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GLOSSARY 
 
 
 

 MEMS - Micro Electromechanical System 

 OCV – Open-circuit voltage 

 PEG - Piezoelectric Generator or Piezoelectric Generation- A device that utilizes 
the piezoelectric effect to the end of creating electricity to be used by another 
device or the application of said device 

 Piezoelectric – A material that exhibits the property of creating a voltage when 
stressed (Sodano, Inman, & Park, 2005) 

 CCC – Closed-circuit current (through a 1 k resistor) 

 CCV – Closed-circuit voltage (across a 1 k resistor) 
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ABSTRACT 
 
 
 

Nelson, Joshua M. G. M.S., Purdue University, May, 2010.  Using Piezoelectric 
Generation to Harvest Energy from Turbulent Air Flow.  Major Professor: Dr. R. Mark 
French 
 
 
 
 The tasks of generating, harvesting, and converting energy have long been ones 

crucial to the human race.  As such, environmental concerns, population increase, 

personal energy consumption, and diminishing resources have led to a focus on new 

methods and possibilities.  A set of factors has influenced this research, among which 

was a desire to steward resources better, the inefficiencies of many current generation 

technologies, and the rising cost of fuel. 

 Although piezoelectric generation (PEG) has been researched and used to power 

small devices, this generation technique is undeveloped, especially on a large scale.  This 

research focuses on the conversion of air turbulence to electrical energy via a 

piezoelectric generator. 

 After a literature review was conducted, calculations were performed to determine 

energy potential.  Bench tests were performed to determine the characteristics of the 

material.  Road tests were then carried out utilizing a thin-film piezoelectric material.  

Data such as air velocity and voltage were collected.  It was found that the piezoelectric 

effect can be used to harvest energy from turbulent air flow.  However, with the method 

and material used, this is not an efficient means of energy harvesting; power generated 

was less than 1 microwatt.
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CHAPTER 1.  INTRODUCTION 
 
 
 

 This chapter defines the purpose of the study and sets out its objectives.  Layout 

of this thesis, possible hypotheses, and other considerations are also discussed. 

 

1.1.  Objectives 

 This research was designed to investigate whether piezoelectric elements could be 

used on a moving body (such as an automobile) to harvest and convert wind energy.  

Presumably, this energy could then be used to power some device onboard the body, but 

this study was limited to exploring the concept of such harvesting.  This experiment was 

performed in a wind tunnel in order to establish a controlled environment and then 

carried out in detail in a series of road tests. 

Specific objectives included: 

1. Determine theoretical power potential 

2. Quantify amount of power experimentally observed 

3. Observe power density and efficiency 

 

1.2.  Organization 

 This thesis contains six chapters.  This first introduces the topic of piezoelectric 

generation and the scope of the project.  The second chapter looks at relevant literature 

and applies it to the topic at hand.  The third analyzes the experiment from a 

mathematical perspective and the experiment itself is discussed in the fourth chapter.  

Results and discussions follow in the fifth chapter, while the final chapter concludes the 

study.
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1.3.  Scope 

 The intent of this project was to research, measure, and document the amount of 

power that can be harvested through the use of a piezoelectric sheet on a moving vehicle 

actuated by turbulent airflow.  Although many materials are available, sheets of 

polyvinylidene fluoride (PVDF) were used.  PVDF is relatively low in cost and can be 

made in a variety of physical sizes.  As harnessing wind energy was the focus, a sheet-

type piezoelectric element was selected.  This format offers a high surface-to-volume 

ratio, and thus can be moved by air easily. 

 It was not practical at this point, nor was it the focus of this research to determine 

the most efficient placement of the piezoelectric collector, only to determine the 

possibilities. It is likely that efficiency will be higher at some spots than others; this, 

however, will be left to future work. 

 Optimum circuit designs was also not covered.  Other researchers have studied 

this topic (Ottoman & Lesieutre (2003), Han, et al (2004)), and have begun to optimize 

the power conditioning circuitry for PEG. 

 Although material strength and durability are general concerns, they were not 

dealt with at this point. 

 As power generated greatly depends on air velocity, various velocities were taken 

into account. 

 

1.4.  Significance 

 New power generation techniques are of great value.  As population increases, so 

do its energy demands, if simply because of numbers.  Current technologies such as coal 

and petroleum engines are not indefinitely sustainable.  Thus, it is profitable to research 

new methods of producing energy that have the ability to replace or at least alleviate 

reliance on these limited forms. 

 Research regarding macro piezoelectric generation (PEG) is largely absent.  

According to Kim (2002), PEG is a largely un-researched topic.  Many piezoelectric 

materials are able to output a large amount of voltage, but a relatively small amount of 
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current.  Because of this characteristic and others, PEG has only recently been considered 

as a power source. 

 However, PEG offers many advantages.  First, it is a solid-state technology.  

These devices can be compact and durable.  This is an advantage over other generation 

technologies, as it leads to a more robust device that may also have lower manufacturing 

costs.  Second, this application of PEG focuses on utilizing energy that is usually ignored, 

such as vibrations or turbulent airflow.  These sources of energy are usually dissipated as 

heat.  This may be thought of as ‘free’ energy within a closed system.  Third, although 

PEG offers low current, the voltage potential and efficiency are notable.  Recent studies 

have shown piezoelectric efficiency to be as high as 70%. 

 Batteries are another reason to consider PEG.  In installations that are difficult to 

reach or explore a battery that needs to be replaced is a complicating factor.  Many new 

types of batteries, while technologically advanced, are also constrained by cost, size, or 

weight.  In addition, every PEG replacement power cell could mean one less battery 

needing disposal at the end of its comparatively short life. 

 Perhaps the strongest reason to pursue PEG lies with the type of energy it utilizes.  

Vibrations are present in many bodies, such as humans, buildings, and vehicles.  Many 

times these vibrations are ignored or even dissipated, as is the case with shock absorbers.  

Whether it be a wristwatch or a transmitter on a tower PEG offers the possibility of 

converting this untapped source. 

 Current piezoelectric technology and materials would not allow one to replace all 

batteries or other power sources.  Although characteristic piezoelectric voltage output is 

high, the current is quite low.  As technology progresses and new materials are found or 

formulated, however, PEG may be able to replace conventional generation systems.  This 

may even be possible on a device as complicated as a vehicle. 

 

1.5.  Study Design 

 A quasi-experimental study was used to determine how much power could be 

harvested from airflow using a piezoelectric sheet mounted inside a wind tunnel and on a 

vehicle. The exploratory nature of this study and the small sample size made statistical 
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inference less practical.  Therefore, the quasi-experimental study method was chosen.  

