
Purdue University
Purdue e-Pubs

College of Technology Masters Theses College of Technology Theses and Projects

12-5-2007

Volumetric Visualization Of NEXRAD Level II
Doppler Weather Data From Multiple Sites
Yi Ru
Purdue University - Main Campus, yru@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/techmasters

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Ru, Yi, "Volumetric Visualization Of NEXRAD Level II Doppler Weather Data From Multiple Sites" (2007). College of Technology
Masters Theses. Paper 10.
http://docs.lib.purdue.edu/techmasters/10

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techetds?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/techmasters?utm_source=docs.lib.purdue.edu%2Ftechmasters%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

VOLUMETRIC VISUALIZATION OF NEXRAD LEVEL II DOPPLER WEATHER
DATA FROM MULTIPLE SITES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Yi Ru

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2007

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

I would like to thank my thesis committee – Dr. Gary R. Bertoline, Dr. Bedrich

Benes, and Dr. Laura Arns for their enduring support, guidance and

contributions. I am especially grateful to Dr. Bertoline for his trust,

encouragement, and kindness during my graduate studies, and Dr. Benes for his

long-term collaboration, attentive help, and additions to my work. Many thanks

are given to Dr. Laura Arns for her advice and help from different perspectives

and for the training on Virtual Reality instruments in the Envision Center for Data

Perceptualization.

I would like also to express my gratitude to Dr. Carol X. Song and Lan Zhao in

the Rosen Center for Advanced Computing (RCAC) Group for their kind help and

support. I would like to extend my thanks to Dr. David Ebert for imparting and

sharing his abundant knowledge on volumetric rendering techniques in his

visualization class. Thanks to Dr. Mathew Huber for his invaluable feedbacks

and suggestions.

I am also thankful to Leif L. Delgass for his quick responses and sharing his

knowledge and experience with me. Thanks to all of my classmates and friends

in the Envision Center and RCAC group for all their suggestions and

encouragement. Thanks for the financial support by Envision Center and RCAC

group.

Finally I would like to thank my husband, Chen for his unconditional care, tireless

support and encouragement, and my parents and my sister for their endless love.

iii

TABLE OF CONTENTS

 Page
LIST OF TABLES ... v
LIST OF FIGURES ...vi
ABSTRACT .. viii
CHAPTER 1. INTRODUCTION.. 1

1.1. NEXRAD Level II Doppler Radar Data ... 2
1.2. Statement of the Problem... 4
1.3. Purpose of the Study .. 6
1.4. Delimitations ... 6
1.5. Summary .. 6

CHAPTER 2. RELATED WORK... 8
2.1. Weather Visualization System.. 8
2.2. Volume Rendering Techniques in Weather Visualization 12
2.3. Doppler Data Processing.. 15
2.4. Data Compression Algorithm.. 15
2.5. Conclusion.. 17

CHAPTER 3. PROCEDURES .. 18
3.1. Data Processing ... 18

3.1.1. Radar Data Extraction .. 20
3.1.2. 3D Rectilinear Grid ... 21
3.1.3. Conversion from Spherical Coordinates to Geographic Coordinates . 22
3.1.4. Integrating Data from Multiple Sites.. 24
3.1.5. Constructing and Compressing the Volume 26

3.2. Weather Data Rendering .. 28
3.2.1. Texture-based Volume-Rendering Technique 29
3.2.2. Decompression and 3D Textures ... 32
3.2.3. Viewport-aligned Parallel Slices ... 32
3.2.4. Transfer Functions.. 34
3.2.5. CG Shading and Animation .. 36

CHAPTER 4. RESULTS... 39
4.1. Visualization Results .. 39
4.2. Quality of Visualization ... 41

4.2.1. Effect of Volume Resolutions on Visualization Results....................... 41
4.2.2. Effects of Sampling Rates on Visualization Results 42

4.3. Costs and Performance.. 43
4.3.1. Effects of Volume Resolution on Costs of Data Processing 43

iv

Page

4.3.2. Effects of Volume Resolution on Costs of Data Rendering................. 45
4.3.3. Performance of Combining Different Resolutions and Sampling Rates
 47
4.3.4. Testing with Different Hardware ... 49
4.3.5. Effects of the 3D Texture Compression Algorithm.............................. 50

4.4. Summary .. 51
CHAPTER 5. CONCLUSIONS AND FUTURE WORK 52

5.1. Summary .. 52
5.2. Limitation .. 52
5.3. Future Work.. 53

LIST OF REFERENCES .. 55

v

LIST OF TABLES

Table Page
Table 4.1. Costs of Processing Radar Data of Different Resolution 44
Table 4.2. Costs of Rendering Radar data of Different Resolution..................... 45
Table 4.3. Frame Rates measured with Different Resolution and Number of

Slices.. 48
Table 4.4. Costs of Disk Storage of the 3D Textures.. 51

vi

LIST OF FIGURES

Figure Page
Figure 1.1. Examples of Tornado and Hurricane and the Aftermaths (Images

Courtesy of National Oceanic & Atmospheric Administration (NOAA)) 2
Figure 1.2. Network of WSR88D (Weather Surveillance Radar, 1988, Doppler)

Radars (Image Courtesy of National Oceanic & Atmospheric Administration
(NOAA)).. 3

Figure 1.3. A Doppler Radar Site at Jackson Kentucky (Image courtesy of NOAA)
... 4

Figure 1.4. A Typical 3D Radar Sweep Perspective View of Reflectivity Data
Rendered as 3D Point Clouds in IDV (Image courtesy of IDV gallery) 5

Figure 3.1. Overview of the Visualization System.. 19
Figure 3.2. 3D Structure of NEXRAD Level II Doppler Radar Data (Reflectivity)

... 20
Figure 3.3. 256x256x128 Grid Structure (left) and Bounding Box (right) 21
Figure 3.4. Computing Geographic Coordinates of Sample Points 22
Figure 3.5. Interpolation between Different Timestamps 25
Figure 3.6. Vertical Interpolation.. 27
Figure 3.7. Compressing the Data using Modified RLE Algorithm..................... 28
Figure 3.8. Representation of Polygon Meshes at a Site (The left image is a side

view, and the right is the top view.)... 28
Figure 3.9. Optical Model of Volume Rendering (The top image shows the

absorption of light, and the bottom image shows the emission and self-
absorption of light.) ... 30

Figure 3.10. Alpha Blending in Back-to-front Order ... 31
Figure 3.11. Viewport-aligned Parallel Slices .. 33
Figure 3.12. 1D Look-up Color Table .. 34
Figure 3.13. Transfer Function Window for RGB and Alpha Channels.............. 35
Figure 3.14. Example of the Red Channel Transfer Function............................ 36
Figure 3.15. CG Vertex and Fragment Programs.. 37
Figure 3.16. Volumetric Rendering and Graphic User Interface 37
Figure 4.1. Images Rendered from Different Timestamps – top left: 00:10:00; top

right: 06:10:00; bottom left: 18:10:00; bottom right: 23:10:00 40
Figure 4.2. Images Rendered by Applying Different Iso-values......................... 41
Figure 4.3. Images Rendered from Different Resolution Datasets – Resolution:

top left: 128x128x64; top right: 256x256x128; bottom left: 512x512x256..... 42

vii

Figure Page
Figure 4.4. Images Rendered from Different Sampling Rates – Resolution: top

left: 64 slices; top right: 128 slices; bottom left: 256 slices; bottom right: 512
slices .. 43

Figure 4.5. Volume Resolution versus Processing Time 44
Figure 4.6. Volume Resolution versus Data Rendering Time............................ 46
Figure 4.7. Proportion of Time Spent on the Rendering Stage (for resolution of

256x256x128)... 47
Figure 4.8. Number of Frames per Second (FPS) versus Number of Slices 48
Figure 4.9. Rendering Time on Different Machines ... 50

viii

ABSTRACT

Ru, Yi. M.S., Purdue University, December, 2007. Volumetric Visualization of
NEXRAD Level II Doppler Weather Data from Multiple Sites. Major Professor:
Gary R. Bertoline.

