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Figure 3.130. Median MIC Density Fits (BNP) for Relationship 4

Figure 3.131. Median MIC Density Fits (BNP) for Relationship 5
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Breakpoint performance was still very good for all approaches for MIC/DIA rela-

tionships 1, 2, and 3. For relationships 4 and 5 the BNP and FNP approach perform

well while the L4P approach struggles.

3.3.7 Real Data Sets

We now look at several real data sets. These data sets are unique in that they

feature uncommon characteristics of typical susceptibility experimental data. We an-

alyze each data set using the BNP, L4P, and ERB approaches. For the ERB approach

we use nonparametric bootstrap to get a distribution of DIA breakpoints. For the

FNP approach we only include the estimated DIA breakpoints without any indication

of uncertainty (the uncertainty could be quantified by nonparametric bootstrap). It

should also be noted that our FNP approach does not take censoring into account,

and should be interpreted with caution for these data sets.
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Ciprofloxacin and Salmonella

We analyze the data from a susceptibility test involving the drug Ciprofloxacin

and pathogen Salmonella. These experimental data were presented at CLSI in 2011.

It is unique in that there is an extra large three dilution indeterminant range.

Approach
DIA Probability/

Breakpoints Proportion

BNP
22, 31 0.65

22, 32 0.35

L4P
22, 31 0.71

22, 32 0.29

FNP 22, 30

ERB
20, 29 0.74

21, 29 0.23

20, 28 0.03

Table 3.17 DIA breakpoint estimates for all approaches.

The BNP and L4P approaches give very similar DIA breakpoint distributions.

The estimated fits for both the underlying MIC density and underlying MIC/DIA

relationship are also very similar. The FNP approach breakpoints are close to the

BNP and L4P approaches. The ERB breakpoints are also close to the model-based

approaches but lower.
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Figure 3.132. Resulting BNP fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.133. Median Density Estimate for BNP
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Figure 3.134. Resulting L4P fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.135. Median Density Estimate for L4P
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Ertapenem and Enterobacteriaceae

We analyze the data from a susceptibility test involving the drug Ertapenem and

pathogen Enterobacteriaceae. These experimental data were presented at CLSI in

2011. It is unique in the underlying MIC density and features heavy censoring.

Approach
DIA Probability/

Breakpoints Proportion

BNP
18, 22 0.73

18, 23 0.19

17, 22 0.08

L4P 17, 21 1

FNP 17, 21

ERB

17, 21 0.44

18, 22 0.21

16, 21 0.11

17, 22 0.07

. . .

Table 3.18 DIA breakpoint estimates for all approaches.

The L4P and FNP approach result in the same DIA breakpoints, however they are

different from the BNP and ERB approaches. The L4P approach estimates a linear

fit for the underlying MIC/DIA relationship while the BNP approach estimates a fit

that dips and flattens in various regions.
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Figure 3.136. Resulting BNP fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.137. Median Density Estimate for BNP
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Figure 3.138. Resulting L4P fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.139. Median Density Estimate for BNP
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Doripenem and Staphylococcus

This data set has no MIC indeterminant range and also features heavy censoring.

We present the results for the BNP, L4P, and ERB approaches.

Approach
DIA Probability/

Breakpoints Proportion

BNP
18, 22 0.81

17, 21 0.16

19, 23 0.03

L4P
25, 29 0.86

24, 28 0.14

FNP 17, 23

ERB

16, 25 0.30

17, 26 0.16

15, 24 0.13

22, 31 0.10

. . .

Table 3.19 DIA breakpoint estimates for all approaches.

The DIA breakpoint distributions are substantially different for every approach.

The BNP approach estimates much smaller breakpoints compared to the L4P ap-

proach. Looking at the estimated fit the for the underlying MIC/DIA relationship,

it is questionable if a logistic model is appropriate here. The ERB DIA breakpoints

are very wide while the FNP breakpoints are closer to the BNP breakpoints.
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Figure 3.140. Resulting BNP fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.141. Median Density Estimate for BNP
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Figure 3.142. Resulting L4P fit. The black line represents the median estimate and
the dotted red lines represent 95% credible intervals.