The quasi-experimental study is described by Sekaran (2002).  In a study of this type, 

null and alternative hypotheses are set, but the hypothesis is selected at the end based not 

on statistical analysis, but on what the individual results of the study show. 

 

1.5.1.  Hypotheses 

 Null and alternative hypotheses were established, as shown below. 

  H0: No useable power can be harvested from this setup 

  Ha: Useable power can be harvested from this setup 

 

1.5.2.  Considerations 

 One problem with this approach is the definition of “usable power.”  Certain 

devices require little power, while others require much.  As one of the intended final 

applications of this research is to power on-board vehicle electronics (specifically LED 

lights), “usable power” is defined here as enough power to activate a single, low-power 

LED (around 20 mW). 

 

1.5.3.  Variables and the Measurement Thereof 

 The dependant variable was air velocity.  The independent variable was voltage. 

 In order to measure the variables, a National Instruments USB-6215 data 

acquisition system, an OROS OR24 data acquisition system, and a Tecktronix TDS 380 

oscilloscope were used (NI DAQ, OROS DAQ, and scope hereafter, respectively).  

Measurements included volts from the PEG, and voltage from the anemometer (later 

converted to m/s—see Chapter 4). 

 

1.6.  Assumptions, Limitations, Delimitations 

 This section further focuses the study by stating assumptions, limitations, and 

delimitations. 
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1.6.1.  Assumptions 

 Piezoelectric element representative of all materials 

 Resistance from wires was negligible 

 Interference from ambient sources was negligible 

 Test velocities were a representative sample (approximately 0 m/s – 22 m/s) 

 Air velocity was only in one direction 

 Air density was constant at 1.233 kg/m3 

 Air dynamic viscosity was constant at 1.807 x 10-5 kg/(m*s) 

 

1.6.2.  Limitations 

 Since wind and airflow are chaotic, destructive interference may have been 

present 

 Cross-sectional area of wind tunnel fixed 

 Maximum wind tunnel air velocity approximately 16 m/s 

 Maximum anemometer velocity approximately 22 m/s 

 

1.6.3.  Delimitations 

 Difference in piezoelectric materials and their generation capabilities were not 

covered 

 Optimum piezoelectric placement was not covered  

 Effect on aerodynamic drag was not measured 

 Durability was not a factor in this study 

 Various PEG circuitry and optimization techniques thereof were not covered 

 Optimum poling was not discussed 

 Optimum piezoelectric electrode placement was not covered
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CHAPTER 2.  LITERATURE REVIEW 
 
 
 
 In order to develop a solid foundation from which to build this study, a literature 

review has been conducted.  This review is presented below, focused on three main 

topics: Applications of PEG, Physical PEG Optimization, and PEG Circuit Optimization. 

 

2.1.  Past Studies 

 A piezoelectric material is one that creates voltage when force is applied to it and 

vice-versa.  This effect was discovered by Pierre and Jacques Curie in 1880.  

Piezoelectric materials are both man-made and naturally occurring.  Much research has 

been done on the topic of piezoelectric devices as actuators (those devices that send 

vibrations or signals) and receivers (devices that receive vibrations or signals). 

 

2.1.1.  Applications of PEG 

 Research surrounding piezoelectrics is numerous.  However, piezoelectric 

generation is a fairly recent concept.  Some of the earliest research found dealt with 

powering portable computers via human movement (Starner (1996)). Starner investigated 

various activities (such as breathing and walking), quantified the amount of energy 

available, looked at various harvesting technologies, and suggested whether or not it was 

practical to harvest energy from this activity.  It was found that walking seemed to be the 

best method for harvesting energy and that two technologies provided a way to harvest 

this energy: piezoelectric and magneto electric generation (Starner (1996)). 

 Small-scale harvesting from human activity is a concept that others have 

investigated as well.  Using a piezoelectric transducer, Ramsey and Clark collected 

energy from blood pressure fluctuations (2001).  Using a circular thin-plate transducer 

and a piezoelectric element with a 31- poling direction, they were able to obtain 2.5 µW.  
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While this was well below their goal of 10 µW, they did show that ample power was 

available from the source (blood pressure).  In addition, mathematical analysis seems to 

indicate that given a cyclical changing force, power output is exponentially related to area 

of the sensor and also exponentially related to thickness.  However, as the force and 

fluctuations were relatively small (1Hz cyclic pressure of 5333 N/m2), these results may 

not be generalizable to larger applications. 

 Numerous studies have been performed regarding power harvesting for MEMS 

and wireless sensor networks.  Roundy and Wright (2004) used a PEG of less than 1 cm3 

to power a wireless transmitter, although only with a 1.6% duty cycle.  Song, et al (2007) 

found that the impedance of the PEG was lowered with multiple layers and hypothesized 

that a PEG of this type could power a sensor without additional electronics. 

It is not only power generation for MEMS that benefits from the use of 

piezoelectric materials.  Dong, et al (2004) built a piezoelectric transformer with an out-

to-in voltage ratio higher than that of some electromagnetic transformers (the more 

conventional design).  These studies and others point to the possibility of high 

piezoelectric efficiency, which is imperative to energy conversion and generation. 

 Ogando (2007) researched various uses of active vibration control technology, 

sometimes labeled "adaptronics."  Although the field of adaptronics includes more than 

piezoelectrics, they play an important role.  Ogando states, "As part of a vibration control 

system, these actuators can be designed to address a wide range of frequencies--from 50 

to 1,000 Hz--depending on the application needs."  The characteristics of piezoelectric 

devices enable them to operate over a large range. 

 The practicality of piezoelectric devices varies widely from inexpensive sensors 

to costly actuators.  Grove & Ehle (2002) developed a simple device that could measure 

force and energy utilizing the voltage output from a piezoelectric cell in order to 

demonstrate the difference between the two to physics classes.  This device could be built 

by a layperson at a low cost.  In contrast, Friedman, et al (2007) used an array of 

piezoelectric actuators and receivers to counteract vibrations in textile machinery.  

Although comparatively expensive at the time of this writing, such technology may prove 

useful, as increased output may outweigh implementation.  In addition, the vibrations 
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produced by this system were substantial; enough to reduce machine vibration by as 

much as 80% using large voltage.  Given this, in an environment where many vibrations 

are present (such as on a moving vehicle), it may be possible to generate a large voltage. 

 

2.1.2.  Physical PEG Optimization 

 Smith, et al (1984) showed that small, cylindrical piezoelectric cells embedded in 

a matrix can act as a single unit.  This may provide the possibility of creating a low-cost 

piezoelectric paint, although this theory is yet untested. 

