changes to the

GUI controls from other threads.

Figures 3-32, 3-33, and 3-34 show the program flow for the data collection

procedure. After the first worksheet is selected, the differential IRGA is read. As

reading from each of the five data devices requires similar steps, they will be

covered in general after the overall program flow has been discussed. The

ZedGraph for the differential IRGA is then updated by sending the data to the

GUI thread. Worksheet two is selected, the absolute IRGA is read, and the

ZedGraph for the absolute IRGA is updated. Then, the CO2 mass flow controller

is read and saved to worksheet three, the air mass flow controller is read and

saved to worksheet four, and the temperature and relative humidity probes are

read (through their ADC) and saved to worksheet five.

59

Figure 3-32 First data collection flowchart

60

Figure 3-33 Second data collection flowchart

61

Figure 3-34 Third data collection flowchart

62

Each of the five data devices is read sequentially and has its data saved

to an appropriate worksheet. The general program flow for reading each device

is shown in Figures 3-35, 3-36, and 3-37. As mentioned previously, when the

serial port is being used it must be locked to prevent other threads from

interfering. The serial port is opened, if not open already. A command is send to

the serial switches to open the appropriate port to communicate with the desired

data device. The serial port on the computer has a buffer that stores incoming

data until it is used. Any data in there when the serial port is first opened is not

valid, so the buffer is cleared. A line of data (denoted by a new line character) is

read from the data device. As mentioned previously, this first data message is

most likely a data fragment, so it is discarded. Another line of data is then read

from the device to get a complete data message. The port on the serial switch is

closed, and the lock on the computer serial port is disabled.

When the data message is read, it is in the form of one large string of

data. First, the individual pieces of data within the large data string must be

broken up or parsed. Each device has a unique set of delimiting characters that

separate the individual pieces of data. For example, the delimiting characters for

the absolute IRGA are a single space, double space, triple space, quadruple

space, quintuple space, carriage return, and newline character. When these

delimiting characters are removed, an array of individual data pieces is left.

However, it is still an array of strings. After a time stamp (from the computer

clock) is inserted at the beginning of the array, the remainder of the array’s string

data is converted into numerical data. This is necessary to store the data

correctly in the spreadsheet. The cell range is selected, based on the length of

the numerical array, and saved to the respective worksheets. Finally, the data

are sent to the GUI thread so that it can update the respective textboxes.

63

Figure 3-35 First general data read flowchart

64

Figure 3-36 Second general data read flowchart

65

Figure 3-37 Third general data read flowchart

66

3.3.3. Feedback loop addition

Recent modifications to the main portion of the software have been

implemented to improve multithreading stability and to introduce a feedback loop.

In Figures 3-35, 3-36, and 3-37, for each device the serial port is locked,

its data read, the serial port is unlocked, and then the data is written to its

respective worksheet. However, since the timer is still periodically spawning data

collection threads, there exists the potential that one of the collection threads

might not finish before another begins. This could lead to multiple threads

reading properly from devices, but saving the data to the wrong worksheet on a

different thread. This potential issue has been rectified by modifying the main

software flow as shown in Figure 3-38.

Figure 3-38 Modified overall software flow

67

This modification to the main software structure stops the timer after the

timer event occurs to prevent new threads from spawning. After the data

collection thread is initiated, the serial port is locked until all of the devices have

been read and their values written to their proper worksheets. After the data

collection thread has finished, the timer is restarted. It may be necessary in the

future to implement a watchdog timer, in case the data collection thread never

finishes, but the most current testing has not shown a need for it.

A feedback loop was also introduced recently. This feedback loop makes

partial use of a PID algorithm (Proportional-Integral-Derivative), using just the P

and I terms for our loop. The feedback loop reads from the absolute infrared gas

analyzer to determine the current concentration of CO2 being sent to the cuvette

chamber. It then calculates the error between the current concentration and a

setpoint the user is attempting to achieve. The error is used to command the

mass flow controller connected to the CO2 canister using Equation 6.

x[n]CO2 MFC = x[n-1]CO2 MFC + KPE + KIEI (6)

where

x[n]CO2 MFC = the next CO2 MFC value

x[n-1]CO2 MFC = the last CO2 MFC value

KP = Proportional Gain (user defined)

E = desired setpoint – current CO2 concentration

KI = Integral Gain (user defined)

EnE
n

I
1

0

I]1[E

68

3.3.4. Additional cuvette system software

In order for the data files to be accessible via the Internet, a simple

webserver was installed and setup on the personal computer. Apache HTTP

Server was chosen due to its ease of use and long history of reliability. It can be

obtained from the Apache Server Foundation website. The server can be further

configured by altering the “httpd” file. When initially setting up the server, all

firewalls should be turned off.

The webcams used in this project needed an application program that

could periodically (like the data devices) capture images of the plants within the

cuvette. A freeware program called AvaCam was used for this project. This

program allows users to manually take pictures, have pictures taken when

motion occurs, or take pictures periodically. It also records video. More than one

webcam can be used with this program, provided two instances of the program

are running. If the webcams are the same model, Windows may get confused by

having two devices with the same driver/name. This may be overcome, as it was

in the cuvette system, by connecting to different USB hubs on the computer.

69

CHAPTER 4. FINDINGS

The purpose of this thesis was to design, assemble, and program a data

acquisition system that can be used for a cuvette. The following findings

demonstrate the ability of the system to carry out these goals.

4.1. Initial Findings

Data was collected from the system without plants over a period of

approximately a week. The data needed to be normalized due to erroneous data.

The erroneous data are shown as spikes in the differential gas analyzer (IRGA)

data, as seen in Figure 4-1.

Figure 4-1 Differential data with erroneous data

70

After investigation, it was determined that data from the various pieces of

lab equipment were occasionally being written to the incorrect worksheet in

Excel. Nearly every day at approximately 2 a.m. to 3 a.m., one to two rows of

data were written to the incorrect worksheet. While the exact cause remains

unknown, the normalized differential data can be seen in Figure 4-2.

Figure 4-2 Normalized differential data

The initial large disturbance was a setup period for the cuvette system.

After that point in time, the differential measurements enter a steady state at

approximately -35µmol/mol. The two spikes, seen after the setup period,

occurred when personnel entered and exited the room, adding CO2 to the

ambient CO2 concentration. Since there were no plants in the cuvette to absorb

CO2, the expected steady state value was anticipated to be around 0µmol/mol.

This would have indicated that the CO2 concentration exiting the cuvette was

71

identical to the concentration that bypassed the cuvette. The offset in our results

was caused by a peristaltic pump, used to push the gasses to the gas analyzers,

which heated some of those gasses. Although an offset is present, Figure 4-3

demonstrates that between the two spikes the differential CO2 concentration is

fairly steady. Table 4-1 shows an average offset of -36.1µmol/mol with a

standard deviation of 6.3µmol/mol.

Figure 4-3 Steady differential concentration

Table 4-1
Differential IRGA statistics

Mean

(µmol/mol)

Standard Deviation

(µmol/mol)

Variance

(µmol/mol)

95% Confidence

Interval (µmol/mol)

-36.1009 6.2810 39.4508 0.1005

72

Figure 4-4 shows data from the absolute gas analyzer over the course of

the week long test. Similar to Figure 4-2, there is a setup time, followed by two

spikes. Figure 4-5 shows the steady state between the two disturbances. The

absolute gas analyzer measures the enriched ambient CO2 concentration, which

varies as people move in and out of the building. Table 4-2 shows the average

ambient CO2 concentration at 419.7µmol/mol with a standard deviation of

12.0µmol/mol.

Figure 4-4 Normalized absolute data

73

Figure 4-5 Steady absolute concentration

Table 4-2
Absolute IRGA statistics

Mean

(µmol/mol)

Standard Deviation

(µmol/mol)

Variance

(µmol/mol)

95% Confidence

Interval (µmol/mol)

419.7009 12.0424 145.0190 0.1943

The mass flow controllers (MFC) maintained flow rates of either pure CO2

or ambient air mixed with pure CO2. Figure 4-6 shows the week long results for

the pure CO2 MFC. The setpoint for the pure CO2 MFC was changed from 0.6slm

to 1.0slm and then back to 0.6slm.

74

Figure 4-6 CO2 MFC data

To ensure that changes in pure CO2 added to the mixed air stream do not

saturate the cuvette chamber, changes in MFC setpoints are time limited. The

setpoint time delay is set by dividing the time delay by the data collection period.

In this case, the time delay was one minute with a 15 second setpoint time delay.

Figure 4-7 shows this stepped response. Table 4-3 shows an average value of

0.6slm and a standard deviation of 0.9E-3slm during the 0.6slm steady state

period.

75

Figure 4-7 CO2 MFC setpoint delay

Table 4-3
CO2 MFC statistics

Mean

(slm)

Standard Deviation

(slm)

Variance

(slm)

95% Confidence

Interval (slm)

0.6000 0.0009 <0.0001 <0.0001

The mixed air MFC data is shown in Figure 4-8. A setpoint delay is also

implemented; however, the change from 15.0slm to 28slm occurred during the

system setup period. Therefore, the stepped setpoints are not uniformly spaced,

but the desired setpoint is achieved within four steps, as shown in Figure 4-9.

Table 4-4 shows an average value of 28.0slm and a standard deviation of 23.0E-

3slm during the 28.0slm steady state period.

76

Figure 4-8 Air MFC data

Figure 4-9 Air MFC setpoint delay

77

Table 4-4
Air MFC statistics

Mean

(slm)

Standard Deviation

(slm)

Variance

(slm)

95% Confidence

Interval (slm)

27.9986 0.0230 0.0005 0.0004

The camera and two axis stage work in concert to allow scientists to view

the crop of plants within the cuvette. The stage has enough freedom of

movement across both axes to allow the camera to take pictures from nearly any

angle. Examples are shown in Figures 4-10 and 4-11 using the freeware program

AvaCam. The figures show the bottom of the cuvette with the hydroponics

chamber underneath. The plants would grow through the holes shown. Also

visible are the bottom of the “light-sicles” or their reflections.

