Positive Deviants for Medication Therapy Management: A Mixed-Methods Comparative Case Study of Community Pharmacy Practices

OMOLOLA A. ADEOYE-OLATUNDE

Leslie M. Lake
Celena Strohmier
Amanda K. Gourley
Ashli R. Ray

See next page for additional authors

Follow this and additional works at: https://docs.lib.purdue.edu/phprpubs

Part of the Pharmacy and Pharmaceutical Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Authors
Abstract: Background To optimize medication use in older adults, the Centers for Medicare & Medicaid Services (CMS) launched Medication Therapy Management (MTM) services as part of Medicare Part D policy; however, strategies for achieving high quality MTM outcomes are not well understood. Objective The objective of this study was to generate hypotheses for strategies contributing to community pharmacies' high performance on policy-relevant MTM quality measures. Methods This mixed-methods comparative case study was guided by the Positive Deviance approach and Chronic Care Model. The study population consisted of pharmacy staff employed by a national supermarket-community pharmacy chain Midwestern division. Data consisted of demographics and qualitative data from semi-structured interviews. Qualitative and quantitative data were analyzed deductively and inductively or using descriptive statistics, respectively. MTM quality measures used to evaluate participant pharmacies' MTM performance mirrored select 2017 Medicare Part D Plans' Star Rating measures. Results Thirteen of 18 selected case pharmacies (72.2%) participated in this study, of which 5 were categorized as high performers, 4 moderate performers, and 4 low performers. 11 pharmacists, 11 technicians, and 3 student interns participated in interviews. Eight strategies were hypothesized as contributing to MTM performance: Strong pharmacy staff-provider relationships and trust, Inability to address patients’ social determinants of health (negatively contributing), Technician involvement in MTM, Providing comprehensive medication reviews in person vs. phone alone, Placing high priority on MTM, Using available clinical information systems to identify eligible patients, Technicians using clinical information systems to collect/document information for pharmacists, Faxing prescribers adherence medication therapy problems (MTPs) and calling on indication MTPs. Conclusions Eight strategies were hypothesized as contributing to community pharmacies' performance on MTM quality measures. Findings from this work can inform MTM practice and Medicare Part D MTM policy changes to positively influence patient outcomes. Future research should test hypotheses in a larger representative sample of pharmacies.
Abstract

Background
To optimize medication use in older adults, the Centers for Medicare & Medicaid Services (CMS) launched Medication Therapy Management (MTM) services as part of Medicare Part D policy; however, strategies for achieving high quality MTM outcomes are not well understood.

Objective
The objective of this study was to generate hypotheses for strategies contributing to community pharmacies’ high performance on policy-relevant MTM quality measures.

Methods
This mixed-methods comparative case study was guided by the Positive Deviance approach and Chronic Care Model. The study population consisted of pharmacy staff employed by a national supermarket-community pharmacy chain Midwestern division. Data consisted of demographics and qualitative data from semi-structured interviews. Qualitative and quantitative data were analyzed deductively and inductively or using descriptive statistics, respectively. MTM quality measures used to evaluate participant pharmacies’ MTM performance mirrored select 2017 Medicare Part D Plans’ Star Rating measures.

Results
Thirteen of 18 selected case pharmacies (72.2%) participated in this study, of which 5 were categorized as high performers, 4 moderate performers, and 4 low performers. 11 pharmacists, 11 technicians, and 3 student interns participated in interviews. Eight strategies were hypothesized as contributing to MTM performance: Strong pharmacy staff-provider relationships and trust, Inability to address patients’ social determinants of health (negatively contributing), Technician involvement in MTM, Providing comprehensive medication reviews in person vs. phone alone, Placing high priority on MTM, Using available clinical information systems to identify eligible patients, Technicians using clinical information systems to collect/document information for pharmacists, Faxing prescribers adherence medication therapy problems (MTPs) and calling on indication MTPs.
Conclusions

Eight strategies were hypothesized as contributing to community pharmacies’ performance on MTM quality measures. Findings from this work can inform MTM practice and Medicare Part D MTM policy changes to positively influence patient outcomes. Future research should test hypotheses in a larger representative sample of pharmacies.
Title
Positive Deviants for Medication Therapy Management: A Mixed-Methods Comparative Case Study of Community Pharmacy Practices

Authors
Omolola A. Adeoye-Olatunde, PharmD, MSa*, Leslie M. Lake, PharmDb, Celena A. Strohmier, PharmDbc, Amanda K. Gourley, PharmDcd, Ashli R. Ray, PharmDe, Alan J. Zillich, PharmD, FCCPa, Margie E. Snyder, PharmD, MPH, FCCP a

a Department of Pharmacy Practice, Purdue University College of Pharmacy, 640 Eskenazi Avenue, Indianapolis, IN 46202, USA; adeoyeo@purdue.edu (Omolola A. Adeoye-Olatunde); azillich@purdue.edu (Alan J. Zillich); snyderme@purdue.edu (Margie E. Snyder).

b Kroger Health Central Division, 5960 Castleway West Dr Indianapolis, IN 46250, USA; leslie.lake@kroger.com (Leslie M. Lake); celena.strohmier@stores.kroger.com (Celena A. Strohmier, present address).

c Department of Pharmacy Practice, Purdue University College of Pharmacy, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; (at time of study); (Celena A. Strohmier); (Amanda K. Gourley); (Ashli R. Ray).

d IU Health Ball Memorial Hospital, 2401 W University Ave, Muncie, IN 47303, USA; agourley2@iuhealth.org (Amanda K. Gourley, present address).

e Union Hospital, 1606 N 7th St, Terre Haute, IN 47804, USA; aray@uhhg.org (Ashli R. Ray, present address).