 Piezoelectric device efficiency is a topic mentioned by Friedmann, et al (2007), 

Kim, et al (2005), and Dong, et al (2006).  Friedmann, et al showed that simply by 

changing the location of a piezoelectric actuator, vibrations could be reduced by as much 

as 80%.  This reduction in vibration could be related to energy available for harvesting.  

Kim, et al calculated that the amount of energy output by the PEG is directly related to 

the ratio of substrate thickness to piezoelectric thickness.  Dong, et al, in studying a 

former design, found that the magnetoelectric/piezoelectric transformer had a higher 

voltage gain and larger bandwidth than current data.  These data show that piezoelectric 

generation can be an efficient mode of generation. 

 Tantamount to device efficiency is material efficiency. Funasaka, et al (1998) 

studied PEG in two devices, one using lead zirconate titanate (PZT), the other lithium 

niobate (LiNbO3).  LiNbO3 was found to have higher conversion efficiency than PZT, 

which is the conventional material.  In cases such as the one at hand, materials may be 

developed, discovered, or utilized because they provide specific characteristics, such as 

durability, manufacturability, and power generation efficiency. 

 Kim (2002) studied another area of PEG efficiency: electrode placement.  Three 

devices were tested, each of the same material and dimensions.  Two underwent a 

repoling and reapplying of electrodes; the third remained unchanged.  The repoling 

method used here is named the interdigitated method.    In this method, one begins with a 

piezoelectric element that has the poling direction perpendicular to its surface.  The 

electrodes are removed or created in such a fashion that they resemble the teeth of a 

comb.  Next high voltage is applied to the electrodes while the temperature is held above 
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the Curie temperature.  The electric field changes the poling direction and after cooling 

down, the piezoelectric element has approximately the same poling direction.  In addition 

to repoling, the electrodes were placed in accord with calculated optimum placement.  All 

three were placed in a test apparatus with their edges fixed and subject to a changing air 

pressure on one side.  Data about air pressure and voltage were collected via separate 

boards and computers and then graphed and analyzed.  Regrouping and repoling of the 

PEG in the 33 direction (interdigitated method) produces more efficiency, as did the 

change in electrode placement. 

 Frequency of driving vibrations is another factor in PEG efficiency (Poulin, et al 

(2003)).  As a basic rule, the closer the driving vibrations are to the natural frequency of 

the device, the more efficient it will be.  Lu, et al (2002), however, showed that some 

devices will increase in output as frequency increases.  But even to this suggestion there 

is a limit, as their research also shows that above a certain point, efficiency actually 

decreases. 

 

2.1.3.  PEG Circuit Optimization 

 In addition to optimizing the physical design of the PEG, the power conditioning 

circuitry can also be improved.  As the physical design of this experiment is different 

than that of one for MEMS, circuit design is more relevant to this study. 

 One of the many interesting studies determined that the energy generated by a 

piezoelectric device subject to random vibrations could be stored via a battery or 

capacitor for later use (Sodano, et al (2005)).  Other investigation shows that circuits with 

very high efficiencies can be designed for PEG.  Han, et al (2004) used a charge pump, 

composed of a bank of capacitors and switches, to increase the efficiency of a PEG 

circuit.  Efficiencies of this new circuit were as much as 92% higher than previous 

designs, leaving more power available for use outside of the PEG. 

 Of interesting note is the research cited by and expounded on by Makihara, et al 

(2006).  Because of the power generating capabilities of piezoelectric devices, they can 

be used not only to control vibrations, but to power themselves while doing so.  

Guyomar, et al (2000) showed a similar concept.  In their research, a device was designed 



10 

 

that used a piezoelectric element and circuit to provide mechanical damping while 

powering itself.  Three designs were studied: a piezoelectric element with an open circuit, 

a piezoelectric element with a switch on a short circuit, and a piezoelectric element with a 

switch on an inductor.  Whereas the first two designs had a narrow frequency within 

which their damping was most effective, the damping of the switched inductor circuit had 

a wider effective range.  From this, one may note that this design harvested more energy 

from the mechanical system.  Although PEG was not the focus of this research, the same 

design could be used for generation. 

 Priya (2007) conducted a survey of various advances in PEG.  Various studies 

were cited, yielding gains in efficiency from adding multiple layers, increasing mass (for 

cantilever-type PEG), and increasing damping.  Novel ideas were also discussed, such as 

using an “eel” design for hydroelectric PEG and a wind turbine that generated electricity 

using piezoelectric elements. 

 

2.2.  Inferences 

 The background information seems to point to PEG as a possible replacement 

power source for batteries on a small scale.  As size of the piezoelectric element can be 

related to the power output of the PEG, this technology may be scalable for use in larger 

applications.  Because it utilizes dissipated energy, PEG could greatly improve efficiency 

and decrease waste in many applications.  High-energy conversion efficiencies (greater 

than 90%) are possible given the optimum circuit and overall PEG design.  It is the hope 

of the author that these theories could be applied to transportation in such a way that 

would alleviate current fuel consumption and avail itself of use on the next generation of 

vehicles or as a retrofit on current ones.
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CHAPTER 3.  THEORETICAL POTENTIAL 
 
 
 

 In order to build validity, a mathematical analysis of the maximum power 

available from the flow has been conducted. 

 

3.1.  Analysis of Experiment 

 Because of the pioneer nature of this application, a mathematical analysis is 

worthwhile in not only the design of the experiment, but the conclusions drawn from it.  

Maximum power available from the turbulent flow aided determining the feasibility of 

this research.  Material efficiency was also taken into consideration. 

 

3.2.  Maximum Power Available 

Figure 3.1 below shows the calculated relationship between velocity and 

aerodynamic drag force available using the formula for drag force: 

F = CD * A * (  * v2 ) / 2. (Eq. 3.1) 

Here, F is the force of the aerodynamic drag, CD is the dimensionless drag coefficient, A 

is the cross-sectional area of the body in question,  is the density of the fluid (in this 

case air), and v is air velocity. 

The frontal swept area of the vehicle used (1993 Acura Legend) was 0.1479 m2.  

The drag coefficient for this vehicle was CD = 0.34.



12 

 

 

Figure 3.1. Drag force as a function of velocity (CD = 0.34, A = 0.1479 m2). 