Figure 4-10 First webcam picture

78

Figure 4-11 Second webcam picture

While the week-long test was being performed, the “light-sicles” were

periodically cycled on and off. This had an effect on the temperature and relative

humidity within the cuvette chamber. This can be seen in Figures 4-12 and 4-13.

The two series of data in each figure represent either temperature or humidity for

probes one and two. The two probes performed nearly identically with a

temperature correlation of 0.9988 and a humidity correlation of 0.9985, shown in

Table 4-5. Comparing Figures 4-12 and 4-13 one can also see the inverse

relationship between temperature and humidity within the cuvette.

79

Figure 4-12 Cuvette temperature

Figure 4-13 Cuvette humidity

Table 4-5
Temperature and relative humidity correlation

Temperature (°C) Relative Humidity (%)

0.9988 0.9985

80

4.2. Findings with a feedback loop

After the addition of the PI feedback loop, the results for the absolute gas

analyzer and the pure CO2 mass flow controller were changed, as seen in

Figures 4-14 and 4-15. For approximately two-thirds of the experiment the CO2

concentration setpoint was set to 1000µmol/mol, and it was then set to

600µmol/mol for the remainder. Additionally, Figures 4-16 and 4-17 show the

system’s response to the change in setpoint, reaching steady state within

approximately 5 minutes. Table 4-6 shows the average ambient CO2

concentration at 999.8µmol/mol with a standard deviation of 3.7µmol/mol during

the 1000µmol/mol setpoint. Table 4-7 shows the average value of 0.14slm with a

standard deviation of 6.6E-3slm during the 1000µmol/mol setpoint.

Figure 4-14 Absolute IRGA with feedback

81

Figure 4-15 CO2 MFC with feedback

Figure 4-16 Zoomed in Absolute IRGA with feedback

82

Figure 4-17 Zoomed in CO2 MFC with feedback

Table 4-6
Absolute IRGA statistics during 1000µmol/mol setpoint

Mean

(µmol/mol)

Standard Deviation

(µmol/mol)

Variance

(µmol/mol)

95% Confidence

Interval (µmol/mol)

999.8468 3.7042 13.7208 0.1453

Table 4-7
CO2 MFC statistics during 1000µmol/mol setpoint

Mean

(slm)

Standard Deviation

(slm)

Variance

(slm)

95% Confidence

Interval (slm)

0.1430 0.0066 <0.0001 0.0003

83

CHAPTER 5. CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS

This thesis has discussed why it is important to study the effects of

environmental variables on crops of plants, how data has been previously

collected and used for these kinds of studies, and how new techniques have

been developed to acquire data and control these environments. Along the way,

several lessons have been learned and future contributions may be possible.

Future space exploration cannot in perpetuity rely on Earth for resupplying

astronauts’ needs. Eventually, the missions’ lengths will make this unfeasible. In

order to maximize the chances of future mission success, scientists must study

means of allowing astronauts to become self-reliant in space or on other planets.

This is accomplished by studying the net photosynthetic rate of plants on Earth,

using cuvettes, to determine which plants under what conditions would best

supply astronauts’ needs. In past studies, researchers carried out experiments by

tediously recording measurements and manually making adjustments to growing

environments. This cuvette data acquisition system has largely replaced this

work with an automated system, using common lab equipment and a personal

computer.

In order to automate the task of collecting data from the pre-existing lab

equipment, a common form of data conveyance needed to be employed.

Amongst the “smart” equipment, the only common protocol was RS232 serial

communication. “Dumb” devices, such as the temperature and relative humidity

probes, were converted from analog signals to RS232, so all devices

communicated using the same network. Using a more modern communication

protocol, such as USB, may have improved data communication speeds and

improved the upgradeability of the system, but converting the pre-existing

84

equipments’ data protocol would have added another layer of complexity to the

hardware network and software. Additionally, converting between USB and

RS232 would still limit communication speeds to that of RS232 speeds. Also, as

physiological changes within the crop of plants don’t occur at high speeds, this

system doesn’t warrant that volume of data collection.

In order to provide the greatest amount of flexibility to scientists for data

collection, a custom program was written in the Visual C# programming language

and used the Microsoft .NET framework, available on all Windows OS

computers. The Excel 2003 spreadsheet format was chosen as a receptacle for

the collected data as it is a common file format capable of being statistically

analyzed in Excel or imported to common statistical packages, such as SAS. It

was also chosen as an alternative to flat file formats, such as comma-separated

values (.csv) or text (.txt) files, in order to store data from multiple sources within

one file. Using a flat file would have required multiple flat files or different fixed

locations within a single file. In addition to the custom program, a free webcam

program was used to periodically capture images, and a free webserver program

was used to present data via the Internet. These new hardware and software

techniques have allowed for a more automated and flexible data acquisition

system.

Creating this data acquisition system presented several challenges. Two

of these were software challenges: programmatic interaction with Excel and

multithreading.

Programmatically opening, interacting, and especially closing Excel can

be a very tricky task as noted by Read (2007) and Wills (2008). As Read points

out, interaction with Excel is carried out using Microsoft COM, a precursor to the

Microsoft .NET framework. As such, the interaction is not native to the .NET

framework, introducing a host of potential unseen conflicts. While not

implemented in this thesis, Read is likely correct in that using Visual Basic .NET

would be a better alternative to using Visual C#. This could simply be a separate

class written in VB.NET or a separate dynamically linked library. However, even

85

when VB.NET is used, there are many programming traps to beware of. Wills

explains many of the common mistakes that can prevent COM objects, like

Excel, from closing correctly.

Another software challenge in this project was the use of multithreading.

While multithreading is a common way for tasks to share processor time, great

care must be taken to prevent unexpected results. Wegerson (2007) provides an

excellent example for initiating worker threads separate of the GUI thread and

updating the GUI thread from those worker threads. This is the method employed

in this thesis, but is a somewhat complex process. Instead, as Wergerson points

out, a background worker component would likely make this a more manageable

task to complete.

Using newer techniques for data acquisition systems can help reduce the

cost, time, and overhead involved in gathering data from cuvettes and other

systems. This thesis has demonstrated how using modern software, a personal

computer, and common lab equipment can create an automated data acquisition

system used to gather and analyze data that may one day assist in space

exploration and colonization.

LIST OF REFERENCES

86

LIST OF REFERENCES

Akers, C. P., Akers, S. W., & Mitchell, C. A. (1985). The Minitron System for
Growth of Small Plants under Controlled Environmnet Conditions. Journal
of the American Society for Horticultural Science, 110(3), 353-357.

Bourget, C. M. (2008). An Introduction to light-emitting diodes [Electronic

version]. HortScience, 43(7), 1944-1946.

Bowman, G.E. & Hand, D.W. (1968). A Cuvette Glasshouse for Specifying the

Environmental Requirements of Glasshouse Crops. Acta Horticulturae, 7,
49-60.

Burr-Brown (1994). PRINCIPLES OF DATA ACQUISITION AND CONVERSION.

Retrieved January 12, 2010, http://focus.ti.com/lit/an/sbaa051/sbaa051.pdf

Castañeda-Miranda, R., Ventura-Ramos, E., del Rocío Peniche, R., & Herrera-

Ruiz, G. (2006). Fuzzy Greenhouse Climate Control System based on a
Field Programmable Gate Array. Biosystems Engineering, 94(2), 165-177.

Deitel, H. M., & Deitel, P. J. (2006). C# for Programmers (2nd ed., p. 601). Upper

Saddle River, NJ: Pearson Education, Inc.

Drysdale, Alan. (2001) Life Support Trade Studies Involving Plants. Retrieved

April 4, 2009, http://www.sae.org/technical/papers/ 2001-01-2362

Energizer Battery (2001, November 6). NICKEL-METAL HYDRIDE. Retrieved

April 11, 2009,
http://data.energizer.com/PDFs/nickelmetalhydride_appman.pdf

Ferl, R., Wheeler, R., Levine, H., & Paul, A. (2002). Plants in space. Current

Opinion in Plant Biology, 5, 258-263.

Futron Corporation. (2002, September). Space Transportation Costs: Trends in

Price Per Pound to Orbit 1990-2000.

87

Jones, Harry. (2006). Comparison of Bioregenerative and Physical/Chemical Life
Support Systems. Retrieved April 4, 2009,
http://www.sae.org/technical/papers/2006-01-2082

Hoagland, D. R. & Arnon, D. I. (1938, Revised by Arnon 1950). The Water-

Culture Method for Growing Plants without Soil (Circ. 347). University of
California Berkeley, California Agricultural Experiment Station.

Kalaitzakis, K., Koutroulis, E., & Vlachos, V. (2003). Development of a data

acquisition system for remote monitoring of renewable energy systems.
Measurement, 34, 75-83.

Kliss, M., Heyenga, G., Hoehn, A., & Stodieck, L. (2000). Toward the

Development of a "Salad Machine". Retrieved April 7, 2009,
http://www.sae.org/technical/papers/2000-01-2476

Knight, S. L., Akers, C. P., Akers, S. W., & Mitchell, C. A. (1988). Minitron II

System for Precise Control of the Plant Growth Environments.
Photosynthetica, 22(1), 90-98.

Koutroulis, E., & Kalaitzakis, K. (2003). Development of an integrated data-

acquisition system for renewable energy sources systems monitoring.
Renewable Energy, 28, 139-152.

Levri, J. A., Fisher, J. W., Jones, H. W., Drysdale, A. E., Ewert, A. K., Hanford, A.

J., et al. (2003). Advanced Life Support Equivalent System Mass
Guidelines Document. Retrieved April 7, 2009,
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040021355_20040
08092.pdf

Long, S. P., Farage, P. K., & Garcia, R. L. (1996). Measurement of leaf and

canopy photosynthetic C02 exchange in the field. Journal of Experimental
Botany, 47(304), 1629-1642.

Maxim (2001, March 1). APPLICATION NOTE 1080 Understanding SAR ADCs.

Retrieved January 13, 2010,
http://pdfserv.maxim-ic.com/en/an/AN1080.pdf

Mendoza-Jasso, J., Ornelas-Vargas, G., Castañeda-Miran, R., Ventura-Ramos,

E., Zepeda-Garrido, E., & Herrera-Ruiz, G. (2005). FPGA-based real-time
remote monitoring system. Computers and Electronics in Agriculture,
49(2), 272-285. from ScienceDirect.