Weather visualization is critical for operational forecasters and weather

researchers to analyze, monitor, and predict severe weather events such as

storms, tornadoes, and hurricanes. Usually measured weather datasets such as

NEXRAD Level II radar data contain some errors and have temporal aliasing

issues, so that the raw data cannot represent the true meteorological patterns.

Existing weather visualization packages usually ignore these problems, thus they

fail to unveil some detailed information and cannot meet the needs of

professional meteorologists. Most displays generated by those packages are

limited to 2D images, 3D point clouds, or iso-surfaces. Those displays are not

able to accurately represent the details of the data. The limitation of visualizing

data from a single radar site at one single time step in most packages blocks

desirable information in the datasets.

We developed an efficient and accurate visualization tool capable of displaying

the long-track 3D NEXRAD Level II volumetric weather data from multiple sites.

The data were captured and integrated from three sites (KEAX, KILX and KSLX),

and rendered by using the hardware-accelerated volume-rendering technique.

Customized transfer functions are also provided for users to map data values to

optical properties such as color and opacity to create different views. We also

implemented a compression algorithm to compress 3D textures in order to

ix

largely reduce the consumption of hard disk space and to enhance the rendering

speed without degrading image quality. An example study shows the tracking of

a 24-hour supercell storm observed on March 12, 2006, in the Midwest of the

United States. Images and animations from our implementation coupled with

results from a set of experiments demonstrate that our methods and approaches

are fast and robust, making them suitable for processing and rendering huge

amounts of Doppler Level II weather data from multiple stations.

1

CHAPTER 1. INTRODUCTION

The occurrences of severe weather every year have caused many injuries and

fatalities as well as severe damage to personal and public properties. Statistics

[DisasterReport] show that on average tornadoes cause 1,500 injuries and 80

fatalities per year, thunderstorms result in 2,000 injuries and 150 deaths annually,

and hurricanes account for 60 injuries and 17 deaths each year in the United

States. Figure 1.1 shows a tornado and its damage in central Oklahoma on May

3, 1999 (on top row), and Hurricane Katrina and its aftermath on August 29, 2005

(on bottom row).

Weather forecasting and severe weather prediction are usually used to provide

opportune warnings to the public that people can protect their lives and

properties, change economic operations, and plan daily activities ahead of time.

To accurately predict the weather, forecasters and researchers need to analyze

data (precipitation, pressure, turbulence, wind speed, etc.) to understand how

weather would change on our planet, forming and producing severe storms. An

accurate and efficient weather data visualization tool or system can significantly

help forecasters to gain fresh insights on atmospheric conditions and formations,

hence to enhance the accuracy of their forecasting simulation models.

2

Figure 1.1. Examples of Tornado and Hurricane and the Aftermaths (Images
Courtesy of National Oceanic & Atmospheric Administration (NOAA))

1.1. NEXRAD Level II Doppler Radar Data

Today the nationwide meteorological networks such as Doppler radar and

satellite-borne sensors provide weather forecasters and researchers with more

observational data than ever before. Particularly, the National Weather

Surveillance 1988 Doppler Radar Network (WSR-88D, shown in Figure 1.2) -

also known as the Next Generation Weather radar system (NEXRAD) - provides

high spatial and temporal resolution information within 3D volumes on a

continuous basis. The network comprises over 150 radar sites (Figure 1.3)

across the United States and some overseas locations. The raw datasets

produced by radars consist of three basic meteorological fields: reflectivity, radial

velocity, and spectrum width. Reflectivity is related to the weather phenomena

3

such as clouds and rain, while velocity is germane to wind, and spectrum width is

relevant to turbulence. As a primary component of meteorologists’ interest,

reflectivity is the key point of the study.

Figure 1.2. Network of WSR88D (Weather Surveillance Radar, 1988, Doppler)
Radars (Image Courtesy of National Oceanic & Atmospheric Administration

(NOAA))

4

Figure 1.3. A Doppler Radar Site at Jackson Kentucky (Image courtesy of NOAA)

1.2. Statement of the Problem

Developing such a weather visualization tool involves several problems: (1) The

measured weather datasets usually contain some measurement errors. For

example, NEXRAD Level II Doppler data is characterized by a large proportion of

missing or invalid data points [Djurcilov 1999]. Existing weather visualization

packages usually ignore these errors, thereby resulting in the missing of some

detailed information and negatively affecting the accuracy of the data

representations [Riley 2003]. (2) Radar datasets are captured and produced in

3D, however, most displays generated by existing visualization packages are

limited to 2D images, 3D point clouds, or iso-surfaces, all of which cannot

accurately represent the entire field. Figure 1.4 shows a typical 3D sweep

perspective view of reflectivity data in the Integrated Data Viewer (IDV) [IDV],

where the scalar field of reflectivity is rendered as 3D point clouds that do not

represent the data very well. (3) Displaying multiple Doppler radar datasets and

visualization of long-time datasets are very challenging. First, to display data

from multiple sites, current approaches usually first render the data from every

single site as a 2D image, and then mosaic images from all sites together,

producing a less attractive visualization. Second, the radar data are renowned

5

for having temporal aliasing issues. Because radars at different locations are

operated at different paces, resulting in asynchronous data files from different

stations, thereby it is problematic to display 3D data of multiple radar sites

simultaneously. Finally, it is challenging to render long sequences of datasets in

real time because large amounts of data are involved, leading to a heavy

computation load.

Figure 1.4. A Typical 3D Radar Sweep Perspective View of Reflectivity Data
Rendered as 3D Point Clouds in IDV (Image courtesy of IDV gallery)

In view of these technical issues, the problem of this study is to retrieve and

integrate data from the multiple radar sites, and to display sequential 3D weather

volumetric data in real time, providing detailed information to users especially for

weather researchers.

6

1.3. Purpose of the Study

Currently the Rosen Center for Advanced Computing (RCAC) research group

together with the Envision Center for Data Perceptualization at Purdue University

is aiming at providing a real-time rendering interface for users to remotely access

and to interactively visualize the Doppler Level II weather data from TeraGrid

[TeraGrid]. The interface will be widely accessible to users ranging from ordinary

people to educational and scientific research groups.

As one of the most significant parts of the research, the goal of this thesis work is

the development of a real-time visualization system to render 3D Doppler radar

data from multiple sites in real time. Visualization on supercell storms that were

observed on March 12, 2006, in the Midwest of the United States is the subject of

a case study to verify our approaches. The data were obtained from three

Weather Surveillance Doppler radars – KEAX located in Kansas City, Missouri,

KILX located in Lincoln, Illinois, and KSLX in Saint Louis, Missouri.

1.4. Delimitations

The study focuses on NEXRAD Level II Doppler radar data processing and

rendering techniques. It does not handle datasets from other sources such as

geostationary satellites. The field of interest is reflectivity. The observation is

limited to visualization on data from three radar stations. The study does not

process and display other fields such as spectrum width and velocity. Moreover,

the research emphasizes hardware-accelerated volumetric rendering techniques

rather than other rendering techniques such as iso-surfacing.