 

 Of the total drag on a vehicle, 70% can be said to occur at the front of the vehicle, 

10% occurs along the sides and top, and 20% occurs at the rear; of this drag along the 

sides and rear, turbulence only accounts for half (Gillespie (1992)).  Using these 

guidelines, it is possible to determine the maximum force present along the top of the 

moving body: 

 FTOP = F * 0.50 * 0.10. (Eq. 3.2) 

Power can then be found by multiplying this drag force by the air velocity, as the air 

velocity acting on the piezoelectric element cannot be greater than the air velocity acting 

on the object: 

PMAX = FTOP * v. (Eq. 3.3) 

Figure 3.2 shows maximum power available along the top of the body as a function 

of wind velocity.  The data for this figure may be found in Table A-1 in the Appendix.  

The star at 30 m/s represents highway speeds (approximately 65 mph). 
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Figure 3.2. Maximum power available at various velocities. 
 

 The goal is to remove power from the flow of air over the body, but it is not 

possible to harvest all of the available power.  As area and density were assumed to be 

constant, velocity and the drag coefficient were the only things that could be changed.  

Figure 3.2 shows how power available varies with velocity.  Adding a PEG of the type 

mentioned here will change the drag coefficient in some way.  Whether this will increase 

or decrease the drag coefficient is unknown at this time, and was not tested in this study. 

 There is at least one more factor to consider here.  The exact nature of turbulent 

flow is an ongoing problem in the fields of engineering and physics.  Each turbulent 

situation seems to be unique, with its own characteristics.  No singular solution has been 

derived.  As such, it is difficult to determine exactly how much of the power in the 

turbulent flow could be harvested.  Although the PEG discussed here is not of the wind-

turbine type, the Betz limit can still be used as a benchmark for wind generation.  The 

Betz limit states that the maxiumum amount of power that can be extracted from an 

airstream is 59.3%.  This results of this calculation are shown in Table A-1. 
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 The final factor to consider here is the mechanical-to-electrical conversion 

efficiency of the piezoelectric material.  According to manufacturer data, PVDF has a 

maximum mechanical-to-electrical efficiency, k33, of 12%.  The 33 subscript here 

indicates that the force applied passes through the surface of the electrodes on the 

piezoelectric element.  Much higher conversion efficiencies (70% and higher) are 

available with rigid, crystal-type piezoelectric materials, such as PZT.  However, these do 

not lend themselves well to the application used in this study.  Therefore, the maximum 

power possible from this material in this situation is given by: 

PPEG = PMAX * k33. (Eq. 3.3) 

This calculation is reflected in the last column of Table A-1.  Thus, the maximum power 

at the speeds tested in this study (22 m/s) is 0.0507 W (507 mW).  Based on the 

hypotheses discussed in section 1.5, there is enough power available. 

 

3.3.  Von Karman Vortex Shedding 

 As turbulent flow is chaotic in nature, many frequencies are present.  However, as 

the most power may be obtained at the resonant frequency, it is beneficial to excite the 

piezoelectric element at this resonant frequency.  One way to do this is to induce von 

Karman vortex shedding using a cylinder.  Von Karman vortex shedding is a 

phenomenon in which vortices are produced on either side of a cylinder placed inside a 

free-flow stream.  These vortices are produced in an alternating fashion at a specific 

frequency that is dependent upon the stream velocity and the diameter of the cylinder, 

among other things. 

The diameter of a cylinder needed to produce vortex shedding of a certain 

frequency is given by: 

d = { 0.198 * [ 1 - ( 19.7 / Re ) ] * v } / ƒ, (Eq. 3.4) 

where d is the diameter of the cylinder in meters, Re is the Reynolds number, v is the 

flow velocity in meters per second, and ƒ is the frequency in hertz.  Given that: 

Re = ( v * d *  ) / µ, (Eq. 3.5) 

Equation 3.4 then becomes: 

d = ( 0.198 * v ) / [ ƒ + ( 3.9006 * µ) /  ]. (Eq. 3.6) 
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3.4.  Von Karman Application 

 The original intent was to use this information inside the wind tunnel.  However, 

after performing calculations and inspecting the wind tunnel, the idea was dismissed; the 

area of the wind tunnel was so small that a cylinder would have taken up the bulk of the 

tunnel, serving not produce the desired effect, but only to disrupt the flow of air.  A larger 

wind tunnel would have alleviated this issue.  A smaller cylinder could also have been 

used had higher velocities been available.
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CHAPTER 4.  EXPERIMENTS 
 
 
 

 In this chapter, the physical experiments are presented.  Both the bench test and 

the road test are explained in detail. 

 

4.1.  Explanation of Experiment 

 As this study is of an experimental nature, bench testing was chosen as the initial 

experiment.  A 0.56 m long wind tunnel with a cross-sectional area of 0.0232 m2 was 

employed to this end (see Figure 4.1).  The wind tunnel was measured to produce wind at 

a maximum air velocity of approximately 16 m/s. 

 

 

Figure 4.1. Assembled wind tunnel. 

 

Air velocity was measured using a hot-wire anemometer which sent a 0-5 VDC 

signal to the NI DAQ; the software then converted this voltage signal to an air velocity 

measurement in meters per second.
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 The thin-film piezoelectric element was placed inside the wind tunnel such that 

airflow caused it to oscillate.  The piezoelectric element was connected to the NI DAQ 

(see Section 4.1.1 for details). Open-circuit voltage (OCV) and closed-circuit voltage 

(CCV) (through a 1 k resistor) from the piezoelectric element were measured using the 

NI DAQ.  CCV was later converted to closed-circuit current (CCC).  Power was then 

calculated using these measurements. 

 For the road test portion of the experiment, the same piezoelectric element 

configurations and anemometer were used.  These components were mounted on a 

moving vehicle.  The OROS DAQ and a laptop computer were used to collect voltage 

data from the piezoelectric element and the anemometer. 

 

4.1.1.  Test Rig 

 One of the benefits of the piezoelectric collector is its simplicity.  This rig is made 

of a few simple elements: a piezoelectric sheet collector laminated to increase durability, 

the anemometer, and the measurement device (a DAQ or the scope). 

 The piezoelectric element is made of a thin layer of polyvinylidene fluoride 

(PVDF) mounted to a thin thermoplastic laminate.  Various thicknesses were available, 

such as 52 µm and 27 µm.  The 27 µm thickness was chosen in order to make the most 

use of the relatively low air velocities.  In higher speed applications thicker piezoelectric 

elements could be used. 

The collector was mounted to a vertical rod within the wind tunnel.  Various 

arrangements were considered (Figure 4.2), but a flag-type element was chosen in order 

to maximize movement of the piezoelectric element.  In contrast, the skin-type element 

may not be as efficient because of boundary-layer concerns.  Close to a moving body, 

lower flow is present; ergo less energy would be available for harvesting. 
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Figure 4.2. Various PEG design ideas. 