Mitchell, C. (1992). Measurement of Photosynthetic Gas Exchange in Controlled

Environments. HortScience, 27(7), 764-767.

88

Mitchell, C. (1994). Bioregenerative life-support systems. Am J Clin Nutr, 60(5),

820S-824S.

Morais, R., Matos, S., Fernandes, M., Valente, A., Soares, A., Ferreira, P., et al.

(2008). Sun, wind and water flow as energy supply for small stationary
data acquisition platforms. Computers and Electronics in Agriculture, 64,
120-132. from ScienceDirect.

Net Applications. (2009, November). Operating System Market Share. Retrieved

December 31, 2009,
http://marketshare.hitslink.com/operating-system-market-
share.aspx?qprid=8&qpmr=100&qpdt=1&qpct=3&qptimeframe=M&qpsp=
130&qpnp=1

Read, D. (2007, March 7). Lessons Learned Automating Excel from .NET.

Retrieved July 15, 208, from
http://www.developerdotstar.com/community/automate_excel_dotnet

Sierra Instruments. (2008). Precise Gas Flow Control: The Sierra Way [Online

video]. Sierra Instruments. Retrieved January 28, 2010, from
http://sierratechsupport.com/video/flow_control.html

Smith, A. L. (1997). Photosynthesis. In Oxford Dictionary of Biochemistry and

Molecular Biology (p. 508).

Teledyne Hastings Instruments (2005, August). HFM-D-300 / HFC-D-302

FLOWMETER/CONTROLLER. Retrieved January 28, 2010, from
http://www.teledyne-hi.com/Manual/Flow/157-112009_HFM-D-300-HFC-
D-302.pdf

Timlin, D., Lutfor Rahman, S. M., Baker, J., Reddy, V. R., Fleisher, D., &

Quebedeaux, B. (2006). Whole Plant Photosynthesis, Development, and
Carbon Partitioning in Potato as a Function of Temperature. Agronomy
Journal, 98, 1195-1203.

Tocci, R. J., Widmer, N. S., & Moss, G. L. (2004). Digital Systems: Principles and

Applications (9th ed., pp. 748-757). Upper Saddle River, NJ: Pearson
Education Inc.

vanIersel, M. W., & Bugbee, B. (2000). A Multiple Chamber, Semicontinuous,

Crop Carbon Dioxide Exchange System: Design, Calibration, and Data
Interpretation. Journal of the American Society for Horticultural Science,
25(1), 86-92.

89

Vellidis, G., Tucker, M., Perry, C., Kvien, C., & Bednarz, C. (2008). A real-time
wireless smart sensor array for scheduling irrigation. Computers and
Electronics in Agriculture, 61, 44-50. from ScienceDirect

Venere, E. (2002, March 12). Purdue to help NASA create life-supporting

ecosystem in space. Purdue News Service. Retrieved April 11, 2009,
http://news.uns.purdue.edu/UNS/html4ever/020312.Mitchell.NASAcenter.
html

Wegerson, W. (2007, September 1). Safely Update .Net Winform from Threads

or Timer Ticks. Retrieved February 11, 2010, from
http://www.omegacoder.com/?p=117

Wills, M. (2008, May 15). COM Interop. Retrieved July 15, 2008, from

http://ausdotnet.wordpress.com/2008/05/15/com-interop-welcome-to-pain

Wünsche, J., & Palmer, J. (1997). Portable Through-flow Cuvette System for

Measuring Whole-canopy Gas Exchange of Apple Trees in the Field.
HortScience, 32(4).

APPENDIX

90

APPENDIX .

Main.cs

using System;

using System.Collections;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Diagnostics;

using System.IO;

using System.Reflection;

using System.Runtime.InteropServices;

using System.Text;

using System.Threading;

using System.Windows.Forms;

using Excel = Microsoft.Office.Interop.Excel;

using ZedGraph;

namespace Cuvette

{

 public partial class mainForm : Form

 {

 #region declarations

 static Excel.Application excelApp;

 static Excel.Workbooks excelBooks;

 static Excel.Workbook excelBook;

 static Excel.Sheets excelSheets;

 static Excel.Worksheet excelSheet;

 static Excel.Range excelRange;

 const byte STX = 0x02;

 const byte EOT = 0x04;

 const byte ESC = 0x1b;

 const byte A = 0x41;

 const byte B = 0x42;

 const byte C = 0x43;

 const byte D = 0x44;

 const byte E = 0x45;

 int diffTickStart = 0;

 double diffGraphValue = 0;

 int absTickStart = 0;

 double absGraphValue = 0;

91

 byte[] closePort = { ESC, STX, EOT };

 bool firstThreadCreated = false;

 bool extraProcessAtStartup = false;

 int excelCurrentRow = 1;

 string excelFilename = null;

 string excelCurrentDirectory = Application.StartupPath;

 decimal co2MFCNewValue = 0;

 decimal co2AbsSetValue = 0;

 decimal co2AbsNewValue = 0;

 decimal co2AbsErrorValue = 0;

 decimal co2ProportionalConstant = 0;

 decimal co2IntegralConstant = 0;

 decimal co2Integral = 0;

 decimal co2Sum = 0;

 decimal airSpacing = 0;

 decimal airSum = 0;

 int airIterations = 1;

 int airNumIterations = 0;

 DateTime nextSaveTime;

 DateTime lastSaveTime;

 Thread readThread;

 DateTime lastBlowerTimeUpdate;

 #endregion

 public mainForm()

 {

 InitializeComponent();

 //subscribe to thread event

 btnMFC += new buttonMFC(MFCbtn_readTick);

 readDiff += new readTimer(DiffIRGA_readTick);

 readAbs += new readTimer(AbsIRGA_readTick);

 readCO2 += new readTimer(CO2MFV_readTick);

 readAir += new readTimer(AirMFV_readTick);

 readTRH += new readTimer(ReadTempRH_readTick);

 disTRH += new displayTRH(DisplayTempRH_readTick);

 }

 #region Excel

 private void newFileToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 try

 {

 saveAsExcel();

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

92

 errorMessage = String.Concat(errorMessage, " Line:

");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 //if user didn't hit cancel

 //hide file so user doesn't open file in use

 //enable/disable components

 if (excelFilename != null)

 {

 File.SetAttributes(excelFilename,

FileAttributes.Hidden);

 newFileToolStripMenuItem.Enabled = false;

 appendExistingFileToolStripMenuItem.Enabled =

false;

 btnStart.Enabled = true;

 btnStart.Focus();

 }

 }

 private void

appendExistingFileToolStripMenuItem_Click(object sender, EventArgs e)

 {

 DialogResult openResult = ofdAppend.ShowDialog();

 //exit if user cancels

 if (openResult == DialogResult.Cancel)

 return;

 excelFilename = ofdAppend.FileName;

 if (excelFilename == "" || excelFilename == null)

 {

 MessageBox.Show("File does not exist!", "Error",

 MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 else

 {

 excelFilename = ofdAppend.FileName;

 try

 {

 //see if file is already open

 using (FileStream fs =

File.OpenWrite(excelFilename))

 {

 }

 File.SetAttributes(excelFilename,

FileAttributes.Hidden);

 }

 catch

 {

 //file is open by another app

 MessageBox.Show("File already in use. Please

close the file and try again.\r\n\r\n" +

93

 "Note: If you don't have Excel open check

the Processes tab \r\n" +

 "in Windows Task Manager and end any

processes called EXCEL.EXE",

 "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 return;

 }

 try

 {

 /**

 * if the file to append to is too long

 * the program will look like it crashed

 * so this is added to to reassure user

 * and hopefully prevent user from closing

 * the program

 * ***************************************/

 Form pleaseWait = new Form();

 pleaseWait.Size = new Size(200, 150);

 pleaseWait.Text = " ";

 pleaseWait.ControlBox = false;

 pleaseWait.StartPosition =

FormStartPosition.CenterScreen;

 pleaseWait.FormBorderStyle =

FormBorderStyle.FixedToolWindow;

 pleaseWait.ShowInTaskbar = false;

 System.Windows.Forms.Label lblWait = new

System.Windows.Forms.Label();

 lblWait.Parent = pleaseWait;

 lblWait.Location = new Point(65, 25);

 lblWait.Size = new Size(70, 45);

 lblWait.Text = " Loading \r\n\r\nPlease

wait...";

 ProgressBar pgrWait = new ProgressBar();

 pgrWait.Parent = pleaseWait;

 pgrWait.Location = new Point(25, 90);

 pgrWait.Size = new Size(150, 20);

 pgrWait.Style = ProgressBarStyle.Marquee;

 pgrWait.Step = 10;

 pgrWait.MarqueeAnimationSpeed = 20;

 pleaseWait.Show();

 //minimize main form

 this.WindowState = FormWindowState.Minimized;

 //put focus on please wait form

 //and repaint form

 pleaseWait.Activate();

 Application.DoEvents();

 //open file

 excelBook =

excelApp.Workbooks.Open(excelFilename, Missing.Value, Missing.Value,

94

 Missing.Value, Missing.Value,

Missing.Value, Missing.Value, Missing.Value,

 Missing.Value, Missing.Value,

Missing.Value, Missing.Value, Missing.Value,

 Missing.Value, Missing.Value);

 excelSheets = excelBook.Worksheets;

 if (excelSheets.Count != 5)

 {

 if (excelSheets.Count != 4)

 {

 excelSheets.Add(Missing.Value,

excelSheets.get_Item(3), Missing.Value, Missing.Value);

 }

 excelSheets.Add(Missing.Value,

excelSheets.get_Item(4), Missing.Value, Missing.Value);

 }

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(1);

 //find first empty cell in column a and start

writing from there

 excelRange = excelSheet.get_Range("A" +

excelCurrentRow, Missing.Value);

 while (excelRange.Value2 != null)

 {

 Application.DoEvents();

 excelCurrentRow++;

 excelRange = excelSheet.get_Range("A" +

excelCurrentRow, Missing.Value);