* Correspondence: adeoyeo@purdue.edu (Omolola A. Adeoye-Olatunde).
Previous peer-reviewed presentations
Poster presentations at the 2019 American Association of Colleges of Pharmacy (AACP) Annual Meeting in Chicago, IL and the 2019 Indiana Clinical and Translational Sciences (CTSI) Annual Meeting in Indianapolis, IN. Podium presentation at the 2018 Midwest Social and Administrative Pharmacy Conference in Madison, WI.

Conflict of interests and disclosures
Drs. Gourley and Zillich have nothing to disclose. At the time of the study, Drs. Adeoye-Olatunde, Lake, and Ray were employees at the Midwestern division, national supermarket-community pharmacy chain, where study procedures were conducted; Dr. Strohmier is a current employee at the pharmacy chain but was not at the time of the study. Dr. Snyder reports serving as a paid consultant (outside the submitted work) to Westat, Inc., for an evaluation of the Centers for Medicare and Medicaid Services (CMS) Part D Enhanced Medication Therapy Management program. Dr. Adeoye-Olatunde was supported by the Indiana Clinical and Translational Sciences Institute funded in part by award number TL1TR001107 (A. Shekhar, PI) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Statement of funding source
This work was supported, in part, by the Indiana Clinical and Translational Sciences Institute, which is partly funded by the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences [TL1TR001107]; and endowments established through the generosity of the Lilly Endowment, Inc. and the Hook Drug Foundation.

Word counts, figures, tables
Manuscript (3,442 words), abstract (413 words), figures and tables (5).

Keywords
community pharmacy services; mixed-methods; positive deviance approach; medication therapy management
99 **Introduction**

In the United States, more than 90% of individuals aged 65 years or older take at least 1 prescription medication, and more than 40% take 5 or more prescription medications, increasing the risk of medication therapy problems (MTPs).1 Preventable MTPs affect more than 7 million Americans, generating costs of nearly $21 billion annually.2 In response, the Centers for Medicare & Medicaid Services (CMS) launched the Medication Therapy Management (MTM) program as part of Medicare Prescription Drug (Part D) policy in 2006.3 The MTM program includes, at minimum, an annual comprehensive medication review (CMR) and quarterly targeted medication reviews (TMRs). Pharmacists are the most common MTM providers, utilized by 100% of plans.4

In the US, the CMS measures the quality of Medicare Part D plans in four domains using a 5-star rating system.5 The fourth domain, “Drug safety and accuracy of drug pricing,” includes a range of MTM quality measures endorsed by the Pharmacy Quality Alliance (PQA).5, 6 Historically, this domain has included quality measures, including those based on the percent of beneficiaries adherent to medications used to treat select disease states, receipt of a CMR, and safer medication use based on risk factors. Performance on each quality measure is awarded a star rating that ranges from 1 (lowest) to 5 (highest). Medicare Part D plans incentivize community pharmacy performance on Star Ratings measures through Direct and Indirect Remuneration rebate incentives and their inclusion in preferred pharmacy network designs, providing a steady access to patients and Direct and Indirect Remuneration rebate incentives.7 However, staffing, training, and documentation requirements present challenges for community pharmacy MTM service implementation, negatively impacting opportunities for incentives.8

A recent comparative effectiveness review of outpatient MTM intervention studies concluded that applying the Positive Deviance approach—which can be used as a guiding framework for exploring reasons for deviations in performance among healthcare organizations in similar environments—could improve the rigor of evaluations of real-world MTM implementation.9 Despite these findings, to the authors’ knowledge, no published studies have applied this approach to evaluate MTM services.
Published research further supports opportunities for application of the Positive Deviance approach in evaluating MTM. First, the “external environment” (e.g., geographic location and payer mix) was identified as an influencing factor in MTM provision variation. Further, variation in pharmacy and staff characteristics associated with pharmacies’ MTM performance were identified, even among community pharmacies functioning in similar environments. However, specific MTM delivery strategies contributing to varying performance on MTM quality measures in community pharmacies remain largely unexplored. Knowledge and implementation of evidence-based strategies could improve efficiency and equitability of MTM services among older adults. Thus, the objective of this study was to generate hypotheses for strategies contributing to community pharmacies’ high performance on policy-relevant MTM quality measures.

Methods

Design Overview

The research team applied an exploratory comparative mixed-methods case study design enabling comparisons within and across contexts conducive to understanding the factors influential to the success of a service. Qualitative methods served as the primary mechanism for data collection and analysis. Quantitative methods were utilized for sampling pharmacy sites and to contextualize qualitative findings. Qualitative and quantitative data were independently analyzed concurrently and subsequently triangulated via comparative analysis. Study procedures were approved by the [institution removed for blinding] Institutional Review Board. Reporting is in accordance with the Good Reporting of a Mixed Methods Study (GRAMMS) criteria.

Theoretical Framework

The study design was guided by the Positive Deviance approach and the Chronic Care Model. First, specific steps of the Positive Deviance approach, adapted for MTM, were applied to identify 1) community pharmacies exhibiting varying performance on MTM quality measures and 2) the MTM delivery strategies used. Secondly, Wagner’s Chronic Care Model was adapted and applied to frame data collection and analysis. This model consists of 6 core elements: community resources and policy, decision support, patient self-management support,
clinical information systems, delivery system design, and health system organization. Because MTM services focus primarily on optimizing chronic disease health outcomes among older adults, the Chronic Care Model serves as a useful framework for examining MTM delivery strategies.

Study Population
The study population consisted of pharmacists, pharmacy technicians, and student interns employed by a Midwestern division of a national supermarket-community pharmacy chain. To examine community pharmacies within similar contexts (e.g., state legislation and health insurance),17, 20 only pharmacies located in Indiana (N=94) were considered for this study.