 

4.1.2.  Initial Circuit Design 

 As mentioned in Chapter 2, the charge pump is one of the most efficient PEG 

circuit designs.  This circuit was adapted for this study; the diagram for this charge pump 

is shown in Figure 4.3.  In this design, the piezoelectric element charges all four 

capacitors in parallel.  The switches are then manually switched and the capacitors can be 

used in a parallel-series combination to power the LED.  Note that here the piezoelectric 

element is represented by an AC voltage source. 
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Figure 4.3. Charge pump circuitry. 

 

 This circuitry is operated manually as follows.  First, the piezoelectric element is 

used to charge the four capacitors (C1-C4) in parallel by closing switches S1, S2, and S3.  

Once charged to maximum piezoelectric voltage, these switches are then opened.  Next, 

switches S4 and S5 are closed.  This allows capacitors C1 and C2 to be arranged in 

parallel; capacitors C3 and C4 are likewise arranged in parallel.  These two parallel sets 

are then arranged in series.  The capacitors then light the LED (D2). 

 After measuring the output of the piezoelectric element with the scope, it was 

found that the piezoelectric element did not produce enough voltage to switch the diodes.  

Therefore, this design was abandoned in favor of the piezoelectric element by itself. 

 

4.2.  Bench Testing Procedure 

 Using LabVIEW software, a program was created to measure OCV and CCV 

coming from the piezoelectric element as well as voltage from the anemometer.  The 

signal range of the NI DAQ was  10 V with a resolution of 16 bits.  After reading the 
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values, the software displayed all values graphically.  The user could choose for the 

program to output the measurements to a text file.  The data was checked against the 

scope to ensure accuracy. 

 

4.3.  Pre-Experimental Set-up and Measurements 

 In order to gather accurate data about each trial, pre-experiment readings were 

taken.  Air velocity within the wind tunnel was first measured.  Two nozzle options were 

available: a square nozzle and a smaller, round one (Figures 4.4 and 4.5).  Velocities 

were taken from a nine-point grid pattern inside the tunnel and are reported in Table 4.1.  

In this table, rows and columns are labeled with physical locations (top, middle, etc).  

These locations graphically represent the points measured within the tunnel. 

 

 
Figure 4.4. Square nozzle. 
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Figure 4.5. Round nozzle. 

 
Table 4.1. Wind tunnel maximum velocities (given in m/s). 

Square Nozzle Circular Nozzle 

 Left Center Right  Left Center Right
Top 7.92 8.94 8.03 Top 3.35 11.79 2.31 

Middle 11.68 9.04 9.04 Middle 5.89 13.21 2.54 
Bottom 8.84 10.26 8.74 Bottom 2.74 5.59 1.47 

 

 From Table 4.1 it can be seen that the smaller, round nozzle provided the highest 

wind velocity (13 m/s—approximately 30 mph).  Although this velocity is more 

concentrated, the profile of the piezoelectric element fits well within the diameter of the 

nozzle. 

 An LCR meter (Protek LCR Meter Z8200) was used to measure the capacitance 

and AC resistance of the piezoelectric element at 1 kHz.  All six piezoelectric elements 

were measured in order to obtain accurate results.  The results are displayed in Table 4.2.  

Note the capacitive nature of the piezoelectric material. 
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Table 4.2. LCR measurements for piezoelectric elements. 

 XC (kΩ; at 1kHz) C (nF) R (Ω) 

1 7.643 20.82 120 

2 7.600 20.95 116 

3 7.593 20.97 114 

4 7.554 21.06 117 

5 7.523 21.15 116 

6 7.600 21.30 131 

Averages 7.586 21.04 119 

 

 These values can be of use when looking at the circuit representation of a 

piezoelectric element.  This is shown In figure 4.6.  Note that the piezoelectric element is 

represented by an AC voltage source, a capacitor, and a resistor in series.  This is 

representation is consistent with the literature (e.g. Priya (2007)).  The values for RPEG 

and CPEG are those shown in Table 4.2.  For the OCV measurements, the circuit was 

connected directly to the DAQ at points 1 and 2.  For the CCV measurements, a 1 kΩ 

resistor was also attached at points 1 and 2, in parallel with the piezoelectric element. 

 

Figure 4.6. Piezoelectric circuit representation. 
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4.4.  Initial Test 

 For the initial test, OCV and CCV were obtained at various air velocities using 

the scope.  The test was then repeated using the LabVIEW software.  CCC was found by 

measuring the voltage across a 1 kΩ resistor.  The test was performed with a single 

piezoelectric element, two elements in series, and two elements in parallel.  The results 

for this test can be found in section 5.1. 

 

4.5.  Road Test 

 For the road test, the piezoelectric element was mounted to the top of a moving 

vehicle (see Figure 4.7).  This placement simulated the placement in the wind tunnel—

one with little interference from other objects.  Once again, OCV and CCV were 

measured for three different scenarios: a single piezoelectric element, two elements in 

series, and two elements in parallel.  The same anemometer was used for the road test.  

CCV was converted to CCC after the data was collected. 

 

 

Figure 4.7. Road test piezoelectric element mounting. 

 

 The OROS DAQ was utilized for the road test.  This allowed for simpler 

measurements than the NI DAQ and reduced the computing requirements. 

 For each of the six tests (OCV and CCV for each of the following: the single 

element, two elements in series, and two elements in parallel), the vehicle was brought to 
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above 22 m/s and then measurements were taken.  The vehicle was then brought to a stop 

during the 30 second test, thereby reducing the air velocity. 

 In addition to obtaining the Root-mean-square (RMS) values for each of these 

tests, the OROS DAQ allowed the frequency content of the piezoelectric output to be 

observed. 
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CHAPTER 5.  RESULTS AND DISCUSSION 
 
 
 

Results of each test and inferences from them are discussed in this chapter. 

 

5.1.  Initial Test Results 

 In the initial test, OCV and CCC values were obtained.  Figures 5.1 – 5.6 show 

scope screen shots at the maximum air velocity tested (15 m/s—approximately 34 mph).  

It should be noted that this setup had an RMS noise of 0.002 V and a PP noise of 0.014 V 

with the air velocity at 0 m/s, rendering any readings at or below these values unusable.  

This could be due to a number of factors, including movement of people within the room 

and the HVAC system.  Although the wind tunnel was an enclosed space, a vent for the 

HVAC system was located directly above the bench.  A piezoelectric is a very sensitive 

device and can pick up pressure variations as small as those mentioned here.  This effect 

is most evident in the CCV figures. 