 }

 //close please wait form

 //and restore main form

 pleaseWait.Close();

 this.WindowState = FormWindowState.Normal;

 //Return control of Excel to the user.

 excelApp.UserControl = true;

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, "

Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 }

 newFileToolStripMenuItem.Enabled = false;

 appendExistingFileToolStripMenuItem.Enabled = false;

95

 btnStart.Enabled = true;

 btnStart.Focus();

 }

 private void saveAsExcel()

 {

 DialogResult saveResult = sfdExit.ShowDialog();

 //exit if user cancels

 if (saveResult == DialogResult.Cancel)

 return;

 excelFilename = sfdExit.FileName;

 excelBook = excelBooks.Add(Missing.Value);

 try

 {

 excelBook.SaveAs(sfdExit.FileName,

Excel.XlFileFormat.xlWorkbookNormal, Missing.Value,

 Missing.Value, Missing.Value, Missing.Value,

Excel.XlSaveAsAccessMode.xlNoChange,

 Missing.Value, Missing.Value, Missing.Value,

Missing.Value, Missing.Value);

 excelSheets = excelBook.Worksheets;

 excelSheets.Add(Missing.Value,

excelSheets.get_Item(3), Missing.Value, Missing.Value);

 excelSheets.Add(Missing.Value,

excelSheets.get_Item(4), Missing.Value, Missing.Value);

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(1);

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, " Line:

");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 }

 private void saveExcel()

 {

 //make sure there is something to save to

 if (excelBook == null)

 {

 MessageBox.Show("Please start or open a file

first.", "Error",

 MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 else

 {

96

 try

 {

 excelBook.Save();

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, "

Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 }

 }

 #endregion

 #region buttons

 private void btnStart_Click(object sender, EventArgs e)

 {

 lastSaveTime = DateTime.Now;

 nextSaveTime =

DateTime.Now.AddMinutes((double)nudSaveDataDelay.Value);

 // Save the beginning time for reference

 diffTickStart = Environment.TickCount;

 absTickStart = Environment.TickCount;

 //don't let user stop thread if

 //one hasn't been created

 if (firstThreadCreated == true)

 {

 btnStop.Enabled = true;

 btnStop.Focus();

 }

 btnStart.Enabled = false;

 if (sp1.IsOpen == false)

 sp1.Open();

 tmrRead.Enabled = true;

 }

 private void btnStop_Click(object sender, EventArgs e)

 {

 tmrRead.Enabled = false;

 btnStop.Enabled = false;

 btnStart.Enabled = true;

 btnStart.Focus();

 }

 private void btnClear_Click(object sender, EventArgs e)

 {

 txtAbsIRGA.Clear();

 txtDiffIRGA.Clear();

 txtCO2MFV.Clear();

97

 txtAirMFV.Clear();

 txtTempRH.Clear();

 }

 #endregion

 #region periodic data

 private void nudTimeDelay_ValueChanged(object sender, EventArgs

e)

 {

 //change timer interval

 tmrRead.Interval =

Convert.ToInt32(nudDisplayDataDelay.Value) * 1000;

 }

 private void nudSaveDataDelay_ValueChanged(object sender,

EventArgs e)

 {

 nextSaveTime =

lastSaveTime.AddMinutes((double)nudSaveDataDelay.Value);

 }

 #region periodic delegates, events, methods, and timer event

 //create delegate for UI screen updating

 public delegate void buttonMFC();

 public delegate void readTimer(object values);

 public delegate void displayTRH(object values);

 public event buttonMFC btnMFC;

 public event readTimer readDiff;

 public event readTimer readAbs;

 public event readTimer readCO2;

 public event readTimer readAir;

 public event readTimer readTRH;

 public event displayTRH disTRH;

 //method for thread event

 private void MFCbtn_readTick()

 {

 btnCO2MFCStatus.Enabled = true;

 btnAirMFCStatus.Enabled = true;

 btnAirSetFlow.Enabled = true;

 btnAirReadFlow.Enabled = true;

 trbServo0.Enabled = true;

 trbServo1.Enabled = true;

 tmrRead.Enabled = true;

 }

 //method for thread event

 private void DiffIRGA_readTick(object values)

 {

 txtDiffIRGA.Text = txtDiffIRGA.Text + values + "\n";

 txtDiffIRGA.SelectionStart = txtDiffIRGA.Text.Length;

 txtDiffIRGA.ScrollToCaret();

 }

 //method for thread event

98

 private void AbsIRGA_readTick(object values)

 {

 txtAbsIRGA.Text = txtAbsIRGA.Text + values + "\n";

 txtAbsIRGA.SelectionStart = txtAbsIRGA.Text.Length;

 txtAbsIRGA.ScrollToCaret();

 }

 //method for thread event

 private void CO2MFV_readTick(object values)

 {

 txtCO2MFV.Text = txtCO2MFV.Text + values + "\r\n";

 txtCO2MFV.SelectionStart = txtCO2MFV.Text.Length;

 txtCO2MFV.ScrollToCaret();

 }

 //method for thread event

 private void AirMFV_readTick(object values)

 {

 txtAirMFV.Text = txtAirMFV.Text + values + "\r\n";

 txtAirMFV.SelectionStart = txtAirMFV.Text.Length;

 txtAirMFV.ScrollToCaret();

 }

 //method for thread event

 private void ReadTempRH_readTick(object values)

 {

 txtTempRH.Text = txtTempRH.Text + values + "\r\n";

 txtTempRH.SelectionStart = txtTempRH.Text.Length;

 txtTempRH.ScrollToCaret();

 }

 private void DisplayTempRH_readTick(object values)

 {

 double[,] dbValues = (double[,])values;

 for (int i = 0; i < 4; i++)

 {

 dbValues[0, i] = Math.Round(dbValues[0, i], 2);

 }

 lblProbe1Temp.Text = dbValues[0, 0].ToString();

 lblProbe1RH.Text = dbValues[0, 1].ToString();

 lblProbe2Temp.Text = dbValues[0, 2].ToString();

 lblProbe2RH.Text = dbValues[0, 3].ToString();

 }

 private void tmrRead_Tick(object sender, EventArgs e)

 {

 btnCO2MFCStatus.Enabled = false;

 btnAirMFCStatus.Enabled = false;

 btnAirSetFlow.Enabled = false;

 btnAirReadFlow.Enabled = false;

 trbServo0.Enabled = false;

 trbServo1.Enabled = false;

 tmrRead.Enabled = false;

 //create new thread so main GUI thread doesn't lag

99

 readThread = new Thread(new ThreadStart(multiRead));

 readThread.IsBackground = true;

 readThread.Start();

 if (firstThreadCreated == false)

 {

 btnStop.Enabled = true;

 btnStop.Focus();

 firstThreadCreated = true;

 }

 }

 #endregion

 private void multiRead()

 {

 try

 {

 //update blower time

 Cuvette.Properties.Settings.Default.BlowerTime +=

DateTime.Now - lastBlowerTimeUpdate;

 lastBlowerTimeUpdate = DateTime.Now;

 Cuvette.Properties.Settings.Default.Save();

 //lock serial port

 lock (sp1)

 {

 //read from equipment

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(1);

 readLICOR();

 updateDiffGraph();

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(2);

 readSBA4();

 updateAbsGraph();

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(3);

 readCO2MFC();

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(4);

 readAirMFC();

 excelSheet =

(Excel.Worksheet)excelSheets.get_Item(5);

 readTempRH();

 sp1.Close();

 }

 //write back to UI thread

 this.Invoke(this.btnMFC);

 //save to Excel if appropriate

 if (nextSaveTime <= DateTime.Now)

 {

 saveExcel();

 lastSaveTime = DateTime.Now;

 nextSaveTime =

lastSaveTime.AddMinutes((double)nudSaveDataDelay.Value);

 excelCurrentRow++;

 }

100

 //calculate PID

 co2AbsErrorValue = co2AbsSetValue - co2AbsNewValue;

 co2Integral = co2Integral + co2AbsErrorValue;

 if (co2Integral > 10)

 {

 co2Integral = 10;

 }

 else if (co2Integral < -10)

 {

 co2Integral = -10;

 }

 co2Sum = co2MFCNewValue + co2ProportionalConstant *

co2AbsErrorValue + co2IntegralConstant * co2Integral;

 if (co2Sum < 0)

 {

 co2Sum = 0;

 }

 sendCommand(D, co2Sum);

 //check lights

 checkLights();

 }

 catch (Exception theException)

 {

 if (readThread.IsAlive)

 readThread.Abort();

 }

 finally

 {

 if (sp1.IsOpen)

 sp1.Close();

 }

 }

 private void readLICOR()

 {

 string LICORValues = null;

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToLICOR = { ESC, STX, B, D };

 //write to serial switch

 sp1.Write(switchToLICOR, 0, switchToLICOR.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 LICORValues = sp1.ReadLine();

 //first readline reads end of message fragment

 //second readline get full message

 while (sp1.BytesToRead == 0) ;

 LICORValues = sp1.ReadLine();

101

 sp1.Write(closePort, 0, closePort.Length);

 //parse string into array

 string[] LICORdelimiteArray = { " ", "\r", "\n" };

 string[] LICORParsedValues =

LICORValues.Split(LICORdelimiteArray,

StringSplitOptions.RemoveEmptyEntries);

 //convert string[] to double[]

 double[,] LICORDoubleParsedValues = new double[1,

LICORParsedValues.Length];

 int i = 0;

 double LICORresult;

 //if not numeric don't write to excel

 //to remove auto header

 if (double.TryParse(LICORParsedValues[i], out LICORresult))

 {

 //write timestamp

 writeTimeStamp();

 //convert string to double

 foreach (string x in LICORParsedValues)

 {

 LICORDoubleParsedValues[0, i] =

Convert.ToDouble(x);

 i++;

 }

 if (LICORParsedValues.Length == 4)

 {

 //write to excel

 excelRange = excelSheet.get_Range("B" +

excelCurrentRow, Missing.Value);

 excelRange = excelRange.get_Resize(1,

LICORDoubleParsedValues.Length);

 excelRange.Value2 = LICORDoubleParsedValues;

 diffGraphValue = LICORDoubleParsedValues[0, 0];