1.5. Summary

In this thesis, we introduce an interactive rendering system on visualizing

Doppler weather data from multiple sites. The system integrates data from

multiple sites into an entire volume at every timestamp and stores them as a 3D

7

texture, which is a great advantage for creating weather animations where large

amounts of data are involved. Furthermore, we employ the hardware-

accelerated texture-based volume rendering technique to speed up rendering

processes. Results from our implementations show that our processing and

rendering approaches are fast and efficient. Another contribution of this work is

the improvement in storing and reading 3D textures. Through compression and

decompression procedures for 3D textures, required disk space for the texture

storage is highly reduced, and the rendering performance is also improved, while

keeping the quality of images unchanged.

The thesis is organized as follows: It starts with an introduction to motivations,

problems, challenges, and objectives of this project, followed by detailed

discussions of previous approaches, existing methods, and related work in

Chapter 2. Chapter 3 thoroughly describes schemes, methods, procedures, and

implementations of our system. Rendering images, experimental results, and

analyses are presented in Chapter 4. Chapter 5 concludes the contributions and

limitations of our work, and suggests several possible future improvements and

extensions to this work.

8

CHAPTER 2. RELATED WORK

It is difficult and challenging to process huge amounts of Doppler radar datasets

and to produce an accurate and efficient visualization. The literature review

summarizes previous work from four aspects: weather visualization systems,

volume rendering techniques, Doppler data processing techniques, and data

compression algorithms.

2.1. Weather Visualization System

For a long time, researchers have been working on developing weather

visualization systems to help weather forecasters to better understand the data in

order to provide timely and accurate weather forecasts. The IDV package

developed by Unidata, funded primarily by the National Science Foundation

(NSF) is an open source Java-based software framework for analyzing and

visualizing geo-science data. The software can read different data formats,

including satellite imagery, gridded data (for example, numerical weather

prediction model output), surface observations, balloon soundings, the National

Weather Service (NWS) WSR-88D Level II and Level III radar data, and NOAA

National Profiler Network data, and display them in 2D or 3D fashions. It can

also allow users to change the color tables or earth maps with known formats.

The National Climate Data Center (NCDC) also provides some visualization tools

to display Level II radar data. The NOAA NCDC Java NEXRAD Viewer and Data

Exporter [JavaNEXRADViewer] are specific to load Level II, Level III, and Stage

III radar data into an Open GIS [OGC]-compliant environment. As part of the

Collaborative Radar Acquisition Field Test (CRAFT) [Kelleher 2007] project, the

Interactive Radar Analysis System (IRAS) [Priegnitz 1995] can read and display

9

Level II radar data via the Internet in real time. All of these application Program

Interfaces (APIs) are written entirely in the Java programming language, and

both IDV and the NEXRAD Java Viewer are launched via Java Web Start.

In 1990, Hibbard et al. presented the first version of Vis5D system [Hibbard 1990]

for interactive visualization of large grid datasets from numerical weather models.

In Vis5D, the data are constructed in the forms of 5D rectangular grid of points.

The five dimensions include three spatial dimensions, time dimension, and one

dimension from the physical variables. For example, the three spatial

dimensions of meteorological data are altitude, latitude, and longitude, and the

variable dimension can be one of temperature, pressure, moisture, or three wind

vector components. The system enables users to interactively visualize iso-

surfaces, contour-line slices, colored slices, and volume renditions of the data in

real time. Moreover, Vis5D supports comparison of multiple datasets. Additional

datasets can be imported to the system at any time where the new datasets can

either be overlaid in the current display or displayed as a series of 3D

spreadsheets. Other features of the system include wind trajectory tracing and

text annotations. Extensions of the system include an enhanced version called

Vis5D+ [Vis5D+] and the Cave5D system [CAVE5D] that runs in a CAVE-like

virtual reality environment [CAVE].

Later, Hibbard proposed a Java class component library - VisAD [Hibbard 1998].

The main feature of VisAD is to provide geographically distributed users with

interactive and collaborative visualizations of a shared set of numerical data and

computations. Using VisAD, the four major components - data, display, user’s

interface, and computational objects - can be linked together from different

locations on the network. The tool includes a mathematical model, processing

numerical data with a number of data formats such as netCDF, HDF-5, HDF-

EOS, Vis5D and JPEG; and a display model, managing interactive visualization

such as 3D viewpoints, animations, iso-surfaces and scalar maps.

10

Researchers at Georgia Institute of Technology developed a system [Jiang 2001]

with real-time acquisition, organization, and visualization of atmospheric datasets

in a geospatial environment. In the system, Doppler data, high-resolution terrain,

and associated data such as buildings and maps are merged and displayed

together in an existing real-time environment called VGIS [Lindstrom 1996]. The

system can operate on a personal computer, and the display is viewed on a

monitor or large-screen projection.

Focusing on local weather forecasting, IBM Thomas J. Watson Research center

developed a meso-scale numerical prediction and visualization system called

“Deep Thunder” [Treinish 2004] which is a complementary tool to the NWS. The

deep thunder project was developed on the basis of previous research projects

done at IBM, involving the use of the IBM Open Visualization Data Explorer

(OpenDX) [OpenDX]. It was first used during the 1996 Atlanta Olympic Games

and has been improved by adding more features and functions since then. For

example, the idea of task-specific visualization design [Treinish 1998] was

proposed to match diverse users’ goals. Usually in weather forecasting, some

applications are built on a common framework to avoid the re-design of

interfaces and content elements. However, the limitations of the framework,

such as the lack of focus on the interface, may result in more troubles and

challenges, precluding a novice from comfortably operating the system in a

limited time period. Instead of using a general-purpose tool directly, Treinish

suggested that an appropriate design for a specific task could be developed

ahead of time. Using these design elements, specialized interfaces and tools are

developed to improve and refine the general framework. Other new technologies

include (1) a web-based approach to enable users to remotely access 3D

visualizations of operational meso-scale weather models [Treinish 2002] and (2)

multi-resolution visualization techniques to provide more detailed and coherent

visualization of weather models [Treinish 2000].

11

Although these powerful tools are being utilized in many weather visualization

applications, due to the inherent limitations of these tools, they are not yet able to

fully accommodate the needs of some users. For example, most APIs are

written in Java language, which makes the data retrieving and processing

comparatively slow. They usually cannot represent datasets with multi-fields at

the same time. An example is the Vis5D system, which can only handle one

variable dimension at a time. Additionally, most representations are limited to 2D

images or 3D point clouds. Many tools only can represent the dataset from one

single site or simply mosaice 2D images for the datasets from multiple sites.

Hence, the visual representations generated by most tools are not accurate.

Another issue is that existing systems only handle the data generated at one time

step. They cannot visualize long-time sequential datasets.

In order to provide accurate rendering and multi-field visualization, Riley et al.

presented a new visualization system [Riley 2003] [Riley 2004] to produce a

realistic representation based on the particles’ optical properties such as

extinction and scattering. The system can visualize volumetric weather data with

multiple fields, including cloud water, ice, rain, snow, and graupel. Song et al.

proposed an integrated atmospheric visual analysis and exploration system

[Song 2006]. The system supports a variety of rendering techniques, including

physics-based atmospheric rendering, illustrative rendering, and particle and

glyph rendering to provide users with flexible and efficient data analysis tools.