Component and Composite Scores to Determine Pharmacy Performance
Pharmacies were ranked based on a 6-month (July – December 2017) MTM quality performance composite score, which was calculated by taking the mean of the 5 summated component scores. Component score definitions and data sources are listed in Figure (Box) 1. Component measures mirrored the Pharmacy Quality Alliance-endorsed MTM quality measures used by CMS, specifically, select quality measures under Domain 4 (Drug Safety and Accuracy of Drug Pricing) of the 2017 CMS Medicare Part D Plans’ Star Rating measures.5, 6 These are quantifiable, widely utilized, policy-relevant measures of MTM performance.6, 17

Sample and Case Selection
Two levels of purposive sampling of pharmacies were used. The initial level included stratification of pharmacies into first (n=19), third (n=18) and fifth (n=19) quintiles representing low, moderate, and high performing pharmacy quality categories based on composite scores. Pharmacies within these 3 categories were eligible for case selection (N=56).

An additional level of purposive sampling was used for case pharmacy selection. To maximize contrast between pharmacies in different performance categories,20 extreme cases were selected using a bottom-up approach for choosing from the low performance category, middle-out
approach for moderate, and top-down approach for the high-performance category. An iterative sampling process was applied until theoretical saturation of qualitative data was achieved.\(^{21}\)

Participant Recruitment within Selected Case Pharmacies

All pharmacists were notified of this study via an email sent on behalf of researchers by upper-level pharmacy administration. To be eligible, participants at selected case pharmacies had to have completed and/or supported the completion of 2 or more MTM cases (CMR or TMR) within the past year. To inquire about interest in participation and to verify a list of eligible pharmacy staff, researchers first called pharmacy managers. Informed consent and data collection occurred with willing eligible participants outside of working hours. Only case pharmacies having at least 1 pharmacy staff member participate in qualitative data collection were included in subsequent analyses.

Qualitative Data Collection and Analysis

Prior to conducting semi-structured interviews with pharmacy staff at the case pharmacies, pilot interviews with 1 pharmacist, pharmacy technician, and student intern employed at an ineligible pharmacy location were conducted and minor edits (i.e., adding examples for clarity) resulted in the final semi-structured interview guide (Appendix A). Audio-recorded telephone interviews were conducted between July and December 2018 lasting approximately 20 to 60 minutes each. Pharmacist participants received a $40 gift card, and technicians/student intern participants received a $20 gift card. To minimize potential bias, researchers were blinded to pharmacies’ performance categorization during interviews and initial qualitative data analysis.

Interviews were transcribed verbatim, and all transcripts were reviewed. Prior to data analysis, 3 researchers received training by the first author. Analyses occurred through an iterative process, with interviews and early stages of analysis occurring concurrently. Two pairs of analysts independently coded an equal number of transcripts using NVivo 12 Pro.\(^{22}\) Analysts first deductively categorized data at a broad-code level mirroring the Chronic Care Model elements then, inductively created sub-codes as they emerged from interview data. Key decisions were logged via an audit trail and codebook, and researchers met to discuss discrepancies on a weekly to biweekly basis.
Midway through sub-code analysis, Krippendorff’s alpha (k-alpha) was calculated to estimate inter-coder reliability and identify areas for further discussion.\(^{23,24}\) To accomplish this, 10 lines of data were used from 1 transcript chosen at random via the Excel RANDBETWEEN function. \(^{226}\) K-alpha is essentially a ratio calculated as the observed disagreement/expected disagreement. K-alpha estimates a range from 0 (indicating absence of reliability) to 1.0 (indicating perfect reliability).\(^{24}\) A minimum k-alpha of \(0.41\) was selected because the study objective was addressed at the thematic level, upon which all coders agreed.\(^{24,25}\)

Finally, preliminary themes categorized by elements of the Chronic Care Model were derived using a two-phase approach. First, using the NVivo Cluster Analysis Wizard,\(^{22}\) sub-codes were clustered by word similarity using Pearson’s correlation coefficients. Then, analysts created and reached consensus on preliminary themes guided by cluster analysis findings and supporting interview data.

Quantitative Data Collection and Analysis

Quantitative data collection occurred both prior and after qualitative data collection. For quantitative analysis, the first author was unblinded to pharmacy performance status allowing for quantitative results to be stratified when appropriate. Percent variation of performance scores was calculated as the difference between the highest and lowest component and composite scores across the sample of eligible pharmacies (\(N=56\)).

To characterize and compare characteristics of participating case pharmacies to eligible non-participatory pharmacies, descriptive statistics were compared across the 3 performance categories. To characterize pharmacy staff participants, closed-ended self-reported demographic information (Appendix A) was collected verbally at the end of interviews and recorded in Qualtrics software (Qualtrics LLC, Provo, UT). This portion of the interview was not audio recorded. SPSS\(^{26}\) was used to compute descriptive statistics.

Finally, upon completion of qualitative data collection, performance data during the data collection period (July 2018 – Dec 2018) were extracted to identify changes in performance that
might have occurred between pharmacy site identification (July 2017 – Dec 2017) and data
collection periods. To inform comparative analysis, pharmacies were then grouped into 1 of 3
broad change-in-performance categories: consistent, improved, worsened. The 3 broad categories
were further delineated into 7 subcategories, which are later described in results (Figure 3).

Comparative Analysis

To further refine preliminary themes, sub-coded data were cross-tabulated with change-in-
performance categories. To accomplish this, the Framework Method was applied using the
framework matrices function within NVivo. Final major themes were identified through
consensus across all 4 analysts. From the final major themes, hypotheses were generated for
strategies contributing to community pharmacies’ performance on MTM quality measures.

Advisory panel meetings were held to perform member-checking with a select number of
participants representing unique change-in-performance categories. As compensation for
participation in the panel, pharmacists were offered a $100 gift card, and technicians were
offered a $50 gift card.