Figure 3.143. Median Density Estimate for L4P
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3.4 Summary

The goal of the ERB approach is to minimize observed discrepancies. Therefore

the approach does not adequately take into measurement error nor try to get to

the underlying truth. This results in very poor and inconsistent performance as

demonstrated in the first scenario. When the measurement error was increased the

ERB approach performed even worse, while the impact on the BNP approach was

minimal. This provides compelling evidence for practitioners to abandon the use of

the ERB approach.

The second scenario compared the BNP and FNP approaches by looking at the

estimate of the underlying MIC density, MIC/DIA relationship, and DIA breakpoints.

The BNP approach did a slightly better job of estimating the underlying MIC density

compared to the FNP approach. This performance difference increased as the MIC

measurement error increased. The resulting MIC/DIA fits for the BNP approach were

also better, but this increased performance was similar between the two approaches

in terms of breakpoint accuracy. However, when the MIC breakpoints were shifted

towards the right of the data, the BNP approach performed better.

The third scenario compared the BNP and L4P approach. Performance was simi-

lar when the underlying MIC/DIA relationship followed a logistic curve, however the

BNP approach exceeded the L4P approach when this relationship deviated from a

logistic fit.

The fourth scenario showed the two solutions we proposed for knot selection, many

equally spaced knots (BNP) or treating the number and location of knots as unknown

parameters (BNPRJ), resulted in very similar DIA breakpoint estimation. This is

expected since the two approaches produce relatively similar fits for the underlying

relationships, although there could be differences.



152

The fifth scenario showed the BNP approach worked surprisingly well when there

were few isolates near the indeterminant range. However, when the underlying

MIC/DIA relationship shifts in this range, the BNP approach performs poorly as

there is little information in the data to estimate this change. The best option in this

case is to choose DIA breakpoints as conservatively as possible.

In the sixth scenario we assessed the performance of the BNP, L4P, and FNP

approaches for a smaller sample of isolates. In all previous scenarios the number of

isolates was 1000, for this scenario we used only 500. Performance was similar as

when there were 1000 isolates. This gives promising results that clinicians can use a

smaller number of isolates in practice.

Finally, we applied the BNP, L4P, and ERB approaches to three real data sets.

These data sets were unique in that they were uncommon in what would typically be

seen in susceptibility experiment data. They featured heavy censoring, indeterminant

ranges different than the common one log2 dilution range, and uncommon MIC den-

sities. The BNP and L4P approaches produced similar results for the first data set

(Ciprofloxacin and Salmonella), however the results were quite different for the other

two data sets. Looking at the estimated underlying relationship, it appeared that the

BNP approach results were more reasonable. For example, with the second data set

the L4P approach estimated an exact linear relationship. While this is possible, it is

much more likely the underlying relationship differs significantly from a logistic fit.
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4. CONCLUSION

Resistance to antibiotics is a world-wide concern. More and more infections that were

previously easily treatable have become life-threatening. Humans must address the

resistance issue before it is too late. One way to slow down the resistance is through

a better choice of antibiotics. This thesis addresses a step in that direction.

Antimicrobial susceptibility testing is used to help clinicians choose the appro-

priate drug to treat an infection. Clinicians count on this method to give accurate

results. The current method to determine breakpoints has been shown to perform

poorly. Our goal was to not only propose a better method, but also provide the tools

necessary for clinicians to use it in practice.

While we discussed our approach in terms of calibrating antimicrobial susceptibil-

ity tests, it can be used in other contexts as well. Data featuring measurement error

and/or rounding are common and found in all disciplines. In addition, there is often

prior knowledge of a monotonicity constraint. Taking this information into account

increases precision by filtering out some of the noise. Our method is the first, that we

know of, to take these factors into account in a nonparametric Bayesian framework.