Schpok et al. [Schpok 2003] described a software package called “Swell”, a

multi-level, interactive, volumetric cloud modeling and animation system using an

interactive cloud modeling tool. The system has three major components: a

high-level modeling and animation system, a renderer, and an interface.

Volumetric implicit functions [Ebert 1997] are used for generating high-level

clouds and volumetric procedures based on noise and turbulence simulations for

12

low-level clouds detail. The rendering of clouds is based on a modified slice-

based volume rendering scheme.

However, despite the improvement from the previous applications, these systems

only focused on data from a single radar site, and therefore fail to provide users

with a large view of the weather display.

Some of the new techniques are under development to provide 3D views of data

from multiple sites. In 2005, Ueng et al. proposed a system to specifically

visualize the Doppler radar data through a three-pass technique [Ueng 2005]. In

the first pass, the data is re-sampled and filtered to create a multiple-resolution

data structure. In the second pass, cloud velocities are computed, and

reflectivity data is interpolated by calculating gradients and intensities of each

voxel. In the third stage, the reflectivity and the velocity are rendered by using

the splatting volume-rendering technique [Westover 1990]. The authors also

provided a method to synchronize the data from multiple radar sites by means of

the calculated velocity from each site. The drawback of this system is that it

ignores the effect of rain and evaporation by dropping the vertical component of

the velocity. A new technique called the Vortex Objective Radar Tracking and

Circulation (VORTRAC) [Harasti 2006] was developed and is currently tested for

analyzing hurricane strength at the National Hurricane Center (NHC) in Miami,

Florida. It is typically designed for tracking the central pressure and the radius of

maximum wind of land-falling tropical cyclones. By using a series of algorithms,

data from Doppler radars was transformed into a detailed 3D view of an

approaching hurricane every six minutes. VORTRAC is a fusion of several

single-Doppler radar data quality control and wind analysis methods.

2.2. Volume Rendering Techniques in Weather Visualization

Rendering is a significant part in a visualization system. To make the scene

more realistic, most researchers adopted the method of volume rendering

13

[Drebin 1988] - a method of representing, displaying, and manipulating objects in

the forms of sampled data in three or more dimensions. There is a huge pool of

literature on volume rendering techniques [Lichtenbelt 1998] [Engel 2006]. In this

section, we primarily focus on applied volume-rendering techniques in weather

visualization.

Generally, in weather visualization, as in many other fields of visualization,

volumes are most often represented as a grid composed of a group of volumetric

elements called voxels. To synthesize an image of a volume, four general

approaches – image-ordered ray casting [Levoy 1988], object-ordered splatting

[Westover 1990], shear-warping [Lacroute 1994], and texture-based volume

rendering [Wilson 1994] are commonly used to render the scene from 3D

volumetric data.

However, to generate photo-realistic images, more physical properties of the

cloud material, such as light absorption and scattering, have to be considered.

Hence, two major tasks are usually taken into account in a weather data

visualization system: integrating the effects of optical properties along the path

through the cloud volume, and incorporating the complex light scattering with the

medium. To complete these two tasks, Kajiya et al. [Kajiya 1984] used ray

tracing methods, dealing with both single and multiple scattering. Nishita

presented global illumination approximation techniques, accounting for multiple

anisotropic scattering and skylight on the cloud color [Nishita 1996]. Those

methods are important for realistic rendering but are very time-consuming. There

have been many efforts to approximate the physical properties of clouds while

reducing the amount of computations. One of the possible approaches is to use

3D textures to render the volume density to accelerate the rendering process.

Dobashi [Dobashi 2000] presented a simple and computationally inexpensive

method for near real-time animation of clouds. The rendering method introduced

in the paper is based on the splatting algorithm that can quickly render clouds as

14

billboards, and calculate shadows and shafts of light through the clouds by using

graphics hardware. Harris [Harris 2001] [Harris 2002] presented a method for

realistic real-time rendering of constant-shape clouds for games. The rendering

approach is based on the splatting representation of particles and the shading

method described by Dobashi et al. [Dobashi 2000]. Harris extended Dobashi’s

model by simplifying light scattering as multiple forward scattering and

anisotropic first-order scattering. This approach not only retains the realistic

rendering effects, but also makes the rendering speed much faster than

Dobashi’s. Harris also presented a physically-based, visually-realistic interactive

cloud simulation system [Harris 2003]. The clouds are represented using a “flat”

3D texture – a 2D texture that contains the tiled slices of a 3D volume. To render

complex scenes containing gaseous phenomena such as clouds, fog and smoke,

Ebert et al. proposed a fast and efficient method [Ebert 1990], combining

scanline A-buffer techniques to render surface-modeled objects with volume-

rendering techniques to render volumetric modeled objects. To speed up

rendering scenes with atmospheric data, Jang et al. proposed a splatting

technique, using volume rendering integrated with a level of detail [Jang 2002].

The level of detail is selected automatically based on the current view of the data.

To achieve this, the authors used an adaptive tree structure that preserves the

details of the non-uniform data at the lowest level of the tree. The method is

applied on the NEXRAD Doppler data to produce interactive visualizations in real

time.

Other research using the splatting volume-rendering method include: (1) an

interactive, multi-level, cloud modeling and rendering system [Rana 2004], where

the system adopts a two-level modeling approach - the high-level clouds are

created from cubes, and the low-level clouds are generated from 2D textured

billboards, and (2) a cloud system [Wang 2004] that can simulate a number of

different cloud types that are manually designed and fine-tuned by artists in the

3ds Max environment – a 3D graphic application developed by AutoDesk Media

15

and Entertainment. Recent advancements include a hardware-accelerated

technique [Engel 2001] employed in weather visualization systems, and a

photorealistic-rendering technique in weather visualization, which provides

weather forecasters and researchers with more detailed representations of the

data [Kniss 2003].

2.3. Doppler Data Processing

Recently Doppler NEXRAD Level II radar data are widely used in weather

forecasts and analysis such as tracking formation and the path of severe storms.

To make full use of Doppler data, weather researchers did numerous work on

processing precipitation reflectivity and radial velocity datasets. For example,

Chen et al. presented local least square and regularization frameworks [Chen

2001A] [Chen 2001B] for computing 3D velocity from 3D radial velocity. Qiu et

al. [Qiu 2001] extended a 2D tracking algorithm to 3D, and applied it to 3D

Doppler reflectivity data. Zhou et al. [Zhou 2005] proposed a method to calculate

wind field velocity from the data provided by a single Doppler radar site. This

approach is mainly based on a simplified assumption for the motion of the wind

field. Furthermore, since a full 3D wind field can offer a better understanding of

the atmospheric data for meteorologists, Laroche et al. proposed a variational

method to construct a 3D wind field [Laroche 1994]. Gao et al. [Gao 2001]

retrieved the 3D wind field from a single Doppler data based on the improvement

of a simple adjoint method [Qiu 1992]. Djurcilov et al. discussed techniques for

visualizing datasets with large number of missing values [Djurcilov 1999]. None

of these techniques, however, was developed for the purpose of volume-

rendering the data.

2.4. Data Compression Algorithm

Nowadays data compression is widely used in Computer Science and

Information Technology because of its desirable features for data storage and

16

data communication. With data compression algorithms, the data files are

shrunk down to smaller sizes, which could save expensive resources such as

disk space and transmission bandwidth.

There are two typical type of data compression: lossy and lossless [Lynch 1985]

[Storer 1988]. Namely, the lossless compression algorithms, also referred as

redundancy reduction algorithms, can reconstruct the original data by finding

repetitive patterns in the data, encoding and decoding them in an efficient way.