 }

 }

 //write back to UI thread

 this.Invoke(this.readDiff, new object[] { LICORValues });

 }

 private void readSBA4()

 {

 string SBA4Values = null;

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToSBA4 = { ESC, STX, B, E };

 //write to serial switch

102

 sp1.Write(switchToSBA4, 0, switchToSBA4.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 SBA4Values = sp1.ReadLine();

 //first readline reads end of message fragment

 //second readline get full message

 while (sp1.BytesToRead == 0) ;

 SBA4Values = sp1.ReadLine();

 sp1.Write(closePort, 0, closePort.Length);

 //parse string into array

 string[] SBA4delimiteArray = { " ", " ", " ", " ", "

", "\r", "\n" };

 string[] SBA4LongParsedValues =

SBA4Values.Split(SBA4delimiteArray,

StringSplitOptions.RemoveEmptyEntries);

 //write timestamp

 writeTimeStamp();

 //remove first element

 ArrayList SBA4ParsedValues = new

ArrayList(SBA4LongParsedValues.Length);

 SBA4ParsedValues.AddRange(SBA4LongParsedValues);

 if ((string)SBA4ParsedValues[0] == "M")

 {

 SBA4ParsedValues.Remove("M");

 //convert string to double

 double[,] SBA4DoubleParsedValues = new double[1,

SBA4ParsedValues.Count];

 int i = 0;

 foreach (string x in SBA4ParsedValues)

 {

 SBA4DoubleParsedValues[0, i] = Convert.ToDouble(x);

 i++;

 }

 if (SBA4LongParsedValues.Length == 13)

 {

 co2AbsNewValue = (decimal)SBA4DoubleParsedValues[0,

2];

 //write to excel

 excelRange = excelSheet.get_Range("B" +

excelCurrentRow, Missing.Value);

 excelRange = excelRange.get_Resize(1,

SBA4DoubleParsedValues.Length);

 excelRange.Value2 = SBA4DoubleParsedValues;

 absGraphValue = SBA4DoubleParsedValues[0, 2];

 }

 }

 //write back to UI thread

103

 this.Invoke(this.readAbs, new object[] { SBA4Values });

 }

 private void readCO2MFC()

 {

 string CO2MFCValues = null;

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToCO2MFC = { ESC, STX, A, D };

 //write to serial switch

 sp1.Write(switchToCO2MFC, 0, switchToCO2MFC.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //get flow

/**

 * Backslash characters are needed, because when

changing

 * to a different port two characters are sent through

the

 * new port. Not backslashing results in error from

MFVs.

 *

***/

 sp1.Write("\b\b\bf\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 CO2MFCValues = sp1.ReadTo("\r");

 sp1.Write(closePort, 0, closePort.Length);

 //write timestamp

 writeTimeStamp();

 //convert string to double

 string[] CO2MFCdelimiteArray = { "*" };

 string[] CO2MFCParsedValues =

CO2MFCValues.Split(CO2MFCdelimiteArray,

StringSplitOptions.RemoveEmptyEntries);

 double[,] CO2MFCDoubleParsedValues = new double[1,

CO2MFCParsedValues.Length];

 CO2MFCDoubleParsedValues[0, 0] =

Convert.ToDouble(CO2MFCParsedValues[0]);

 co2MFCNewValue = (decimal)CO2MFCDoubleParsedValues[0, 0];

 if (CO2MFCParsedValues.Length == 1)

 {

 //write to excel

 excelRange = excelSheet.get_Range("B" +

excelCurrentRow, Missing.Value);

104

 excelRange = excelRange.get_Resize(1,

CO2MFCParsedValues.Length);

 excelRange.Value2 = CO2MFCDoubleParsedValues;

 }

 //write back to UI thread

 this.Invoke(this.readCO2, new object[] { CO2MFCValues });

 }

 private void readAirMFC()

 {

 string AirMFCValues = null;

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToAirMFC = { ESC, STX, A, E };

 //write to serial switch

 sp1.Write(switchToAirMFC, 0, switchToAirMFC.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //get flow

/**

 * Backslash characters are needed, because when

changing

 * to a different port two characters are sent through

the

 * new port. Not backslashing results in error from

MFVs.

 *

***/

 sp1.Write("\b\b\bf\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 AirMFCValues = sp1.ReadTo("\r");

 sp1.Write(closePort, 0, closePort.Length);

 //write timestamp

 writeTimeStamp();

 //convert string to double

 string[] AirMFCdelimiteArray = { "*" };

 string[] AirMFCParsedValues =

AirMFCValues.Split(AirMFCdelimiteArray,

StringSplitOptions.RemoveEmptyEntries);

 double[,] AirMFCDoubleParsedValues = new double[1,

AirMFCParsedValues.Length];

 AirMFCDoubleParsedValues[0, 0] =

Convert.ToDouble(AirMFCParsedValues[0]);

105

 if (AirMFCParsedValues.Length == 1)

 {

 //write to excel

 excelRange = excelSheet.get_Range("B" +

excelCurrentRow, Missing.Value);

 excelRange = excelRange.get_Resize(1, 1);

 excelRange.Value2 = AirMFCDoubleParsedValues;

 }

 //write back to UI thread

 this.Invoke(this.readAir, new object[] { AirMFCValues });

 }

 private void readTempRH()

 {

 string TempRHValues = null;

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToTempRH = { ESC, STX, A, A };

 //write to serial switch

 sp1.Write(switchToTempRH, 0, switchToTempRH.Length);

 //extra write/read to prepare A->D converter

 sp1.Write("\r");

 TempRHValues = sp1.ReadTo("\r");

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //get flow

 sp1.Write("U0\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 TempRHValues = sp1.ReadTo("\r");

 for (int i = 1; i < 4; i++)

 {

 sp1.Write("U" + i.ToString() + "\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 TempRHValues = TempRHValues + " " +

sp1.ReadTo("\r");

 }

 sp1.Write(closePort, 0, closePort.Length);

 //write timestamp

 writeTimeStamp();

 //convert string to double

 string[] TempRHdelimiteArray = { " " };

 string[] TempRHParsedValues =

TempRHValues.Split(TempRHdelimiteArray,

StringSplitOptions.RemoveEmptyEntries);

106

 double[,] TempRHDoubleParsedValues = new double[1,

TempRHParsedValues.Length];

 for (int i = 0; i < 4; i++)

 {

 TempRHParsedValues[i] = TempRHParsedValues[i].Remove(0,

2);

 TempRHDoubleParsedValues[0, i] =

Convert.ToDouble(Convert.ToInt32(TempRHParsedValues[i], 16));

 }

 //convert Temp & RH from ADC values to correct values

 /*equations are simplified, for full explanation see

 * analog conversion-1(modified).xls*/

 TempRHDoubleParsedValues[0, 0] =

TempRHDoubleParsedValues[0, 0] * 200 / 1024 - 40;

 TempRHDoubleParsedValues[0, 1] =

TempRHDoubleParsedValues[0, 1] * 200 / 1024;

 TempRHDoubleParsedValues[0, 2] =

TempRHDoubleParsedValues[0, 2] * 200 / 1024 - 40;

 TempRHDoubleParsedValues[0, 3] =

TempRHDoubleParsedValues[0, 3] * 200 / 1024;

 if (TempRHParsedValues.Length == 4)

 {

 //write to excel

 excelRange = excelSheet.get_Range("B" +

excelCurrentRow, Missing.Value);

 excelRange = excelRange.get_Resize(1,

TempRHDoubleParsedValues.Length);

 excelRange.Value2 = TempRHDoubleParsedValues;

 }

 //write back to UI thread

 this.Invoke(this.readTRH, new object[] { TempRHValues });

 this.Invoke(this.disTRH, new object[] {

TempRHDoubleParsedValues });

 }

 private void tabControl1_SelectedIndexChanged(object sender,

EventArgs e)

 {

 switch (tabControl1.SelectedIndex)

 {

 case 0:

 {

 txtDiffIRGA.SelectionStart =

txtDiffIRGA.Text.Length;

 txtDiffIRGA.ScrollToCaret();

 break;

 }

 case 1:

 {

 txtAbsIRGA.SelectionStart =

txtAbsIRGA.Text.Length;

 txtAbsIRGA.ScrollToCaret();

 break;

107

 }

 case 2:

 {

 txtCO2MFV.SelectionStart =

txtCO2MFV.Text.Length;

 txtCO2MFV.ScrollToCaret();

 break;

 }

 case 3:

 {

 txtAirMFV.SelectionStart =

txtAirMFV.Text.Length;

 txtAirMFV.ScrollToCaret();

 break;

 }

 }

 }

 private void writeTimeStamp()

 {

 string CurrentTime = DateTime.Now.ToString();

 excelRange = excelSheet.get_Range("A" + excelCurrentRow,

Missing.Value);

 excelRange = excelRange.get_Resize(1, 1);

 excelRange.Value2 = CurrentTime;

 }

 private void updateDiffGraph()

 {

 // Make sure that the curvelist has at least one curve

 if (zedGraphControl1.GraphPane.CurveList.Count <= 0)

 return;

 // Get the first CurveItem in the graph

 LineItem curve = zedGraphControl1.GraphPane.CurveList[0] as

LineItem;

 if (curve == null)

 return;

 // Get the PointPairList

 IPointListEdit list = curve.Points as IPointListEdit;

 // If this is null, it means the reference at curve.Points

does not

 // support IPointListEdit, so we won't be able to modify it

 if (list == null)

 return;

 // Time is measured in seconds

 double time = (Environment.TickCount - diffTickStart) /

1000.0;

 // 3 seconds per cycle

 list.Add(time, Convert.ToDouble(diffGraphValue));

108

 // Keep the X scale at a rolling 300 second interval, with

one

 // major step between the max X value and the end of the

axis

 Scale xScale = zedGraphControl1.GraphPane.XAxis.Scale;

 if (time > xScale.Max - xScale.MajorStep)