Results

Variation in Eligible Pharmacies’ Performance

Across the sample of eligible pharmacies (N=56), the range from highest to lowest composite
scores was 21.3%. Of the 5 component scores, the Comprehensive Medication Review
component score had the widest range (88.3%), whereas the High-Risk Medication component
score had the narrowest range (6.9%). The ranges for Diabetes, Hypertension, and Cholesterol
adherence component scores were 17.9%, 13.2%, and 12.5%, respectively.

Case Pharmacies

Of the 18 case pharmacies, 13 participated in qualitative data collection, yielding a 72.2%
pharmacy participation rate (Figure 2). Of these, 4 exhibited consistent performance, 4improved,
and 5worsened (Figure 3). Participating case pharmacy (n=13) characteristics compared to non-
case pharmacies and non-participatory case pharmacies (n=43) are listed in Table 1. Due to
variable skew, the median and interquartile range (IQR) are reported for applicable pharmacy
characteristics. Results for participating case pharmacies (n=13) compared to non-participatory case pharmacies (n=5) are available in Appendix B.

Staff Participant Characteristics

Of the 39 pharmacy staff confirmed as eligible and approached, 25 pharmacy staff participated in an interview, yielding a participation rate of 64.1% (Figure 3). Interviews were conducted with 1 to 3 staff members at each case pharmacy site. Across all sites, 11 pharmacists, 11 pharmacy technicians, and 3 student interns were interviewed. Six, 8, and 11 participants represented the consistent, improved, and worsened change-in-performance categories, respectively.

Participant mean age was 34 [SD=10.0] and the majority were female (n=19, 76.0%), non-Hispanic (n=25, 100.0%), and white (n =23, 92.0%). Furthermore, a majority of participants (n=14, 56.0%) reported providing MTM services for 2 or more years and spending a minimum of 3 hours on MTM tasks per week. The majority of pharmacists (n=11) were managers (n=8, 72.7%) and held a PharmD degree (n=7, 63.6%). Among pharmacists and student interns (n=14), 28.6% (n=4) had obtained an American Pharmacists Association (APhA) MTM Certificate and 50.0% (n=7) had obtained an APhA Patient-Centered Diabetes Care Certificate.

Preliminary Themes

Inter-coder reliability (k-alpha) was 0.54, suggesting acceptable agreement among coders.24, 25 Theoretical saturation was presumed to be met as there were no new codes created at the midpoint of coding.21 Blinded initial analysis revealed 10 preliminary themes to be considered in subsequent comparative analysis.

Data Integration and Comparison: Major Themes and Generated Hypotheses

Unblinded Framework Matrices analyses facilitated further refinement of the 10 preliminary themes into 8 emergent major themes producing 8 hypothesized strategies contributing to community pharmacies’ MTM performance. Major themes, hypotheses, and example quotes, categorized by Chronic Care Model element, are described in Table 2.
Four pharmacists and 1 technician, representing unique change-in-performance categories, participated in advisory panel meetings. Upon performing a member check of findings, all participants agreed the 8 strategies provided a well-balanced, appropriate summary of strategies contributing to MTM performance. Across participants, there was consensus around ranking strategies pertaining to high degree of technician involvement with MTM (Hypothesis 3) and staff placing high priority on addressing MTM (Hypothesis 5) the most important for future research/intervention development to optimize MTM performance. Although addressing patients’ social determinants of health (SDOH), such as socioeconomic conditions, transportation options, cultural and linguistic needs, was not a challenge specific to all participant pharmacies (Hypothesis 2), participants indicated if it was, it would negatively contribute to their MTM performance and would also rank it high in importance.

Discussion

Through the systematic application of the Positive Deviance approach and Chronic Care Model, distinct strategies were hypothesized as contributing to community pharmacies’ performance on an MTM quality measure composite score. These findings inform attempts for sustainability of national health care efforts to optimize medication use among older adults. Below the 8 hypotheses generated from this study, authors’ interpretation of relationships between generated hypotheses, and proposed practice and policy implications are discussed.

First, the 2 hypotheses pertaining to pharmacy staff-provider relationships/trust (Hypothesis 1) and methods used for provider communication (Hypothesis 8) were interrelated. As anticipated, results suggested strong pharmacy staff-provider relationships and trust positively contribute to community pharmacies’ MTM performance. A recent review of physician-community pharmacist collaboration (PCPC) models concluded there were key elements persisting across models, including trust and communication. However, effective communication can be difficult to achieve in larger cities with numerous providers and community pharmacies’ lack of co-location with providers’ offices. In such settings, it is important to be strategic in methods used to communicate provider recommendations. The authors propose faxing (electronically or via fax machine) adherence-related MTP recommendations and calling providers on indication-related MTP recommendations (Hypothesis 8).
Second, 3 hypotheses pertaining to technician involvement with MTM (Hypothesis 3) and pharmacy staff use of clinical information systems (Hypotheses 6 & 7) were interrelated. Technician involvement with MTM has been studied extensively. In a recent systematic review of literature, medication reconciliation was described as the most commonly (70.0%) reported technician driven MTM activity. This study findings extend upon these review findings by postulating specific activities that contribute to performance on MTM quality measures. For example, technician involvement with generating patient medication lists was found to positively contribute to MTM performance measures; however, this was least likely (5.0%) to be described in the systematic review. This points to the importance of having clinical information systems available to support technicians in performing MTM activities. Furthermore, findings from this study indicated pharmacists at lower performing pharmacies preferred using certain clinical information systems over others due to usability challenges. This aligns with previous work on MTM vendor platform generated alerts for CMRs, in which challenges with display/interface designs were commonly noted. Nevertheless, limiting clinical information systems used could lead to missed opportunities, negatively affecting MTM performance.