Obviously, the algorithms will have very poor performance when the redundant

patterns do not exist or are not easily discovered. On the contrary, lossy

compression algorithms cause loss of data, which means the data or messages

could not be recovered after applying lossy algorithms. However, the algorithms

are still applied when some loss is acceptable or when lossless compression

could not accomplish the compression task.

Lossless data compression algorithms include: run-length encoding (RLE),

prediction by partial matching (PPM), Burrows-Wheeler transform (BWT), and

Huffman entropy encoding etc. As one of the simplest lossless compression

algorithms, RLE algorithm is very suitable for messages or files that contain large

runs of consecutive identical data values. The algorithm simply replaces

repeated values with the value and the length of the run.

Lossy data compression algorithms include: fractal transform, wavelet

compression, vector quantization and so on. S3 Texture compression (S3TC,

DXTn) belongs to the lossy data comression group, which is originally developed

by S3 Graphics. Ltd [Iourcha 1997]. It consists of a group of related image

compression algorithms. Its desirable features including fixed-rate data

compression together with the single memory access make it very suitable for

compressing textures in image processing applications. Volume texture

compression (VTC) algorithm is simiar to S3TC compression, but optimized for

17

processing 3D textures, which could save some bus bandwidth and memory at

the cost of image quality.

However, data compression can cause extra work. Specifically, compressed

messages or files must be decompressed before they are processed or viewed.

Therefore, the design of data compression involves trade-offs among various

factors: the degree of compression, the required quality of data, and the time and

spaces required to process the data.

2.5. Conclusion

Current weather visualization systems enable meteorologists to interactively

visualize iso-surfaces, contour-line slices, color slices, and volume renderings of

the data in real time by a large variety of rendering techniques such as volume

rendering, illustrative rendering, glyph rendering and photorealistic rendering.

Based on previous studies, it is believed that future visualization systems are

likely to be improved by adding advanced transfer functions, providing flexible

ground mapping projection, and enhancing properties of multi-fields. Future

breakthroughs of weather visualization also rely largely on the technical

advancement of hardware. Visualization of multiple Doppler radar datasets is

capable of providing a larger view with higher resolution in large-region weather

studies. Despite recent technological improvements, visualization of sequential

long-time datasets still remains largely unsolved.

18

CHAPTER 3. PROCEDURES

The NEXRAD Level II Doppler data visualization system discussed in this thesis

consists of two major components: data processing and rendering that are

aligned in a subsequent order. Each component contains a number of inter-

connected computational operations, which are presented in greater detail in the

following sections. A synopsis of the entire setup and data flow is given in Figure

3.1.

3.1. Data Processing

The raw weather datasets used in this study are referred to as NEXRAD Level II

Doppler data. The data, captured by a given radar system, are typically

compressed using some compression algorithms and are stored as a series of

binary files. In addition, the radar data are captured by radars at different time, at

different locations, and stored in their respective local spherical coordinate

systems. It would be beneficial to process the data before the data can be

directed into our system. Therefore, in the data processing stage, the

compressed radar data comprised of sample coordinates and sample values are

first retrieved from the data files captured in approximate same time. Then local

spherical coordinates of the samples are converted to global geographic

coordinates, and the sample values are aligned by linear interpolation from

multiple sites according to the designated time. Finally, the values are re-

sampled into the rectilinear grid structure that is useful for volumetric rendering,

and the formed 3D volumetric data are compressed and stored on the hard disk.

19

Figure 3.1. Overview of the Visualization System

20

3.1.1. Radar Data Extraction

The NEXRAD Level II Doppler data are collected as radars go through a

programmed set of movements, which involve a continuous rotation over 360° in

azimuth and a simultaneous increase in elevation by 1° to 3° per complete sweep

[Huber 2007]. The spatial resolution is 1 kilometer for reflectivity and 0.25

kilometer for velocity and spectrum width in range; 1° for all the three fields in

azimuth. The radar makes up to 20 azimuthal scans in elevation ranged from

0.5° to 19.5° determined by the Volume Coverage Patterns (VCPs). Usually

radars do more sweeps for severe storms and fewer sweeps for clear weather.

Figure 3.2 is a graphical representation showing the structure for reflectivity of

Doppler data. Velocity and spectrum width components also have similar

structures. Radars produce the raw datasets on a continuous basis, making the

temporal resolution around 5 to 6 minutes in severe weather.

Figure 3.2. 3D Structure of NEXRAD Level II Doppler Radar Data (Reflectivity)

Once raw radar datasets were obtained, they were processed by using the

TRMM Radar Software Library (RSL) [TRMM]. The library allows for the retrieval

Range: 460 points per ray

Azimuth: 360 rays per sweep

Z
Elevation: 0.5° to 19.5°

21

of some components such as reflectivity, from compressed Doppler data files.

The retrieved data were stored in the computer’s main memory for processing.

3.1.2. 3D Rectilinear Grid

To ensure an efficient volume rendering in the rendering stage (Figure 3.1), all

data need to be organized and re-sampled in a rectilinear grid structure which

contains a collection of cells arranged on a regular lattice [Schroeder 2003].

Since this study involves the raw data from three geographic sites – KILX, KEAX

and KLSX, the grid needs to cover all three sites and to store the data in memory

in an efficient way. To accomplish this task, a bounding box that contains all

data from three sites was generated first. Due to the unique spatial distribution of

the radar data, there are more data points distributed in the X-Y plane than in the

Z direction (the elevation direction) in the grid. Therefore, the grid (Figure 3.3) is

designed to have a non-uniform structure such as 256 by 256 by 128, which

provides the grid with 128 layers of X-Y planes, each consisting of a 2D uniform

grid of 256 by 256. This structure is also referred as “semi-regular” because

though the topology of the grid is regular, the points arranged are partially regular.

Figure 3.3. 256x256x128 Grid Structure (left) and Bounding Box (right)

256

128

256

KILX

KEAX
KLSX

22

3.1.3. Conversion from Spherical Coordinates to Geographic Coordinates

The completion of the 3D grid is followed naturally by re-sampling of radar

reflectivity data values into it. For each site, the TRMM library stores the data in

the local spherical coordinates (azimuth, elevation and range) with the origin

placing on the location of each radar station. If only the data from a single site is

considered, the values can be directly re-sampled into the grid. However, to

integrate the data from the multiple sites, a global coordinate system has to be

used.

Figure 3.4. Computing Geographic Coordinates of Sample Points

23

Here, coordinates of each sample point are converted from the local spherical

coordinate system to the global geographic coordinate system prior to the re-

sampling operation. This conversion is graphically interpreted in Figure 3.4.