 

 

Figure 5.1. OCV for a single piezoelectric at 15 m/s.
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Figure 5.2. CCV for a single piezoelectric at 15 m/s across a 1 kΩ resistor. 

 

 

Figure 5.3. OCV for two series piezoelectric elements at 15 m/s. 
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Figure 5.4. CCV for two series piezoelectric elements at 15 m/s across a 1 kΩ resistor. 

 

 

Figure 5.5. OCV for two parallel piezoelectric elements at 15 m/s. 
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Figure 5.6. CCV for two parallel piezoelectric elements at 15 m/s across a 1 kΩ resistor. 

 

 The voltage was highest for the two elements in series.  This is logical, as 

capacitors are similar to voltage sources within a circuit—when in series, voltages are 

additive; when in parallel, current is additive. 

 Note that the sample rate here was 500 Hz—much too low to capture all of the 

signal, as is mentioned in section 5.2. 

 After viewing these signals with the scope, LabVIEW software and the NI DAQ 

were used to measure and record air velocity, OCV, and CCV.  These results are graphed 

in Figures 5.7-5.9. 

It should be noted that these graphs show the results of measuring the peak-to-

peak (PP) OCV and CCC.  The sample rate for this first test was 0.25 Hz—too low to 

draw many conclusions about the material or the test. 

 However, this initial test showed a number of things.  First, the concept of this 

study is correct; power can be harvested from turbulent airflow using PEG.  Second, the 

voltage and current characteristics were shown to be alternating between positive and 

negative values, but at no constant frequency.  Third, the frequency content was above 

that which was measured using LabVIEW (0.25 Hz).  As such, a much higher sampling 

rate was used for the road test (see below).  Fourth, the relationship between power and 

air velocity is shown.  Figures 5.7 – 5.9 show power as a function of air velocity for the 
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single piezoelectric element, two elements in series, and two elements in parallel.  Power 

in these figures was obtained by using the OCV and the CCC as measured using 

LabVIEW. All figures show instantaneous power values calculated from RMS OCV and 

CCC values.  Note that these graphs closely match the power function shown in Figure 

3.1. 

 

 

Figure 5.7. Instantaneous power from a single piezoelectric element using LabVIEW. 
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Figure 5.8. Instantaneous power from two series piezoelectric elements using LabVIEW. 

 

 

Figure 5.9. Instantaneous power from two parallel piezoelectric elements using 

LabVIEW. 
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 RMS voltage and current were quite low—not enough to rectify the signal using a 

diode.  It should be noted that higher air velocities would lead to higher forces on the 

piezoelectric elements and thus higher power.  This can be clearly seen from the 

relationships shown in the figures above. 

 

5.2.  Road Test Results 

 After performing these basic measurements with the bench test, the experiment 

was then performed using a vehicle on the road.  The size and material of the 

piezoelectric element were the same as in the wind tunnel test.  Although more power 

could have been obtained, as a larger area was possible, it was deemed wise to hold these 

variables constant. 

 For each test, the vehicle was brought to above 22 m/s.  The data collection then 

began and the vehicle was brought to a stop.  Figure 5.13 shows a representative graph of 

velocity versus time for one of these tests.  There was a 23% variation for this slope 

between tests.  Note that each test run was 30 seconds long. 

 

Figure 5.10. Sample velocity vs. time for road test. 
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 As the data previously collected was at the 0.25 Hz range, the sampling rate was 

increased—first to 4 kHz, then to 20 kHz, and finally to 40 kHz.  The OROS DAQ 

allowed for the measurement of OCV and CCV (across the 1 k resistor) from the 

piezoelectric element, as well as the frequency content of both these signals.  The OROS 

DAQ had an input range of  15 V and a resolution of 16 bits.  The CCV was then 

converted to CCC by dividing by the resistance across which the measurement was taken 

(1 k). 

 

5.2.1.  System Noise 

 In order to determine the noise in the data, trial runs at 0 m/s were taken to view 

the frequency content and the noise present.  The noise in the system was very low—less 

than -125 dB/Hz.  The frequency content of this test can be seen in Figure 5.14. 

 

 

Figure 5.11. Welch power spectral density estimate for OCV from one element at 0 m/s. 
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5.2.2.  Piezoelectric OCV Characteristics 

 In each of the tests, no voltage was produced below an air velocity of 15 m/s.  

This can easily be seen as an almost instantaneous drop in voltage.  Figure 5.15 shows 

this effect in detail.  Below this velocity, the force of the air upon the element is not 

enough to generate much measurable voltage.  If one were to use a larger or thicker 

element, this velocity may be expected to increase. 

 

Figure 5.12. OCV vs. velocity for a single piezoelectric element. 
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Figure 5.13. OCV vs. velocity for two piezoelectric elements in series. 
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Figure 5.14. OCV vs. velocity for two piezoelectric elements in parallel. 

 

5.2.3.  Piezoelectric CCV Characteristics 

 In order to measure the current output of the piezoelectric element, CCV was 

measured across a series connected 1 k resistor.  The measured values can be seen in 

Figures 5.18 – 5.20.  Once again, as with OCV, very little was observed below an air 

velocity of 15 m/s. 

 The spike in voltage shown in Figure 5.18 was a brief increase in air velocity at 

the end of the test. 

Velocity (m/s) 
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Figure 5.15. CCV vs. velocity for a single piezoelectric element. 
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Figure 5.16. CCV vs. velocity for two piezoelectric elements in series. 
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Figure 5.17. CCV vs. velocity for two piezoelectric elements in parallel. 

 

5.2.4.  RMS Values 

 In order to obtain an accurate power output, RMS OCV and CCV were calculated 

for the portion of the data that had a signal; including the entire trial would have led to 

erroneously low RMS values.  RMS values for OCV, CCC, and power for each of the 

three test set-ups are shown in Table 5.1. 

 

Table 5.1. OCV and calculated RMS, CCC, and power values. 

Arrangement  OCV (V)  CCC (A)  Power (W) 

1 Piezo  1.96E‐02  2.80E‐06  5.49E‐08 

2 Series  1.22E‐02  2.30E‐06  2.81E‐08 

2 Parallel  3.50E‐03  6.40E‐06  2.24E‐08 

 

Velocity (m/s) 
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 While proving that the concept works, these numbers do not come close to the 

aforementioned target of 20 mW. 