4.1 Summary

We proposed a novel errors-in-variables Bayesian nonparametric model that can

be used to estimate DIA breakpoints. This model assumes no parametric relationship

between the true MIC and DIA, accounts for the measurement error and rounding in

both tests, and utilizes both the observed MIC and DIA results when estimating the

underlying true MIC distribution.
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Our simulation studies show the model performs well across a variety of scenar-

ios. It performs comparably to the extended four-parameter logistic model when the

underlying MIC/DIA relationship follows a logistic relationship, and exceeds it when

it does not. The approach also outperforms, in most cases, our two-stage frequentist

approach, where the underlying MIC density estimate and underlying MIC/DIA re-

lationship are estimated in two separate steps. In addition, we showed the current

method used in practice, ERB, is biased and is not precise. Our approach greatly

outperforms the ERB and hopefully these results will encourage clinicians to abandon

its use.

4.2 Software

Model-based methods have been proposed in the past but not implemented by

clinicians. Perhaps the biggest hurdle in encouraging their implementation was the

lack of easy-to-use software. We have created software, available freely on the web,

for clinicians to use in practice. We hope this starts a movement to discontinue the

use of the ERB method and push towards model-based approaches when determining

DIA breakpoints.

dBETS (diffusion Breakpoint Estimation Testing Software) was developed with

the R package shiny [72]. It is currently hosted on a public server and can be ac-

cessed freely via the Internet, http://glimmer.rstudio.com/dbets/dBETS/. Orga-

nizations can also make it available on private networks to have more control of the

underlying server.

dBETS software enables clinicians to easily upload susceptibility data and perform

analysis via a common tool. Previously, clinicians analyzed susceptibility data with

their own software. While everyone was following the same guidelines, it’s very likely

there were small differences between programs. These differences could result in
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different conclusions for the same data across labs. dBETS provides a standard

format for all clinicians to use.

dBETS provides a variety tools for clinicians. Data can be uploaded from an online

source or via a local machine. The ERB method, and both spline and logistic models

are implemented. In addition, various data visualization techniques are provided.

4.3 Future Work

Our approach assumes the DIA be a function of the MIC. However we can flip this

around and assume the MIC is a function of the DIA. We can then use our approach

to estimate the underlying MIC/DIA relationship, the underlying DIA density, and

DIA breakpoints. No matter which way the data are modeled, the resulting MIC/DIA

relationship fit and DIA breakpoints should be similar. In fact for our approach the

results should be exactly the same, however the results may be different for other

approaches. This is something that needs to be investigated.

We also did not incorporate Qi’s approach directly into our simulation study; we

instead used an approximation. This was partly due to the lack of available software

to incorporate his approach easily. It would a more valid comparison to use Qi’s

approach exactly as described as our FNP approach in the simulation studies. It

may be that Qi’s approach does better than our approximation. This requires further

investigation. This is especially important in data sets that are heavily censored, as

seen in the real data sets analysis.

The algorithm for the reversible jump approach could be improved. Occasionally,

the chain exhibits poor mixing for several of the parameters. This is likely due to

poor proposal distributions. More research is needed to improve the algorithm and

improve efficiency.
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More investigation is needed in how DIA breakpoint performance varies with

sample size. Most experimental data uses around 500 isolates. Except for simulation

scenario six, we used 1000 isolates. We believe our approach will show similar perfor-

mance with a smaller sample size however this is planned future work. In addition

we would like to further investigate how our approach performs with different com-

binations of measurement error and sample size. It would be very beneficial to prac-

titioners if they knew they could achieve the same performance with 300 pathogens

compared to 700 pathogens as this will save them money. A simulation based study

varying measurement error and sample size would be very informative.

One of the ongoing works will be to continually update dBETS software. dBETS

is still in the beta stage of development and ongoing work is being done to improve the

application in order for it to be as easy to use as possible for clinicians. In addition,

the underlying code can be improved upon to increase performance, both from an

application and algorithmic perspective.

The software program dBETS is built on, Shiny, is still in the beta stage of

development. We therefore can expect changes to the underlying structure. Because

of this, the current code may become outdated and no longer functional. Consistent

maintenance of the code is needed to not only ensure the application works, but also

utilize future enhancements to make dBETS more productive for clinicians.
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