Specifically, given the geographic coordinates of the location of a radar site 'O ,

denoted as (, ,)lon lat alt , and the local spherical coordinates of a sample point A,

denoted as (, ,)r θ ϕ , the geographic coordinates (', ', ')lon lat alt of the sample point

A is defined as in equation 3.1:

' ' 'cos / ;
' ' 'sin / ;
' ,e

lon lon O A lonScale
lat lat O A latScale
alt OA R

ϕ
ϕ

= +
= +
= −

Eq. 3.1

where eR is the approximated earth radius (6,367,450.0m≈), latScale (the scale in

latitude) is the width per latitude degree denoted as /180eR π⋅ , and lonScale (the

scale in longitude) is the width per longitude degree defined as cos() /180.eR lat π⋅

OA and O’A’ are defined in following equations:

2 2 2 2

2 2

2 2

2 2

(' ')

(' cos) (sin)

' 2 cos '

() 2 cos ();
' ' ' ()
() arcsin(/)
() arcsin(sin /).

e e

e

e

e

OA OC AC OO O C AC

OO r r

OO r r OO

R alt r r R alt
O A OO R alt

R alt AC OA
R alt r OA

θ θ

θ

θ
α α

θ

= + = + +

= + +

= + + ⋅ ⋅

= + + + ⋅ ⋅ +

= ⋅ = + ⋅
= + ⋅

= + ⋅

Eq. 3.2

The resulting coordinates (', ', ')lon lat alt are used to find the appropriate cell in

the grid where the sample point should be placed. More specifically, the cell

indices in x, y, z dimensions are solved by

24

'

'

'

_ min_ ;
_
_ min_ ;
_
_ min_ .
_

lon bbox Xindex x
bbox x

lat bbox Yindex y
bbox y

alt bbox Zindex z
bbox z

−
=

−
=

−
=

Eq. 3.3

_bbox x , _bbox y , _bbox z represent the length of the side of the bounding box

respectively. _ minbbox X , _ minbbox Y , _ minbbox Z denote the minimal values

of the bounding box.

3.1.4. Integrating Data from Multiple Sites

From the work in previous sections, we located the cell in the grid which the

current sample point should go to. The next step is to fill the reflectivity value at

the sample point into the cell, where integrating data from multiple radar sites are

coming onto the stage. Obviously and undeniably the large coverage of the

Doppler radar network in the United States brings a lot of benefits, in the

meantime, it results in a large overlapping region between adjacent radars,

leading to ambiguous and sometimes perplexing results if the data are not

properly operated. However, combining radar data from overlapping sites is a

nontrivial task [Watson 1995]. First, radars perform scans in a local spherical

coordinate system with a unique origin placed on its own location. Fortunately,

we had solved this problem with the coordinates conversion illustrated in section

3.1.3. Further complicating the issue is the fact that radars at different location

are operated at different tempos, which means the data from one site are

collected at the time and rate different from another site. To resolve such

complications and visualize a sequence of datasets from one time point to

another time point, interpolations between two time stamps are necessary to

reduce the temporal-aliasing issue and to synchronize the data from different

sites. In our implementation, we define a series of time - it . For each time step

25

t in it , we check the downloaded radar product files to find two files at time at , bt

exactly before and after t . This is applicable because the downloaded file

names contain the date and time information as well as the site name when the

scan was performed. The sample value tv at time t is given in the following

equation reflecting linear interpolation:

(1) ().
a b

a a
t t t

b a b a

t t t tv v v
t t t t

− −
= ⋅ − + ⋅

− −
 Eq. 3.4

We conduct the above interpolation between the data from every site. For

example, synchronizing the weather data at a specific time t - 00:05:00 on

3/12/2006 from KEAX, KLSX and KILX - involves the steps illustrated in Figure

3.5. Leftmost boxes indicate searched files on the disk, where, for instance, the

file name 6500KILX03122006_000306 contains information including the radar

station name – “KILX”, the date – “03/12/2006”, and the scanning time –

“00:03:06”.

Figure 3.5. Interpolation between Different Timestamps

26

There are also some extreme values in the raw datasets because of

measurement mistakes or malfunctions of radars. Hence, the data are also

subjected to the noise attenuation method in which thresholds are set to remove

extreme values created from measurement errors and to smooth the re-sampled

data. Specifically, the data values are limited from 0 to 80dBZ. Resulting

interpolated sample values are stored in the 3D grid structure described in

section 3.1.2.

3.1.5. Constructing and Compressing the Volume

When the reflectivity values are re-sampled at each grid cell into the pre-defined

3D array, the volume is constructed. It is easy to conceive that, in partially

overlapping regions, values obtained from more than one site are likely to be

sampled to the same cell, which means some cells have duplicate values,

whereas others only have a single value. To eliminate the potential error

resulting from the redundant data sampling, we sum up all of values in the cell

and then average them. Since the distribution of sample values may still be

sparsely populated in the volume space, vertical interpolation is applied to fill the

gaps in the volume. As in figure 3.6, given value 2kv and 1kv , the value in

between such as at k could be obtained using the linear interpolation same as in

Eq. 3.4. If all the cells under a known value 2kv are empty, all of these empty

cells are filled with the given value (' 2k kv v= as shown in the figure 3.6).

27

Vertical
interpolation

Known value

Known value
vk2

Known value
vk1

Interpolation
value vk

filing value
vk’

Figure 3.6. Vertical Interpolation

Displaying an animation may involve creation of a large number of images. For

each image, we store the compressed 3D volumetric data in order to save the

space on the hard disk and to reduce the number of disk Input/Output operations

and frequent page faults during the rendering process, using the modified Run

Length Encoding (RLE) compression algorithm. Because the Level II radar

reflectivity data usually range from -35 dBZ to 80 dBZ, a 8-bit byte is adopted to

represent the reflectivity value, and the first bit of the byte is set to 0 or 1

indicating if it is a repetition. If the value is repetitive, the first bit is set to 0, and

the value is followed by a 32-bit unsigned integer to count the number of the

repetition. If it is not, the first bit is set to 1 by taking it to the bitwise OR

operation with 10000000(128). The compression algorithm is exemplified in the

following illustration.

28

Figure 3.7. Compressing the Data using Modified RLE Algorithm

3.2. Weather Data Rendering

A simple and commonly used rendering approach is to display the weather data

with a polygon mesh colored by a 1D look-up table. Using this approach, the

dataset from each site is represented as a number of layered cone-shaped

objects as shown in Figure 3.8.

Figure 3.8. Representation of Polygon Meshes at a Site (The left image is a side
view, and the right is the top view.)

Holes

5555943222… … 2222 … 5 4 137 132 131 2 500

5 followed by 4

500

2 followed by 500

First bit is set to 1; the value

is 9 OR 128 (10000000)

Unsigned integer (4 bytes)

29

This type of representation, simple and straightforward notwithstanding, becomes

inadequate when data from multiple sites need to be handled. As discussed in

section 3.1.4, generating a display covering areas of multiple sites needs to

combine the data in overlapping regions. If the dataset at each site is

represented by quadrilateral meshes – a boundary representation, combining the

datasets becomes computationally expensive, and involves calculations such as

complex intersection and union operations. Additionally, since the object is

represented as a collection of connected surface elements, one cannot find any

information once looking beyond the object surface. As shown in Figure 3.8, it is

noticeable that the scene lacks the internal matter so that it leaves gaps between

individual cone formations.

To overcome these limitations from the traditional surface mesh models, we

adopt the texture-based volume rendering technique [Wilson 1994]. In essence,

the texture-based rendering process consists of three steps: (1) generating the

3D texture, (2) slicing the 3D volume into polygons and mapping the texture onto

the slices, and (3) compositing and texture mapping. A more detailed description

of these steps is given in the subsequent sections.

3.2.1. Texture-based Volume-Rendering Technique

To attain more realistic scenes, direct volume rendering [Levoy 1988] has been

used to display the high-quality visualization of the weather data. Generally, data

values in the scalar filed are considered as the density of particles making up the

volume in which light is emitted and absorbed. The technique maps the volume

data to optical properties, and composites the optical values along the rays, to

generate an image directly from the data. An optical model based on the

physical light transport theory, is employed to measure the amount of light when

it passes through a volume starting from 0s and ending at ds . (Figure 3.9)

30

Figure 3.9. Optical Model of Volume Rendering (The top image shows the
absorption of light, and the bottom image shows the emission and self-absorption

of light.)