 

5.2.5.  Voltage Frequency Characteristics 

 Perhaps one of the most interesting facets of this study was the frequency 

generated by the piezoelectric element.  It was the original thought of the author that 

these frequencies generated would be rather low (less than 1 kHz), due to the fact that it 

is difficult for a physical object of this size to oscillate at high frequencies.  However, as 

can be seen in Figure 5.16, there was a large portion of high-frequency voltage with a 

distinct spike at 3.5 kHz. 

 

 

Figure 5.18. Welch power spectral density estimate for a single element. 

 

 The same was found to be true in all three cases.  Although this spike was shifted 

slightly for the case with two elements in series to 2.5 kHz (Figure 5.19), this was still 
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higher than the expected.  This change in frequency may have multiple sources.  One 

could be that one element’s output was cancelled by the other’s, thereby reducing the 

content at that particular frequency.  This possibility is further discussed in section 5.3. 

 

 

Figure 5.19. Welch power spectral density estimate for two elements in series. 

 

 It should also be noted that although each of the power spectral density figures 

have a similar shape, the quantity of frequencies present in each changed.  For example, 

for the single piezoelectric element, the frequency content was about -79 dB/Hz at 

resonance (Figure 5.18).  Compare this to the series combination, -75 dB/Hz (Figure 

5.19), and the parallel combination, -90 dB/Hz (Figure 5.20). 
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Figure 5.20. Welch power spectral density estimate for two elements in parallel. 

 

 This high-frequency power content has a few possible explanations.  First, as the 

force applied by the air was randomly changing, the voltage produced by the 

piezoelectric element was randomly changing.  These random and rapid changes lead to 

higher frequency content.  Second, although this study was focused on horizontal, flag-

type motion, there were other stresses being applied to the element.  For example, there 

may have been force components that applied tension to the flag along both its vertical 

and horizontal axes.  There may have been compressive forces, as well. 

 These forces combined could have produced frequencies much higher than the 

simple flapping that was assumed here.  Future study may be focused on which of these 

components contributed the most to power generation and how to maximize this affect. 

 In order to determine whether this was indeed physically possible, the 

piezoelectric element was then attached to a function generator.  A Wavetek 182A was 

used.  This device had the capabilities of producing frequencies from 0.004 Hz to 4 MHz.  
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The function generator was first attached to a scope to check its accuracy.  After this was 

confirmed, the piezoelectric element was attached to the function generator.  A 20 V PP 

signal was sent to the piezoelectric element.  The frequency of this signal was adjusted.  

Although no physical movement was visible, the vibrations produced were audible.  

Frequencies as high as 1.7 kHz could be easily heard, indicating that vibrations at these 

high levels are possible.  These vibrations, however, were not the flag-type movement 

discussed here, but some form of compressive and tensile forces, perhaps along the 

element’s horizontal axis. 

 

5.3.  Series & Parallel Circuit Issues 

 Although voltage should be additive when the elements are in series, and thus 

approximately twice as large as the single element values, the data does not reflect this.  

In fact, the single piezoelectric element produced the largest RMS voltage and power.  

The OCV voltage for the two elements in series was only 62% of the single element’s 

voltage.  This could be caused by the elements bending in opposite directions, producing 

voltages of opposing signs, and thus canceling each other. 

 In the case of CCC, the two elements in parallel did produce what was expected—

approximately twice as much current as the single piezoelectric element (229%).  

However, the voltage here was lower by 83%.  This could also be due to the 

aforementioned cancelling effect. 

 

5.4.  Power Considerations 

 The power produced by the piezoelectric is not the only concern.  Power density 

is an important consideration as well.  As the piezoelectric flag could be considered a 

two-dimensional object if thickness is ignored, the following equation gives the 

maximum power density per unit area: 

PD = PMEAS / A, (Eq. 5.1) 

where PD is the power density (W/m2), PMEAS is the experimentally measured 

piezoelectric power output (W), and A is the area of the piezoelectric element (m2).  Note 

that the area of one piezoelectric element was 0.00638 m2.  Using the data obtained from 
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the road test, power density for the single piezoelectric was the highest at 8.61 W/m2.  

The power densities of the series and parallel combinations were 2.20 W/m2 and 1.76 

W/m2, respectively.  The data for these calculations can be found in Table A-2 in the 

Appendix. 

Efficiency of the element can be found as: 

 = PMEAS / PPEG, (Eq. 5.2) 

where  is the efficiency of the element in question and PPEG is the theoretical maximum 

power for this setup.  The single piezoelectric element yielded the highest numbers, with 

an efficiency of 1.08 x 10-6 %.  The series combination had an efficiency of 5.54 x 10-7 %.  

The parallel combination had an efficiency of 4.42 x 10-7 %. 

 The micro-scale efficiencies are due in part to the fact that the maximum power 

was calculated at a constant air velocity, whereas the RMS values mentioned here were 

measured at decreasing air velocities.  In addition, although the overall velocity as 

measured was as high as 22 m/s, the nature of turbulence dictates that some of the 

velocity components acting on the piezoelectric material were lower.  Therefore, the 

forces acting on the piezoelectric were smaller than the estimated theoretical maximum. 

 Another possibility is due to the nature of the piezoelectric material.  When a 

force is applied to a piezoelectric material in one direction, a voltage of a certain 

magnitude and sign is created.  If a force of the same magnitude but the opposite 

direction is placed on the piezoelectric material, a voltage of the same magnitude as 

before, but with the opposite sign, will be produced. A piezoelectric material that is 

flapping (such as the ones used in this study) is undergoing various forces in various 

directions.  It is possible that some of these forces are opposing others.  Thus, voltages 

produced may cancel each other out before they leave the material. 

 Although power produced by the wind tunnel seemed to be higher, this power was 

calculated on an instantaneous basis, thus taking into account the PP values, rather than 

the RMS.  The data, therefore, show much higher power generated. 
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5.5.  Effect on Drag 

 The actual effect on drag was not determined.  Three possibilities exist: increase, 

no influence, or decrease.  Although it may seem that this will add drag to the overall 

design, this is not necessarily the case.  Regardless of whether the energy is captured or 

not, the moving body must give up energy to the air in order to move it.  Once the air 

passes the body, there is still energy present in the form of turbulence.  This turbulence 

adds to the overall aerodynamic drag.  If this turbulence were to be reduced, the overall 

drag will also decrease.  Thus, harvesting energy from the wind has the two-fold 

possibility of making useable electric power as well as reducing drag. 
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CHAPTER 6.  CONCLUSIONS 
 
 
 

 In light of rising energy costs and increasing demand, new technologies such as 

PEG can be of great benefit.  Research surrounding these may lead to new sources for 

energy harvesting.  In addition, the flexibility and simplicity of PEG allow for installation 

in areas where other generation techniques might not be feasible. 