 {

 xScale.Max = time + xScale.MajorStep;

 xScale.Min = xScale.Max - 300.0;

 }

 // Make sure the Y axis is rescaled to accommodate actual

data

 zedGraphControl1.AxisChange();

 // Force a redraw

 zedGraphControl1.Invalidate();

 }

 private void updateAbsGraph()

 {

 // Make sure that the curvelist has at least one curve

 if (zedGraphControl2.GraphPane.CurveList.Count <= 0)

 return;

 // Get the first CurveItem in the graph

 LineItem curve = zedGraphControl2.GraphPane.CurveList[0] as

LineItem;

 if (curve == null)

 return;

 // Get the PointPairList

 IPointListEdit list = curve.Points as IPointListEdit;

 // If this is null, it means the reference at curve.Points

does not

 // support IPointListEdit, so we won't be able to modify it

 if (list == null)

 return;

 // Time is measured in seconds

 double time = (Environment.TickCount - absTickStart) /

1000.0;

 // 3 seconds per cycle

 list.Add(time, Convert.ToDouble(absGraphValue));

 // Keep the X scale at a rolling 300 second interval, with

one

 // major step between the max X value and the end of the

axis

 Scale xScale = zedGraphControl2.GraphPane.XAxis.Scale;

 if (time > xScale.Max - xScale.MajorStep)

 {

 xScale.Max = time + xScale.MajorStep;

 xScale.Min = xScale.Max - 300.0;

 }

109

 // Make sure the Y axis is rescaled to accommodate actual

data

 zedGraphControl2.AxisChange();

 // Force a redraw

 zedGraphControl2.Invalidate();

 }

 #endregion

 #region help/about

 private void helpToolStripMenuItem1_Click(object sender,

EventArgs e)

 {

 try

 {

 Directory.SetCurrentDirectory(excelCurrentDirectory);

 System.Diagnostics.Process.Start("Cuvette Help.pdf");

 }

 catch

 {

 MessageBox.Show("Help file not found.\r\nPlease place

help file in the same folder as the program.\r\n",

 "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 }

 private void aboutToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 About About = new About();

 About.ShowDialog();

 }

 private void exitToolStripMenuItem_Click(object sender,

EventArgs e)

 {

 this.Close();

 }

 #endregion

 #region servos

 private void trbServo0_Scroll(object sender, EventArgs e)

 {

 sendCommand(0, trbServo0.Value);

 }

 private void trbServo1_Scroll(object sender, EventArgs e)

 {

 sendCommand(1, trbServo1.Value);

 }

 #endregion

 #region icon

 private void cmsAbout_Click(object sender, EventArgs e)

 {

 About About = new About();

 About.ShowDialog();

110

 }

 private void cmsHelp_Click(object sender, EventArgs e)

 {

 try

 {

 Directory.SetCurrentDirectory(excelCurrentDirectory);

 System.Diagnostics.Process.Start("Cuvette Help.pdf");

 }

 catch

 {

 MessageBox.Show("Help file not found.\r\nPlease place

help file in the same folder as the program.\r\n",

 "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 }

 private void cmsExit_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 #endregion

 #region load/closing

 private void Form1_Load(object sender, EventArgs e)

 {

 Process[] pProcess = Process.GetProcessesByName("Excel");

 if (pProcess.Length != 0)

 {

 DialogResult result = MessageBox.Show("This program

uses Microsoft Excel to store data," +

 " and an Excel process is currently open in the

Task Manager. " +

 "\n\r\n\rClick Cancel to close Excel yourself, or

click OK to close it now.",

 "Warning!", MessageBoxButtons.OKCancel,

MessageBoxIcon.Warning,

 MessageBoxDefaultButton.Button1);

 if (result == DialogResult.OK)

 {

 foreach (Process p in pProcess)

 {

 p.Kill();

 }

 }

 else

 {

 extraProcessAtStartup = true;

 this.Close();

 }

 }

 excelApp = new Excel.Application();

 excelApp.DisplayAlerts = false;

 excelApp.Interactive = false;

111

 excelBooks = excelApp.Workbooks;

 lastBlowerTimeUpdate = DateTime.Now;

 /*********************************

 * Setup differential IRGA Graph

 * ******************************/

 GraphPane diffPane = zedGraphControl1.GraphPane;

 diffPane.Title.Text = "Differential IRGA\n";

 diffPane.XAxis.Title.Text = "Time, Seconds";

 diffPane.YAxis.Title.Text = "CO2 Consumption, um/m";

 diffPane.Title.FontSpec.Size = 24;

 diffPane.XAxis.Title.FontSpec.Size = 24;

 diffPane.YAxis.Title.FontSpec.Size = 24;

 // The RollingPointPairList is an efficient storage class

that always

 // keeps a rolling set of point data without needing to

shift any data values

 RollingPointPairList diffList = new

RollingPointPairList(100);

 // Initially, a curve is added with no data points (list is

empty)

 // Color is blue, and there will be no symbols

 LineItem diffCurve = diffPane.AddCurve("CO2 Consumption",

diffList, Color.Blue, SymbolType.None);

 // Just manually control the X axis range so it scrolls

continuously

 // instead of discrete step-sized jumps

 diffPane.XAxis.Scale.Min = 0;

 diffPane.XAxis.Scale.Max = 300;

 diffPane.XAxis.Scale.MinorStep = 5;

 diffPane.XAxis.Scale.MajorStep = 15;

 // Scale the axes

 zedGraphControl1.AxisChange();

 /*********************************

 * Setup absolute IRGA Graph

 * ******************************/

 GraphPane absPane = zedGraphControl2.GraphPane;

 absPane.Title.Text = "Absolute IRGA\n";

 absPane.XAxis.Title.Text = "Time, Seconds";

 absPane.YAxis.Title.Text = "CO2 Consumption, mm/m";

 absPane.Title.FontSpec.Size = 24;

 absPane.XAxis.Title.FontSpec.Size = 24;

 absPane.YAxis.Title.FontSpec.Size = 24;

 // The RollingPointPairList is an efficient storage class

that always

 // keeps a rolling set of point data without needing to

shift any data values

112

 RollingPointPairList absList = new

RollingPointPairList(100);

 // Initially, a curve is added with no data points (list is

empty)

 // Color is blue, and there will be no symbols

 LineItem absCurve = absPane.AddCurve("CO2 Consumption",

absList, Color.Blue, SymbolType.None);

 // Just manually control the X axis range so it scrolls

continuously

 // instead of discrete step-sized jumps

 absPane.XAxis.Scale.Min = 0;

 absPane.XAxis.Scale.Max = 300;

 absPane.XAxis.Scale.MinorStep = 5;

 absPane.XAxis.Scale.MajorStep = 15;

 // Scale the axes

 zedGraphControl2.AxisChange();

 //restore user values

 nudCO2ProportionalGain.Value =

Cuvette.Properties.Settings.Default.ProportionalGain;

 nudCO2IntegralGain.Value =

Cuvette.Properties.Settings.Default.IntegralGain;

 nudCO2SetValue.Value =

Cuvette.Properties.Settings.Default.CO2SetValue;

 lblCO2CurrentSetpoint.Text =

Cuvette.Properties.Settings.Default.CO2SetValue.ToString();

 nudAirFlowMagnitude.Value =

Cuvette.Properties.Settings.Default.AirFlowMagnitude;

 nudAirFlowTime.Value =

Cuvette.Properties.Settings.Default.AirFlowTime;

 nudDisplayDataDelay.Value =

Cuvette.Properties.Settings.Default.DisplayDataDelay;

 nudSaveDataDelay.Value =

Cuvette.Properties.Settings.Default.SaveDataDelay;

 co2AbsSetValue = nudCO2SetValue.Value;

 co2ProportionalConstant = nudCO2ProportionalGain.Value;

 co2IntegralConstant = nudCO2IntegralGain.Value;

 }

 private void Form1_FormClosing(object sender,

FormClosingEventArgs e)

 {

 try

 {

 if (extraProcessAtStartup == false)

 {

 if (sp1.IsOpen == true)

 sp1.Close();

 if (excelFilename != null)

113

 File.SetAttributes(excelFilename,

FileAttributes.Normal);

 GC.Collect();

 GC.WaitForPendingFinalizers();

 excelApp.Interactive = true;

 if (excelBook != null)

 excelBook.Close(null, null, null);

 excelApp.Workbooks.Close();

 excelBooks.Close();

 excelApp.Application.Quit();

 excelApp.Quit();

 if (excelBook != null)

 {

 Marshal.FinalReleaseComObject(excelRange);

 Marshal.FinalReleaseComObject(excelSheet);

 Marshal.FinalReleaseComObject(excelSheets);

 Marshal.FinalReleaseComObject(excelBook);

 }

 Marshal.FinalReleaseComObject(excelBooks);

 Marshal.FinalReleaseComObject(excelApp.Workbooks);

 Marshal.FinalReleaseComObject(excelApp);

 excelFilename = null;

 excelRange = null;

 excelSheet = null;

 excelSheets = null;

 excelBook = null;

 excelBooks = null;

 excelApp = null;

 GC.Collect();

 GC.WaitForPendingFinalizers();

 Process[] pProcess =

Process.GetProcessesByName("Excel");

 if (pProcess.Length != 0)

 {

 foreach (Process p in pProcess)

 {

 p.Kill();

 }

 }

 //save user values

Cuvette.Properties.Settings.Default.ProportionalGain =

nudCO2ProportionalGain.Value;

 Cuvette.Properties.Settings.Default.IntegralGain =

nudCO2IntegralGain.Value;

 Cuvette.Properties.Settings.Default.CO2SetValue =

nudCO2SetValue.Value;

114

Cuvette.Properties.Settings.Default.AirFlowMagnitude =

nudAirFlowMagnitude.Value;

 Cuvette.Properties.Settings.Default.AirFlowTime =

nudAirFlowTime.Value;

Cuvette.Properties.Settings.Default.DisplayDataDelay =

nudDisplayDataDelay.Value;

 Cuvette.Properties.Settings.Default.SaveDataDelay =

nudSaveDataDelay.Value;