The model is expressed as a summation of two terms as shown below [Engel

2006]:

0

0

() ()
0

Attenuation of incoming light
Emitted light (including
self attenuation)

,() () ()
d d

d

s s

s s
d s

t dt s t dt
eI s I L s s e ds

τ τ
τ

− −∫ ∫= + ∫14243 14444244443

Eq. 3.5

where 0I is the initial intensity at 0s , τ is the absorption coefficient, and L

indicates the emission coefficient.

 In the equation, the first term calculates the amount of incoming light that

reaches the end of the volume. The second term adds the amount of light

emitted at each point along the ray, taking into account the amount of attenuation

from each point to the end of the ray as well. Practically, the integral is usually

solved by an iterative computation procedure, which composites the pixel values

ds0 sd

I0

0
()

0

ds

s
t dt

I e
τ−

 ∫Initial intensity at s0
Absorption along the path

from s0 to sd

ss0 sd

()

0
() ()

d

s
d t dt
L s s e ds

τ
τ

−∫ ∫

Absorption along the

path from s to sd

ray

ray

Emission and absorption at s

31

either from the viewpoint to the volume referred as the front-to-back order or from

the volume to the viewpoint referred as the back-to-front order. Here, we choose

the back-to-front approach [Engel 2006]:
'

'

(1) ,

(1) .
dst src dst src src

dst src dst src

C C Cα α

α α α α

← − +

← − +

Eq. 3.6

As shown in Figure 3.10, the new composited value '
iC is computed from the

color at current location iC blended with previous composited color '
1iC − .

Figure 3.10. Alpha Blending in Back-to-front Order

' '
1(1) ,i i i i iC C Cα α −= + −

' '
1(1) .i i i iα α α α −= + −

Eq. 3.7

To speed up the rendering process, we adopt the 3D texture-based volume

rendering technique [Wilson 1994] with Graphics Processor Unit (GPU) hardware

acceleration. This technique consists of two basic steps: (1) constructing the 3D

texture and (2) generating back-to-front ordered slices and texture-mapping the

Ray

viewpoint

n-1

0

Ci-1
Ci

32

slices with the volume data using NVIDIA CG vertex and fragment shading

program.

3.2.2. Decompression and 3D Textures

Since the compressed volumetric data are stored on the hard disk, as described

in section 3.1.5, the initial step before the rendering process is to decompress the

volumetric data and bring them back to the main memory. The 3D texture then is

constructed and stored in GPU memory.

The decompression process entails the following procedure: (1) For the incoming

streamed byte from the file, the bitwise AND operation with 10000000(128) is

used to obtain the first bit of the byte and mask the rest bits of the byte. (2) If the

first bit is set to 1, which means it is a non-repetitive value, the bitwise OR

operation with 01111111(127) is then activated to retrieve the rest bits of the byte

and to obtain the reflectivity value. (3) If, otherwise, the first bit is set to 0,

indicating that the value is a repetitive, the algorithm then composites the next

four bytes into an unsigned integer to acquire the repetitive number. (4) When

the retrieved value and its repetitive number are obtained, they are then written

into an array, allowing for the construction of the volume. By repeating these four

steps until the last byte is reached, the data are decompressed and streamed

into a large 1D array with the size defined by the multiplication of the volume

length, the volume width and the volume height. The 1D array of voxel data are

then transferred to a 3D texture and stored in the GPU.

3.2.3. Viewport-aligned Parallel Slices

In object-order volume rendering, a stack of 2D parallel polygonal slices are

usually used to represent 3D discrete scalar field. Once the 3D texture is stored

in GPU, it will be mapped into these semi-transparent slices to texture them. The

slices are referred as proxy geometry, which only represent the shape of the data

33

domain – the bounding box, instead of the shape of the real object. In our

implementation, the 3D volume is represented as a unit cube, and is divided into

viewport-aligned slices in the equal-distance fashion, the back-to-front order

parallel to the image plane (Figure 3.11).

Figure 3.11. Viewport-aligned Parallel Slices

In order to keep a consistent sampling rate along all viewing rays casting from

the image plane, orthogonal projection is adopted. To avoid re-computing the

slices when the viewing direction changes, we keep the viewing direction and

slicing planes fixed along the z axis, and apply the model-view transformation

matrix to the volumetric object whenever a rotation or a translation transformation

is involved. Initially, the number of slices is designed as an adjustable parameter

on the interface with the default value of 256. Users can change the value for the

purpose of adjusting the volume resolution for less or more details in the image.

The detailed analysis and resulting images are given in Chapter 4.

Viewing Direction

Proxy geometry (slices)
Slices order

Image Plane

34

3.2.4. Transfer Functions

After the stored 3D texture was applied to the proxy geometry, the scalar

reflectivity value is mapped onto the slices by performing 3D texture lookup

functions. At this stage, however, the optical properties of each sample, such as

the color and opacity still remain undecided. Having considered the fact that the

reflectivity is a scalar field, we choose a 1D look-up color table as the transfer

function and store it as a 1D texture. By taking the 3D texture samples – the

reflectivity data – as the look-up color table indices, and mapping them into the

display attributes, the color and density of the volumetric object are identified.

The look-up color table is similar to the one used in the NWS web page [NWS]

and is widely used for radar reflectivity data (Figure 3.12).

Figure 3.12. 1D Look-up Color Table

To support the interactive transfer function, we create an interface that acts as

the transfer function window, allowing users to create and modify transfer

functions to their interest. The created or modified transfer functions are then

applied to map the data onto the appropriate color and opacity. Figure 3.13

shows the developed transfer function window for red, green, blue (RGB) and

alpha channels representing the NWS look-up color table [NWS] in Figure 3.12.

35

Figure 3.13. Transfer Function Window for RGB and Alpha Channels

To facilitate users’ interaction with transfer functions, we employ the cubic

Hermite spline (Cardinal Spline) to represent the color table. Mathematically, the

cubic Hermite spline is a third-degree spline with each polynomial in Hermite

Form. The cubic Hermite form is defined by the starting point 1P at 1t and the

ending point 2P at 2t , with the starting tangent vector 1 'P and the ending vector

2 'P .

The computation of the interpolation at a specific time t is given by the following

equation:
3 2

1 2 1 2(,1) (, , ', ') ,T
t HP t t t M P P P P= , , Eq. 3.8

where HM is the Hermite basis matrix as in

2 2 1 1
3 3 2 1

.
0 0 1 0
1 0 0 0

HM

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Eq. 3.9

36

The utility of the transfer function is exemplified by a demonstration shown in

Figure 3.14. When certain sample points on the spline curve of the red channel

are modified by a user, the transfer function is recalculated, giving a new spline

that fits the new dataset, all in the real time fashion.

Figure 3.14. Example of the Red Channel Transfer Function

3.2.5. CG Shading and Animation

The shading and animation was performed using the NVIDIA CG shading

programming language (Figure 3.15), which is very suitable for volumetric

rendering the scene as well as accelerating the rendering speed.

In the vertex shader, the vertex processor converts a vertex position into the

transformed position, computes the texture coordinates as outputs, and clips the

volumetric object against the pre-defined planes. In the fragment shader, the

fragment processor reads the textures and the fragment in, and maps the texture

color and density onto the fragment.