 The technique used in this research generated acceptable voltage.  Although 

small, this voltage could be used for other applications, had the current generated been 

high enough.  The nature of the piezoelectric element, as a capacitive device, lends itself 

to small current generation. 

Based on the null and alternative hypotheses set forth at the beginning of this 

experiment, this application did not yield enough power to meet the requirements.  The 

null hypothesis—H0: No useable power can be harvested from this setup—cannot be 

rejected based on this data.  To remind the reader, no statistical analysis was used for this 

evaluation, as this was a quasi-experimental study (see section 1.5). 

 Although the power produced did not meet the 20 mW requirement, a few 

phenomena were observed.  First, the chaotic AC nature of the piezoelectric voltage was 

observed.  These observations would be useful in future studies, as the signal would need 

to be rectified in order to be of much use in this application.  To this end, more efficient 

rectification techniques would be needed.  Second, although adding multiple piezoelectric 

elements in series or parallel seemed to be a good solution to low power production, this 

only exacerbated the problem.  As the voltages varied, they often cancelled each other 

out, producing a lowered voltage.  Thus, as above, an efficient rectification technique 

would be required before combining the signals.  After this, however, the signals could 

be combined for increased output.  Third, the frequency content of the voltage signal was 

quite high.  This may be looked at as a positive or a negative finding; in many instances it 
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is easier to produce high frequency forces.  However, in wind applications, it is often low 

frequency forces that produce much power. 

The findings here could make a basis for future study.  Rectification for PEG is a 

topic studied by many researchers, but there is still much work to be done in this area.  

More efficient rectification techniques would lead to more usable power, as the signals 

could be rectified first and then combined. 

Further investigation of the dynamic interaction between the piezoelectric element 

and the air currents could also lead to interesting developments.  A study on placement 

and the effect on aerodynamic drag would be of great help were one to attempt to further 

this technology.  As more turbulent flow is present in some areas than others (under the 

vehicle and behind it), the placement could be varied to observe power output and the 

effect on the drag coefficient. 

In addition to placement, it would be interesting and helpful to view the various 

forces acting on the piezoelectric element within the flow.  By doing this, one could more 

accurately predict the maximum amount of power harvestable.  This may also lead to a 

better understanding of the interaction between the element and the flow.  In order for 

this to be of much use, a large number of sensors would be required, as well as a more 

sophisticated DAQ system. 

Another possibility for future study would be the use of other types of 

piezoelectric materials.  While the k33 constant for PVDF is 12%, other materials have 

much higher k33 values; one such material is PZT, which has a k33 of around 70%.  This 

would lead to higher power output. 

Future study could also investigate the relationship of power and velocity shown 

here.  Although this relationship seems generalizable to higher velocities, there may be 

findings otherwise at much higher velocities.  In general, higher velocities will lead to 

higher forces on the piezoelectric element, which should lead to higher voltage, current, 

and power output. 

 The limited current understanding of turbulent flow also is an interesting aspect of 

this study.  No current research allows one to compute the amount of energy in a given 

turbulent situation.  As such, it is difficult to quantify the theoretical maximum power 
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harvestable in a situation such as this.  As mentioned in Chapter 5, this could be part of 

the reason for the low efficiencies found here. 
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APPENDIX 
 
 
 

Table A-1. Maximum power data. 

Drag 
coeff. 

Air 
density Velocity 

Piezo 
area 

Vehicle 
frontal 

area 

Drag 
force on 
vehicle 

Drag 
force 

at sides 
(10%) 

Turbulent 
drag force 
acting on 

piezo 

Max. 
power 
at sides 

Max. 
power 
with 
Betz 
limit 

Max. 
power 
with 
k33 

(12%) 

CD p (kg/m3) v (m/s) APEG(m2) A (m2) F (N) (N) (N) (W) (W) (W) 

1.05 1.233 2.00 0.00638 0.14790 0.3831 0.0383 0.0008 0.0017 0.0010 0.0001 

1.05 1.233 4.00 0.00638 0.14790 1.5324 0.1532 0.0033 0.0132 0.0078 0.0009 

1.05 1.233 6.00 0.00638 0.14790 3.4478 0.3448 0.0074 0.0446 0.0265 0.0032 

1.05 1.233 8.00 0.00638 0.14790 6.1294 0.6129 0.0132 0.1058 0.0627 0.0075 

1.05 1.233 10.00 0.00638 0.14790 9.5772 0.9577 0.0207 0.2066 0.1225 0.0147 

1.05 1.233 12.00 0.00638 0.14790 13.7912 1.3791 0.0297 0.3569 0.2117 0.0254 

1.05 1.233 14.00 0.00638 0.14790 18.7713 1.8771 0.0405 0.5668 0.3361 0.0403 

1.05 1.233 16.00 0.00638 0.14790 24.5176 2.4518 0.0529 0.8461 0.5017 0.0602 

1.05 1.233 18.00 0.00638 0.14790 31.0301 3.1030 0.0669 1.2047 0.7144 0.0857 

1.05 1.233 20.00 0.00638 0.14790 38.3088 3.8309 0.0826 1.6525 0.9800 0.1176 

1.05 1.233 22.00 0.00638 0.14790 46.3536 4.6354 0.1000 2.1995 1.3043 0.1565 

1.05 1.233 24.00 0.00638 0.14790 55.1647 5.5165 0.1190 2.8556 1.6934 0.2032 

1.05 1.233 26.00 0.00638 0.14790 64.7419 6.4742 0.1396 3.6306 2.1530 0.2584 

1.05 1.233 28.00 0.00638 0.14790 75.0852 7.5085 0.1619 4.5346 2.6890 0.3227 

1.05 1.233 30.00 0.00638 0.14790 86.1948 8.6195 0.1859 5.5773 3.3073 0.3969 

1.05 1.233 32.00 0.00638 0.14790 98.0705 9.8071 0.2115 6.7688 4.0139 0.4817 
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Table A-2. Piezoelectric element efficiency. 

Arrangement 
Power 

Generated 
Power 

Density 
Maximum Theoretical 

Power Harvestable Efficiency 
 (W) (W/m2) (W) (%) 

Single 
Piezoelectric 5.49E-08 8.61E-06 5.07E-02 1.08E-06 

Series 
Piezoelectric 2.81E-08 2.20E-06 5.07E-02 5.54E-07 

Parallel 
Piezoelectric 2.24E-08 1.76E-06 5.07E-02 4.42E-07 
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