 Cuvette.Properties.Settings.Default.BlowerTime +=

DateTime.Now - lastBlowerTimeUpdate;

 Cuvette.Properties.Settings.Default.Save();

 }

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, " Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 }

 #endregion

 #region MFCStatus

 private void nudCO2ProportionalGain_ValueChanged(object sender,

EventArgs e)

 {

 co2ProportionalConstant = nudCO2ProportionalGain.Value;

 }

 private void nudCO2IntegralGain_ValueChanged(object sender,

EventArgs e)

 {

 co2IntegralConstant = nudCO2IntegralGain.Value;

 }

 private void btnCO2SetFlow_Click(object sender, EventArgs e)

 {

 co2AbsSetValue = nudCO2SetValue.Value;

 lblCO2CurrentSetpoint.Text = co2AbsSetValue.ToString();

 }

 private void btnAirSetFlow_Click(object sender, EventArgs e)

 {

 if (nudAirFlowTime.Value == 0)

 {

 sendCommand(E, nudAirFlowMagnitude.Value);

 }

 else

115

 {

 rampAirMFC();

 tmrAirMFC.Enabled = true;

 }

 }

 private void btnAirReadFlow_Click(object sender, EventArgs e)

 {

 nudAirFlowMagnitude.Value = (decimal)sendCommand(E,

(decimal)-1);

 }

 private void btnCO2MFVStatus_Click(object sender, EventArgs e)

 {

 MFCStatus MFVStatus = new

MFCStatus(D,sp1,tmrRead,readThread);

 MFVStatus.ShowDialog();

 }

 private void btnAirMFVStatus_Click(object sender, EventArgs e)

 {

 MFCStatus MFVStatus = new MFCStatus(E, sp1, tmrRead,

readThread);

 MFVStatus.ShowDialog();

 }

 private void rampAirMFC()

 {

 decimal futureValue = nudAirFlowMagnitude.Value;

 decimal currentValue = sendCommand(E, (decimal)-2);

 airSpacing = (futureValue - currentValue) /

nudAirFlowTime.Value / 4;

 airSum = currentValue + airSpacing;

 airNumIterations = (int)nudAirFlowTime.Value * 4;

 }

 private void tmrAirMFC_Tick(object sender, EventArgs e)

 {

 if (airIterations <= airNumIterations)

 {

 sendCommand(E, airSum);

 airSum += airSpacing;

 airIterations++;

 }

 else

 {

 tmrAirMFC.Enabled = false;

 airIterations = 1;

 }

 }

 #endregion

 #region sendCommand

 private void sendCommand(int servoNumber, int servoValue)

 {

 bool isTimerEnabled;

116

 if (tmrRead.Enabled == true)

 isTimerEnabled = true;

 else

 isTimerEnabled = false;

 //wait for readThread to release serial port

 if (readThread != null)

 {

 tmrRead.Enabled = false;

 //wait for thread to finish

 while (readThread.IsAlive)

 {

 Application.DoEvents();

 }

 }

 try

 {

 //lock serial port

 lock (sp1)

 {

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToStage = { ESC, STX, B, B };

 //write to serial switch

 sp1.Write(switchToStage, 0, switchToStage.Length);

 //equation to convert to number for controller

 int value1 = 0;

 if (servoNumber == 0)

 {

 value1 = 38 * servoValue + 900;

 }

 else if (servoNumber == 1)

 {

 value1 = 30 * servoValue + 600;

 }

 else

 {

 }

 //number one servo, position...

 sp1.WriteLine("#" + servoNumber + "P" +

value1.ToString() + "\r");

 sp1.Write(closePort, 0, closePort.Length);

 sp1.Close();

 }

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

117

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, " Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 if (isTimerEnabled == true)

 tmrRead.Enabled = true;

 }

 private decimal sendCommand(byte MFVport, decimal flowValue)

 {

 decimal decReadValue = 0;

 /*bool isTimerEnabled;

 if (tmrRead.Enabled == true)

 isTimerEnabled = true;

 else

 isTimerEnabled = false;

 //wait for readThread to release serial port

 if (readThread != null)

 {

 tmrRead.Enabled = false;

 //wait for thread to finish

 while (readThread.IsAlive)

 {

 Application.DoEvents();

 }

 }*/

 try

 {

 //lock serial port

 lock (sp1)

 {

 if (sp1.IsOpen == false)

 sp1.Open();

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] sendCommand = { ESC, STX, A, MFVport };

 //write to serial switch

 sp1.Write(sendCommand, 0, sendCommand.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

 //set flow

/**

 * Backslash characters are needed, because when

changing

 * to a different port two characters are sent

through the

118

 * new port. Not backslashing results in error

from MFVs.

 *

***/

 if (flowValue == -1)

 {

 //get setpoint

 sp1.Write("\b\b\bv 4\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 decReadValue =

Convert.ToDecimal(sp1.ReadTo("\r"));

 if (MFVport == 'D')

 nudCO2SetValue.Value = decReadValue;

 else

 nudAirFlowMagnitude.Value = decReadValue;

 sp1.Write(closePort, 0, closePort.Length);

 sp1.Close();

 }

 else if (flowValue == -2)

 {

 //get setpoint

 sp1.Write("\b\b\bv 4\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 decReadValue =

Convert.ToDecimal(sp1.ReadTo("\r"));

 sp1.Write(closePort, 0, closePort.Length);

 sp1.Close();

 }

 else

 {

 sp1.Write("\b\b\bv 4 =" + flowValue + "\r");

 sp1.Write(closePort, 0, closePort.Length);

 sp1.Close();

 }

 }

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, " Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 //if (isTimerEnabled == true)

 // tmrRead.Enabled = true;

 return decReadValue;

 }

119

 #endregion

 #region blower

 private void getBlowerTimeToolStripMenuItem_Click(object

sender, EventArgs e)

 {

 Cuvette.Properties.Settings.Default.BlowerTime +=

DateTime.Now - lastBlowerTimeUpdate;

 lastBlowerTimeUpdate = DateTime.Now;

 MessageBox.Show("Cumulative blower time is: " +

Cuvette.Properties.Settings.Default.BlowerTime.ToString()

 + "\nDays.Hours:Minutes:Seconds.Ticks","Blower

Time",MessageBoxButtons.OK,MessageBoxIcon.Information);

 }

 private void reToolStripMenuItem_Click(object sender, EventArgs

e)

 {

 DialogResult result = MessageBox.Show("Are you sure you

want to reset the cumulative blower time?",

 "Blower Time", MessageBoxButtons.YesNo,

MessageBoxIcon.Warning,MessageBoxDefaultButton.Button2);

 if (result == DialogResult.No)

 return;

 Cuvette.Properties.Settings.Default.Reset();

 lastBlowerTimeUpdate = DateTime.Now;

 }

 #endregion

 #region lights

 private void btnSP1_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP1);

 }

 private void btnSP2_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP2);

 }

 private void btnSP3_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP3);

 }

 private void btnSP4_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP4);

 }

 private void btnSP5_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP5);

 }

 private void btnSP6_Click(object sender, EventArgs e)

 {

120

 toggleLightsButtons(btnSP6);

 }

 private void btnSP7_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP7);

 }

 private void btnSP8_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP8);

 }

 private void btnSP9_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP9);

 }

 private void btnSP10_Click(object sender, EventArgs e)

 {

 toggleLightsButtons(btnSP10);

 }

 private void toggleLightsButtons(System.Windows.Forms.Button

button)

 {

 if (button.Text == "OFF")

 {

 button.Text = "ON";

 button.BackColor = Color.Green;

 }

 else

 {

 button.Text = "OFF";

 button.BackColor = Color.Transparent;

 }

 }

 private void checkLights()

 {

 Button[] arrayLightButtons =

 new Button[10] { btnSP1, btnSP2, btnSP3, btnSP4,

btnSP5, btnSP6, btnSP7, btnSP8,

 btnSP9, btnSP10 };

 NumericUpDown[] arrayLightHours =

 new NumericUpDown[10] {nudHourSP1, nudHourSP2,

nudHourSP3, nudHourSP4, nudHourSP5,

 nudHourSP6, nudHourSP7, nudHourSP8, nudHourSP9,

nudHourSP10};

 NumericUpDown[] arrayLightMins =

 new NumericUpDown[10] {nudMinSP1, nudMinSP2, nudMinSP3,

nudMinSP4, nudMinSP5,

 nudMinSP6, nudMinSP7, nudMinSP8, nudMinSP9,

nudMinSP10};

121

 //find the latest time that is less than or equal to

current time

 int comparetime = 0;

 for (int i = 1; i < arrayLightHours.Length; i++)

 {

 if (arrayLightHours[i].Value <= DateTime.Now.Hour)

 {

 if (arrayLightMins[i].Value <= DateTime.Now.Minute)

 {

 if (arrayLightHours[i].Value >=

arrayLightHours[comparetime].Value)

 {

 if (arrayLightMins[i].Value >=

arrayLightMins[comparetime].Value)

 {

 comparetime = i;

 }

 }

 }

 }

 }

 if (arrayLightButtons[comparetime].Text == "ON")

 {

 lblLights.Text = "ON";

 lblLights.BackColor = Color.Green;

 }

 else

 {

 lblLights.Text = "OFF";

 lblLights.BackColor = Color.Transparent;

 }

 }

 private void btnCheckLights_Click(object sender, EventArgs e)

 {

 checkLights();

 }

 #endregion

 }

}

MFCStatus.cs

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.IO;

using System.IO.Ports;

using System.Text;

using System.Threading;

122

using System.Windows.Forms;

namespace Cuvette

{

 public partial class MFCStatus : Form

 {

 #region declarations

 byte port;

 SerialPort sp1;

 System.Windows.Forms.Timer tmrRead;

 Thread readThread;

 string currentDirectory = Application.StartupPath;

 bool isTimerEnabled;

 bool isPortOpen;

 const byte STX = 0x02;

 const byte EOT = 0x04;

 const byte ESC = 0x1b;

 const byte A = 0x41;

 const byte B = 0x42;

 const byte C = 0x43;

 const byte D = 0x44;

 const byte E = 0x45;

 byte[] closePort = { ESC, STX, EOT };

 string returnWord = null;