Third, lower performing pharmacies faced challenges with addressing patients’ SDOH such as patients’ socioeconomic conditions, transportation options, cultural and linguistic needs (Hypothesis 2). Likewise, prior nationally representative MTM research indicated among beneficiaries receiving comprehensive medication reviews, racial and economic disparities exist. The PQA recently focused efforts to address challenges with patients’ access to medication due to SDOH subsequently developing a “Medication Access Framework for Quality Measurement.” Future research should apply this framework to evaluate and/or implement MTM and other community-based pharmacy services. Lastly, to help mitigate cultural and linguistic barriers, mobile/web-based applications can potentially be a resource for pharmacist to use with patients. A recent evaluation of 15 iPad-compatible language translations found some applications were potentially suitable for conversations in healthcare settings. Future research should evaluate use of similar applications in the context of MTM and other community-based pharmacy services.
Fourth, conducting CMRs while the patient is already at the pharmacy reduces inefficiencies (e.g., inability to reach patient, inconvenient timing etc.) with attempting to reach patients by telephone (Hypothesis 4). Community pharmacists are uniquely positioned to provide CMRs in-person compared to other types of MTM pharmacist providers. Results from previous research indicated nearly 50% of CMRs provided by community pharmacists in the United States were provided in person. This suggests there are substantial missed opportunities when pharmacies resort to solely providing CMRs via telephone. Future research should examine the role of telepharmacy and other virtual modalities for CMR provision and if CMR effectiveness varies by method of CMR delivery.

Lastly, study findings suggest placing high priority on addressing MTM services positively contributes to pharmacy MTM performance (Hypothesis 5). Similarly, results from prior quantitative research indicated pharmacists’ attitudes towards providing MTM services was associated with MTM completion rates. Likewise, Bacci et al. found pharmacy staff were more motivated to deliver adherence-related services when they understood the importance of the service to the patient and organization. Pharmacies interested in improving MTM performance should foster a culture conducive to making MTM services a priority among pharmacy staff.

No hypotheses were generated pertaining to patient self-management, decision support, or community resources and policy, which suggests these strategies related to these 3 Chronic Care Model elements are a minimum standard (e.g., patient self-management support) for MTM provision or minimally influence performance on MTM quality measures (e.g., community resources and policy). Nevertheless, policy considerations exist. For example, many participants felt community resources were not a component of MTM services, and this aligns with previous work. This could be due to the lack of pharmacy incentive to refer patients to community resources, not understanding the role for community resources in helping patients manage chronic conditions, and/or lack of awareness of available resources. The Chronic Care Model specifies how “community programs can support a health system's care for patients, but systems often don’t make the most of such resources.” MTM policy should provide incentives and guidance on effective incorporation of community resources in MTM services.
Limitations

Although the quality measures used in this study are policy-relevant, these measures require assumptions to be made, which is a limitation. For example, for the CMR component measure, it is assumed when a pharmacist indicates completion of a CMR that they followed the systematic process as defined by CMS; however, CMS does not require validation of this process. Likewise, the instability of MTM quality measures was a limitation. A year-to-date measurement period compared to the rolling 6-month performance period could result in more stable measures; however, year-to-date data were not readily available to the pharmacy partner in the EQuIPP dashboard. Future studies should identify ways to reliably validate pharmacists’ CMR process and measure pharmacy MTM performance using a year-to-date measure.

Due to scientific, pragmatic, and ethical considerations, researchers chose to alter the comparative analysis approach to evaluate strategies relative to change-in-performance categories (i.e., “longitudinal” approach) rather than the initial performance categories alone (i.e., cross-sectional approach). This post-hoc change-in-performance analysis approach limited the number of participants represented by each category. However, advisory panel participants’ agreement with generated hypotheses lends credibility to the study findings.

Another limitation of this study lies within the unknown transferability, because the sample includes a specific supermarket-community pharmacy chain in a single state; however, this sampling method was based on the methods used (i.e., Positive Deviance approach). Additionally, the Positive Deviance approach prioritizes qualitative methods to explore variations in the provision of health services; hence, data analyses were biased towards prioritizing qualitative data analysis. Additionally, there is little consensus regarding minimal acceptable k-alpha (0.41 to 0.67). However, Krippendorff proposed researchers should use more or less conservative thresholds depending on the study objective/methods. Lastly, this study design applied the Chronic Care Model to guide data collection and analysis, choice of a different framework might have resulted in different findings.

Conclusions
A total of 8 strategies were hypothesized as contributing to community pharmacies’ performance on MTM quality measures. Notable strategies were related to 3 of the 6 Chronic Care Model elements. Findings from this work can inform MTM practice and Medicare Prescription Drug (Part D) MTM policy changes to positively influence patient outcomes. Future research should test hypotheses in a larger representative sample of pharmacies.

Acknowledgements

The authors acknowledge the contributions of Drs. Benjamin Y. Urick and Lourdes G. Planas, external quantitative/content and mixed-methods experts respectively, for reviewing and providing valuable feedback on this manuscript. Dr. Karen S. Hudmon provided assistance with site selection.

Figures (3) 1. Definitions and sources for Medication Therapy Management (MTM) quality measures used to report the 5 component measure scores and subsequently compute composite scores for ranking pharmacies’ performance.