 #endregion

 public MFCStatus(byte passedport, SerialPort passedsp,

System.Windows.Forms.Timer passedtmr, Thread passedthread)

 {

 InitializeComponent();

 port = passedport;

 sp1 = passedsp;

 tmrRead = passedtmr;

 readThread = passedthread;

 }

 private void MFVStatus_Load(object sender, EventArgs e)

 {

 if (port == Convert.ToByte('D'))

 {

 this.Text = "CO2 MFC Status";

 lblAlarmHighUnit.Text = "slm";

 lblAlarmLowUnit.Text = "slm";

 lblWarningHighUnit.Text = "slm";

 lblWarningLowUnit.Text = "slm";

 nudAlarmHighPoint.Maximum = 0.25M;

 nudAlarmLowPoint.Maximum = 0.25M;

 nudWarningHighPoint.Maximum = 0.25M;

 nudWarningLowPoint.Maximum = 0.25M;

 }

 else if (port == Convert.ToByte('E'))

 {

123

 this.Text = "Air MFC Status";

 lblAlarmHighUnit.Text = "slm";

 lblAlarmLowUnit.Text = "slm";

 lblWarningHighUnit.Text = "slm";

 lblWarningLowUnit.Text = "slm";

 nudAlarmHighPoint.Maximum = 30;

 nudAlarmLowPoint.Maximum = 30;

 nudWarningHighPoint.Maximum = 30;

 nudWarningLowPoint.Maximum = 30;

 }

 if (tmrRead.Enabled == true)

 {

 isTimerEnabled = true;

 tmrRead.Enabled = false;

 }

 else

 isTimerEnabled = false;

 if (sp1.IsOpen == true)

 isPortOpen = true;

 else

 isPortOpen = false;

 }

 private void MFCStatus_FormClosing(object sender,

FormClosingEventArgs e)

 {

 try

 {

 if (isTimerEnabled == true)

 tmrRead.Enabled = true;

 if (isPortOpen == true)

 if (sp1.IsOpen == false)

 sp1.Open();

 }

 catch

 {

 }

 }

 #region help

 private void linkLabel1_LinkClicked(object sender,

LinkLabelLinkClickedEventArgs e)

 {

 helpAlarmsWarnings();

 }

 private void linkLabel2_LinkClicked(object sender,

LinkLabelLinkClickedEventArgs e)

 {

 helpAlarmsWarnings();

 }

 private void linkLabel3_LinkClicked(object sender,

LinkLabelLinkClickedEventArgs e)

124

 {

 helpAlarmsWarnings();

 }

 private void helpAlarmsWarnings()

 {

 try

 {

 Directory.SetCurrentDirectory(currentDirectory);

 System.Diagnostics.Process.Start("Cuvette Help.pdf");

 }

 catch

 {

 MessageBox.Show("Help file not found.\r\nPlease place

help file in the same folder as the program.\r\n",

 "Error", MessageBoxButtons.OK,

MessageBoxIcon.Error);

 }

 }

 #endregion

 private void sendCommand(string command, string value)

 {

 try

 {

 //lock serial port

 lock (sp1)

 {

 if (sp1.IsOpen == false)

 sp1.Open();

 //create byte array for writing

 /*{fixed preamble, user defined preamble,

 switch address, port}*/

 byte[] switchToMFV = { ESC, STX, A, port };

 //write to serial switch

 sp1.Write(switchToMFV, 0, switchToMFV.Length);

 //empty input buffer

 if (sp1.BytesToRead != 0)

 sp1.DiscardInBuffer();

/**

 * Backslash characters are needed, because when

changing

 * to a different port two characters are sent

through the

 * new port. Not backslashing results in error

from MFVs.

 *

***/

 if (value == "return value")

 {

 sp1.Write("\b\b\b" + command + "\r");

 //wait for bytes

 while (sp1.BytesToRead == 0) ;

 returnWord = sp1.ReadTo("\r");

125

 }

 else

 {

 sp1.Write("\b\b\b" + command + value + "\r");

 }

 sp1.Write(closePort, 0, closePort.Length);

 sp1.Close();

 }

 }

 catch (Exception theException)

 {

 String errorMessage;

 errorMessage = "Error: ";

 errorMessage = String.Concat(errorMessage,

theException.Message);

 errorMessage = String.Concat(errorMessage, " Line: ");

 errorMessage = String.Concat(errorMessage,

theException.Source);

 MessageBox.Show(errorMessage, "Error");

 }

 }

 #region Alarm/Warning Status

 private void btnCurrentAlarms_Click(object sender, EventArgs e)

 {

 sendCommand("ma", "return value");

 lblAlarmStatus.Text = returnWord;

 }

 private void btnLatchedAlarms_Click(object sender, EventArgs e)

 {

 sendCommand("maa", "return value");

 lblAlarmStatus.Text = returnWord;

 btnLatchedAlarms.Enabled = false;

 btnClearLatchedAlarms.Enabled = true;

 }

 private void btnClearLatchedAlarms_Click(object sender,

EventArgs e)

 {

 sendCommand("maa =", lblAlarmStatus.Text);

 lblAlarmStatus.Text = "";

 btnClearLatchedAlarms.Enabled = false;

 btnLatchedAlarms.Enabled = true;

 }

 private void btnCurrentWarnings_Click(object sender, EventArgs

e)

 {

 sendCommand("mw", "return value");

 lblWarningStatus.Text = returnWord;

 }

126

 private void btnLatchedWarnings_Click(object sender, EventArgs

e)

 {

 sendCommand("mwa", "return value");

 lblWarningStatus.Text = returnWord;

 btnLatchedWarnings.Enabled = false;

 btnClearLatchedWarnings.Enabled = true;

 }

 private void btnClearLatchedWarnings_Click(object sender,

EventArgs e)

 {

 sendCommand("mwa =", lblWarningStatus.Text);

 lblWarningStatus.Text = "";

 btnClearLatchedWarnings.Enabled = false;

 btnLatchedWarnings.Enabled = true;

 }

 private void btnCurrentFlow_Click(object sender, EventArgs e)

 {

 sendCommand("mf", "return value");

 lblFlowStatus.Text = returnWord;

 }

 private void btnLatchedFlow_Click(object sender, EventArgs e)

 {

 sendCommand("mfa", "return value");

 lblFlowStatus.Text = returnWord;

 btnLatchedFlow.Enabled = false;

 btnClearLatchedFlow.Enabled = true;

 }

 private void btnClearLatchedFlow_Click(object sender, EventArgs

e)

 {

 sendCommand("mfa =", lblFlowStatus.Text);

 lblFlowStatus.Text = "";

 btnClearLatchedFlow.Enabled = false;

 btnLatchedFlow.Enabled = true;

 }

 #endregion

 #region Set/Read Alarm/Warning Points

 private void btnSetAlarmHigh_Click(object sender, EventArgs e)

 {

 sendCommand("g 9 =", nudAlarmHighPoint.Value.ToString());

 }

 private void btnSetAlarmLow_Click(object sender, EventArgs e)

 {

 sendCommand("g 11 =", nudAlarmLowPoint.Value.ToString());

 }

 private void btnSetWarningHigh_Click(object sender, EventArgs

e)

 {

127

 sendCommand("g 13 =",

nudWarningHighPoint.Value.ToString());

 }

 private void btnSetWarningLow_Click(object sender, EventArgs e)

 {

 sendCommand("g 15 =", nudWarningLowPoint.Value.ToString());

 }

 private void btnReadAlarmHigh_Click(object sender, EventArgs e)

 {

 sendCommand("g 9", "return value");

 nudAlarmHighPoint.Value = Convert.ToDecimal(returnWord);

 }

 private void btnReadAlarmLow_Click(object sender, EventArgs e)

 {

 sendCommand("g 11", "return value");

 nudAlarmLowPoint.Value = Convert.ToDecimal(returnWord);

 }

 private void btnReadWarningHigh_Click(object sender, EventArgs

e)

 {

 sendCommand("g 13", "return value");

 nudWarningHighPoint.Value = Convert.ToDecimal(returnWord);

 }

 private void btnReadWarningLow_Click(object sender, EventArgs

e)

 {

 sendCommand("g 15", "return value");

 nudWarningLowPoint.Value = Convert.ToDecimal(returnWord);

 }

 #endregion

 #region pause

 //pause function

 public static DateTime Pause(int ms)

 {

 //look at current time

 System.DateTime ThisMoment = System.DateTime.Now;

 //set delay duration

 System.TimeSpan duration = new System.TimeSpan(0, 0, 0, 0,

ms);

 //duration end

 System.DateTime AfterWards = ThisMoment.Add(duration);

 //inside time frame start and end

 while (AfterWards >= ThisMoment)

 {

 //work during pause

 System.Windows.Forms.Application.DoEvents();

 //monitor current system time

 ThisMoment = System.DateTime.Now;

 }

128

 return System.DateTime.Now;

 }

 #endregion

 }

}

	Purdue University
	Purdue e-Pubs
	4-23-2010

	A Data Acquisition System For The NASA Specialized Center Of Research And Training Cuvette
	Benjamin A. Riggs

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF NOMENCLATURE
	ABSTRACT
	INTRODUCTION
	Scope
	Statement of Problem
	Significance of the Problem
	Statement of the Purpose
	Assumptions
	Delimitations
	Limitations

	LITERATURE REVIEW
	Costs of space travel
	Cuvettes
	Data acquisition systems
	Data acquisition in agriculture
	Other applications for data acquisition
	Data acquisition concepts

	METHODOLOGY
	Cuvette system
	Cuvette system components
	Supervisory unit
	Serial Switches
	Webcam and stage
	Absolute Gas Analyzer
	Differential Gas Analyzer
	Temperature and relative humidity
	Mass Flow Controller

	Cuvette system software
	Graphical User Interface
	Main software flow
	Feedback loop addition
	Additional cuvette system software

	FINDINGS
	Initial Findings
	Findings with a feedback loop

	CONCLUSIONS, DISCUSSION, AND RECOMMENDATIONS
	LIST OF REFERENCES