<table>
<thead>
<tr>
<th>MTM Performance Component Score Measures<sup>a</sup></th>
<th>Medication Adherence for Diabetes Medications</th>
<th>Medication Adherence for HTN (RAS antagonists)</th>
<th>Medication Adherence for Cholesterol (Statins)</th>
<th>High Risk Medication Review (HRM)<sup>b</sup></th>
<th>Comprehensive Medication Review (CMR) Completion Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>Percentage of beneficiaries taking oral diabetes medications who have high adherence (PDC > 80% for the individual)</td>
<td>Percentage of beneficiaries taking RAS antagonists medications who have high adherence (PDC > 80% for the individual)</td>
<td>Percentage of beneficiaries taking statin medications who have high adherence (PDC > 80% for the individual)</td>
<td>Percentage of beneficiaries ≥ 65 years of age receiving a medication who are considered at high-risk for an adverse drug-related event</td>
<td>Percentage of CMRs provided to beneficiaries out of all available CMRs attributed to the pharmacy</td>
</tr>
<tr>
<td>Source</td>
<td>EQuIPP</td>
<td>EQuIPP</td>
<td>EQuIPP</td>
<td>EQuIPP</td>
<td>Company internal NER metric</td>
</tr>
</tbody>
</table>

^a Component and composite scores were reported as a percentage ranging from 0% to 100%.

^b The HRM core was reverse-coded to reflect a positive association with higher values.

Abbreviations: EQuIPP=Electronic Quality Improvement Platform for Plans and Pharmacies; HTN=hypertension; NER=net effective rate; PDC=proportion of days covered; RAS=renin angiotensin system.
Figure 2. Flow diagram of eligible case pharmacies participating in qualitative data collection (13 participated of 18 selected case pharmacies; 72.2%). Pharmacies were excluded from analysis if the pharmacy did not have at least 1 pharmacy staff member participate in qualitative data collection.
Figure 3. Flow diagram of pharmacy staff participants (25 participated of 39 approached: 64.1%), at case pharmacy sites participating in qualitative data collection; grouped by change-in-performance category. \(^a\)-\(^c\) Upon completion of qualitative data collection, performance data during the data collection period (July 2018 – Dec 2018) were extracted to inform pharmacies’ change-in-performance categories.

\(^a\) Consistent: pharmacy locations categorized as a 1. high, 2. moderate, or 3. low performing during sample-identification period (July – Dec 2017) AND data collection (July – Dec 2018) period.

\(^b\) Improved: pharmacy locations categorized as a 4. moderate or 5. low performing during sample-identification period AND performance ranking IMPROVED by \(\geq 1\) quintile during data collection period.

\(^c\) Worsened: pharmacy locations categorized as a 6. high or 7. moderate performing during sample-identification period AND performance ranking worsened by \(\geq 1\) quintile during data collection period.

\(^d\) Number of pharmacy staff confirmed to be eligible and approached by a researcher.

\(^e\) Non-participants either declined (n=11) or were unreachable (n=3).

Abbreviations: RPh=registered pharmacist; tech=pharmacy technician
Appendix

Appendix A. Interview guide and demographic survey

Interview Guide

Intro: Thanks for taking the time to speak with me today. This interview process will include two parts: a verbal interview which will be recorded followed by a brief survey which will not be recorded. The interview should not take longer than one hour. The survey will gather some basic demographic information. You don’t have to answer anything that you don’t want to. There’s no right or wrong answers, we just want to know what you think. And if at any time you don’t want to answer anything just say so. I’ll ask that you say no names, nor anything that can identify you or anybody else because this will be audio recorded. Anything you say is confidential.

So, if it’s ok with you, we can go ahead and start?

Before I start the recording, I’d like to set the stage for this interview and start with some background information you may or may not already know about MTM services provided primarily to the Medicare Part D population:

MTM quality is primarily measured on medication adherence (i.e. taking medications as prescribed) and medication safety. That’s why many MTM services tend to have a strong focus on these areas. In specific, medication adherence pertaining to high cholesterol, high blood pressure, and diabetes medications and medication safety focusing on reducing the use of high-risk medication and the completion of Comprehensive Medication Reviews (CMRs). Although most [pharmacy name] pharmacies providing MTM have similar types of MTM opportunities, pharmacies tend to differ in how they deliver MTM. Today I want to learn more about how your pharmacy delivers MTM.

So, before I start the recording and move on to the interview questions, was there anything you’d like me to clarify?

I’m going to go ahead and start the recording now.

“This is ________, on (date) (subject ID) a (staff role).”
Ok so, **today I would invite you to be a story teller.** When I ask you a question I would like for you to tell me a story to supplement each of your responses, if possible, by telling me the **specific role** (i.e. a pharmacist, technician or a student) is in the story, **where** it takes place, **when** it happens, and **what** you are doing, thinking, or feeling.

Delivery System Design

Ice-breaker: So let’s start off with you walking me through the process of MTM delivery at your pharmacy?

1. How are tasks distributed amongst pharmacy staff and team members related to MTM services, if at all?
2. What are key steps your pharmacy takes, if any, to help with successful completion of MTM cases?
3. How does your pharmacy work MTM into work-flow, if at all? (i.e. tasks related to both MTM delivery and dispensing)?
4. How do you determine extent/frequency of follow-up with MTM cases?

Decision Support

1. What tools/methods do you use, if any, to assist you with your role in MTM?
2. What resources/tools do you use with in the MTM platform, if any, to assist with completing your work (e.g., identifying eligible patients, scheduling appointments, med rec., addressing medication therapy problems etc.)?
3. What resources, if any, do you use to help prioritize your work related to MTM?

Patient Self-Management Support

1. What tools/methods, if any, do you use provide support for a patient’s self-management of medication therapy problems?
2. What strategies/documents/resources, if any, do you provide patients during or after an MTM encounter to help them in their care?

Clinical Information Systems

1. What clinical systems (e.g., Outcomes, Mirixa, [pharmacy name] platforms), if any, do you use to identify eligible patients?
2. What documents, if any, do you use from clinical systems to facilitate MTM?
3. What modes/methods, if any, do you use to share information with patients and providers to coordinate care?
4. How do you follow up, if at all, with recommendations made to patients/providers?

Linkage to Community resources

1. In what ways, if any, do community resources play in providing MTM to your patients?

Health System (Organization)

1. In what ways, if any, does [pharmacy name] provide support in providing MTM services at your pharmacy?
2. In what ways, if any, does any level of management at [pharmacy name] support improvement of MTM at your pharmacy?

ii. What ways do you think your pharmacy could be more successful in providing MTM services?
 1. In a perfect world…

iii. What would need to happen for you to be able to go from where you are now to where you could be in providing MTM?
 1. See if touches on items pertaining to any of the CCM elements

Closing: To wrap up, at the beginning of this interview I made a statement of how the quality of MTM is currently measured. In what ways do you feel these are good measurements of quality MTM? How do you feel the quality of MTM should be measured for older adult patients, and why? Is there anything else you would like to tell me regarding the delivery of MTM at your pharmacy?

Demographic Survey

1. Age in years ____________

2. Gender: □ 1 Male □ 2 Female □ 3 Prefer not to answer

3. Ethnicity: □ 1 Hispanic/Latino □ 0 NOT Hispanic/Latino

4. Race:
 □ 1 White
 □ 2 Black/African-American
 □ 3 Asian
 □ 4 American Indian/Alaska Native
 □ 5 Native Hawaiian or other Pacific Islander
 □ 6 More than one Race

5. Job title:
 □ 1 Pharmacist
 □ 2 Pharmacy Student/Intern (go to question 11)
 □ 3 Pharmacy Technician (go to question 12)
 □ 4 Other: ____________________

6. Position held: (check all that apply)
 □ 1 Manager
 □ 1 Staff pharmacist
 □ 1 Part-time pharmacist
 □ 1 Other: ____________________

7. Pharmacy degree completed: □ 1 B.S. □ 2 PharmD □ 3 Both B.S. and PharmD
8. Year first licensed as a pharmacist in any state: _____________________

9. Additional education/degree completed: (check all that apply)
 □ 1 None
 □ 1 PGY-1 residency
 □ 1 PGY-2 residency
 □ 1 Fellowship
 □ 1 Master’s degree
 □ 1 PhD degree
 □ 1 Other: ________________

10. Board certifications obtained: (check all that apply)
 □ 1 None
 □ 1 Board Certified Pharmacotherapy Specialist (BCPS)
 □ 1 Board Certified Ambulatory Care Pharmacist (BCACP)
 □ 1 Certified Diabetes Educator (CDE)
 □ 1 Certified Geriatrics Pharmacist (CGP)
 □ 1 Other: ______________________________________

11. National pharmacy organization certifications obtained
 □ 1 None
 □ 1 APhA Pharmacist and Patient-Centered Diabetes Care Certificate
 □ 1 APhA Pharmacy-Based Lipid Management Certificate
 □ 1 APhA Immunization Certificate
 □ 1 APhA Medication Therapy Management Certificate
 □ 1 Other: ______________________________________

12. Highest level of education completed (skip if “pharmacist”):
 □ 1 High school diploma/GED
 □ 2 Some college – Details ________________________________;
 □ 3 2-year college degree (Associate’s)
 □ 4 4-year college degree (Bachelor’s)
 □ 5 Currently completing PharmD
 □ 6 Other: _______________________

13. Do you currently have a valid national technician certification? (skip if “pharmacy student/intern” or “pharmacist”):
 □ 0 No (go to question 15)
 □ 1 Yes

14. What is the national technician certification that you have?
 □ 1 PTCB
 □ 2 Other__________________

15. How long (in years) have you been employed at Kroger pharmacy? _________ years

16. How long (years) have you been providing/assisting with the delivery of MTM to patients? _______________ years
17. What is the average time you spend/week on MTM related tasks (please select one):

☐ 1 Zero Hour
☐ 2 1-2 Hour(s)
☐ 3 3-4 Hours
☐ 4 5 or More Hours

Please provide any additional comments regarding your background/training and experience in providing MTM services (CMRs and/or TMRs/tips (e.g., alerts or flags):

__
__
Appendix B. Pharmacy Characteristic Comparisons

Table B.1. Comparison of participating case pharmacy and non-participating case pharmacy characteristics by performance category.

<table>
<thead>
<tr>
<th></th>
<th>Case pharmacies that participated in qualitative data collection (n=13)</th>
<th>Pharmacies selected as a case pharmacy but did not participate in qualitative data collection (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of FTE pharmacists</td>
<td>Low performance (n=4) 2.0 (0)</td>
<td>Low performance (n=2) 2.0 (0)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=4) 2.0 (1.0)</td>
<td>Moderate performance (n=2) 2.0 (0)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=5) 2.0 (1.0)</td>
<td>High performance (n=1) 2.0 (N/C)</td>
</tr>
<tr>
<td>Weekly pharmacist overlap hours</td>
<td>Low performance (n=2) 19.7 (12.8)</td>
<td>Low performance (n=1) 7.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=2) 5.5 (28.4)</td>
<td>Moderate performance (n=1) 6.3 (N/C)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 19.7 (12.8)</td>
<td>High performance (n=1) 7.3 (N/C)</td>
</tr>
<tr>
<td>Number of store-assigned technicians</td>
<td>Low performance (n=2) 11.0 (2.0)</td>
<td>Low performance (n=1) 6.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=2) 8.0 (2.0)</td>
<td>Moderate performance (n=1) 6.0 (0)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 11.0 (2.0)</td>
<td>High performance (n=1) 8.0 (N/C)</td>
</tr>
<tr>
<td>Weekly total technician hours worked</td>
<td>Low performance (n=2) 279.1 (78.1)</td>
<td>Low performance (n=1) 197.8 (N/C)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=2) 173.2 (125.4)</td>
<td>Moderate performance (n=1) 166.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 279.1 (78.1)</td>
<td>High performance (n=1) 181.8 (N/C)</td>
</tr>
<tr>
<td>Level of technician training</td>
<td>Low performance (n=2) 3.0 (N/C)</td>
<td>Low performance (n=1) 0 (0)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=2) 0.5 (N/C)</td>
<td>Moderate performance (n=1) 1.0 (0)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 0 (0)</td>
<td>High performance (n=1) 2.0 (N/C)</td>
</tr>
<tr>
<td>Number of level 1 trained technicians</td>
<td>Low performance (n=2) 1.0 (2.0)</td>
<td>Low performance (n=1) 0 (0)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=2) 1.5 (1.0)</td>
<td>Moderate performance (n=1) 1.5 (100)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 1.0 (2.0)</td>
<td>High performance (n=1) 1.0 (100)</td>
</tr>
<tr>
<td>Number of level 2 trained technicians</td>
<td>Low performance (n=1) 2.0 (3.0)</td>
<td>Low performance (n=1) 0 (0)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=1) 0.5 (1.0)</td>
<td>Moderate performance (n=1) 0.5 (0)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 2.0 (3.0)</td>
<td>High performance (n=1) 2.0 (N/C)</td>
</tr>
<tr>
<td>Number of level 3 trained technicians</td>
<td>Low performance (n=1) 7.5 (5.0)</td>
<td>Low performance (n=1) 3.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=1) 6.0 (4.0)</td>
<td>Moderate performance (n=1) 4.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 7.5 (5.0)</td>
<td>High performance (n=1) 6.0 (N/C)</td>
</tr>
<tr>
<td>Number of store-assigned student interns</td>
<td>Low performance (n=1) 0.5 (1.0)</td>
<td>Low performance (n=1) 0.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=1) 1.0 (1.0)</td>
<td>Moderate performance (n=1) 0.5 (N/C)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 0.5 (1.0)</td>
<td>High performance (n=1) 1 (N/C)</td>
</tr>
<tr>
<td>IPPE student(s)</td>
<td>Low performance (n=1) 0 (0)</td>
<td>Low performance (n=1) 1.0 (50.0)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=1) 1.0 (25.0)</td>
<td>Moderate performance (n=1) 1.0 (50.0)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=1) 0 (0)</td>
<td>High performance (n=1) 0 (0)</td>
</tr>
</tbody>
</table>

a median (IQR)

b median (IQR)

c median (IQR)

d mean (SD)

e median (IQR)

f n (%)

The data for 'Low performance' and 'Moderate performance' are generally lower than those for 'High performance', indicating a trend where case pharmacies with lower performance have fewer FTE pharmacists, shorter weekly overlap hours, and fewer store-assigned technicians. The number of level 1 trained technicians is low across all performance levels, with the lowest number in the 'Low performance' group. The level of technician training is also lower in the 'Low performance' group compared to the 'Moderate' and 'High' performance groups. The number of store-assigned student interns is similarly low across all performance categories. There is a notable trend where the number of IPPE student(s) is higher in the 'High performance' group compared to the 'Moderate' and 'Low performance' groups.
<table>
<thead>
<tr>
<th>APPE student(s)§ n (%)</th>
<th>Case pharmacies that participated in qualitative data collection (n=13)</th>
<th>Pharmacies selected as a case pharmacy but did not participate in qualitative data collection (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low performance (n=4)</td>
<td>Low performance (n=2)</td>
</tr>
<tr>
<td></td>
<td>Moderate performance (n=4)</td>
<td>Moderate performance (n=2)</td>
</tr>
<tr>
<td></td>
<td>High performance (n=5)</td>
<td>High performance (n=1)</td>
</tr>
<tr>
<td>APPE student(s)§ n (%)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>1.0 (25.0)</td>
<td>1.0 (50.0)</td>
</tr>
<tr>
<td></td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Note: data are presented for each performance category during the 6-month sampling period (July – Dec 2017)

a Median number of FTE pharmacists = median number of FTE (≥ 36 hours/week) pharmacists at each pharmacy within each performance category

b Weekly pharmacist overlap = median weekly overlap (when more than 1 pharmacist is working) hours at each pharmacy within each performance category

c Median number of store-assigned technicians = median number of store-assigned technicians at each pharmacy within each performance category

d Median weekly total amount of technician hours worked at each pharmacy within each performance category

e The pharmacy company has 3 levels of internal technician certificate training ranging from level 1, being entry level and level 3, which includes more advanced clinical services training.

f Median number of pharmacy sites hosting at least 1 IPPE student within each performance category

§ Median number of pharmacy sites hosting at least 1 APPE student within each performance category

Abbreviations: APPE=Advanced Pharmacy Practice Experiences; FTE=full time equivalent; IPPE=Introductory Pharmacy Practice Experiences; IQR=interquartile range.
Credit Author Statement

Omolola A. Adeoye-Olatunde: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Reviewing and Editing, Visualization, Project administration, Funding acquisition.

Leslie M. Lake: Formal analysis, Investigation, Resources, Data curation, Conceptualization, Methodology, Writing - Reviewing and Editing

Celena A. Strohmier: Formal analysis, Investigation, Resources, Data Curation, Writing - Reviewing and Editing.

Amanda K. Gourley: Formal analysis, Resources, Data Curation, Writing - Reviewing and Editing.

Ashli R. Ray: Formal analysis, Resources, Data Curation, Writing - Reviewing and Editing.

Alan J. Zillich: Conceptualization, Methodology, Writing - Reviewing and Editing, Supervision.

Margie E. Snyder: Conceptualization, Methodology, Validation, Resources, Writing - Reviewing and Editing, Visualization, Supervision, Project administration, Funding acquisition.