37

Figure 3.15. CG Vertex and Fragment Programs

Figure 3.16. Volumetric Rendering and Graphic User Interface

Alpha blending

Fragment

Operations

Rasterization
Model-view

transformatio

Vertex

Operations

Frame-buffer Operations

Primitive

Assembly
Compositing

Transformed

Vertices

38

Our program also includes the Graphic User Interface (GUI) to reflect

functionalities that allow users to interact with the data and to choose the

representation from different perspectives. An actual image of the created user

interface is shown in Figure 3.16.

To visualize the weather data over a period of time, it is more desirable to

present them as a sequence and viewed as an animation. For this purpose, we

stored 3D textures on the disk based on an interval of five minutes. The program

is designed to orderly read in the sequential texture files on a continuous basis

and to conduct the rendering job, where the rendering time relies on both the

CPU and GPU speed. Detailed discussions will be shown in Chapter 4. An

adjustable parameter is also provided to moderate the interval between two

frames through the user interface. As a supplement of the thesis, a CD is

provided to show a movie about the 24-hour supercell storms which were

observed on March 12, 2006, from the three locations (KEAX, KILX and KSLX) in

the Midwest of the United States.

39

CHAPTER 4. RESULTS

In this chapter, some rendering results are first presented to verify our

methodology, and a number of experiments are described to show the costs and

performance of computation and rendering in the system. The datasets used in

our system for testing were downloaded from NWS FTP server, which contain

the data from scanning 24-hour supercell storms on Match 12, 2006, in the

Midwest region of the United States. All simulations have been carried out on a

Windows desktop equipped with a 3.20GHz Pentium 4 processor, 2.0 GB of

main memory, and an NVDIA Quadro FX 3500 graphics card with 256 MB of

video memory. An exception is in section 4.3.4 where we aim to compare results

between different computer hardware. The resulting image resolution is set to

796x532 for all the experiments.

4.1. Visualization Results

The fist example includes four rendering images at different timestamps (Figure

4.1) selected from the animation. The images are rendered when the viewing

direction is tilted approximately 20 degrees relative to Z axis. The complete 24-

hours animation can be obtained on the attached CD. From the animation, we

could see the changing weather pattern on that particular day.

40

Figure 4.1. Images Rendered from Different Timestamps – top left: 00:10:00; top
right: 06:10:00; bottom left: 18:10:00; bottom right: 23:10:00

41

The second example in Figure 4.2 shows that the different observations of the

data by applying different iso-values.

Figure 4.2. Images Rendered by Applying Different Iso-values

4.2. Quality of Visualization

4.2.1. Effect of Volume Resolutions on Visualization Results

Our first experiment was done for the purpose of comparing the visualization

results using different volume resolutions. In this experiment, the effect of

volume resolution was exemplified by visualizing datasets with three different

levels of detail. Datasets from the first group have the lowest resolution of

128x128x64, the volume size of the second group is set to 256x256x128, and the

third group has the highest resolution of 512x512x256. The results of

42

visualization show clear evidence of the effect of the volume resolution,

illustrated in Figure 4.3. In particular, the reduction in volume resolution results in

blurriness and fuzziness in the image, while the shape of the object is still

preserved. However, when the resolution of the volume is increased, the

generated image appears to capture finer details of data.

Figure 4.3. Images Rendered from Different Resolution Datasets – Resolution:
top left: 128x128x64; top right: 256x256x128; bottom left: 512x512x256

4.2.2. Effects of Sampling Rates on Visualization Results

In the second set of experiments, the effect of the sampling rate – decided by the

number of slices of sampling planes - on quality of the rendering was studied.

Specifically, the weather datasets were rendered with different sampling rates

whereas the volume data resolution remains unchanged. In this experiment, the

volume data resolution is set to a fixed size of 256x256x128, and the number of

sampling planes varies from 64, 128, 256 and 512. The images pictured in

Figure 4.4 clearly show that applying fewer slices of the proxy geometry serves

43

to reduce quality of the image. The image quality is improved when the number

of slices is increased. The color difference is caused by the color blending using

different number of slices.

Figure 4.4. Images Rendered from Different Sampling Rates – Resolution: top
left: 64 slices; top right: 128 slices; bottom left: 256 slices; bottom right: 512

slices

4.3. Costs and Performance

4.3.1. Effects of Volume Resolution on Costs of Data Processing

Although it has been shown in section 4.2.1 that the choice of lower volume

resolution will cause some loss of details in the resulting image, it, however, has

some benefits both during the data processing stage and the rendering stage. In

the data processing stage, each volume dataset is generated from six raw radar

datasets (see section 3.1.4) and stored on the hard disk at one timestamp. For

44

visualizing the weather for an entire day (24 hours), more than 280 texture files

are generated based on the interval time of five minutes.

The processing time required under different resolution is given in Table 4.1. For

the lowest resolution tested (128x128x64), the average processing time is about

six seconds for generating each dataset of volumetric data. The approximate

total time of computation and integration for generating all the texture files ranges

from about half an hour (30 minutes) with the lowest resolution to one hour with

the highest resolution (512x512x256) . In other words, the data processing with

the highest resolution costs twice as much time as with the lowest resolution

(Figure 4.5).

Table 4.1. Costs of Processing Radar Data of Different Resolution

Resolution 128x128x64 256x256x128 512x512x256
Average

processing
time (secs)

6 8 12

Total
processing
time (mins)

30 45 57

Figure 4.5. Volume Resolution versus Processing Time

0

2

4

6

8

10

12

14

128x128x64 256x256x128 512x512x256

Volume Resolution

A
ve

ra
ge

 P
ro

ce
ss

in
g

Ti
m

e
(s

ec
s)

0

10

20

30

40

50

60

128x128x64 256x256x128 512x512x256

Volume Resolution

To
ta

l P
ro

ce
ss

in
g

Ti
m

e
(m

in
)

45

4.3.2. Effects of Volume Resolution on Costs of Data Rendering

The reduction of the dataset resolution also could speed processing in the

rendering state. To demonstrate this relationship, we measured the time it takes

to complete the rendering procedure under different volume resolutions. The

total processing time is made up of three individual steps: 1t - reading the

volumetric dataset from the hard disk with decompression, 2t - the time of

reconstructing and updating the 3D texture in GPU, and 3t - the actual rendering

time for one frame.

The results, which are shown in Table 4.2 and Figure 4.6, were obtained using a

constant sampling rate – 256 slices. It can be seen from the table that the total

time of the rendering stage increases with higher resolution.

Table 4.2. Costs of Rendering Radar data of Different Resolution

Resolution 128x128x64 256x256x128 512x512x256

Average time of reading

texture (msecs) <1 - 8 5.19% 100 28.01%

Average time of updating

texture (msecs) 3.8 3.02% 24 15.58% 131 36.69%

Average time of actual

rendering (msecs) 122 96.98% 122 79.22% 126 35.29%

Total time(msecs) 126 154 357

46

0

50

100

150

200

250

300

350

400

128x128x64 256x256x128 512x512x256

Volume Resolution

D
at

a
R

en
de

rin
g

Ti
m

e
(m

se
c)

Figure 4.6. Volume Resolution versus Data Rendering Time

Another important observation from the Table 4.2 is that the actual rendering –

rendering on GPU - computation accounts for the majority of time during the

rendering stage, which is largely independent of the volume resolution. The pie

chart in Figure 4.7 gives a graphical representation of the time distribution at the

rendering state. In other words, reducing the volume resolution facilitates faster

processes of reading and updating texture, which, however, does not help much

to speed the actual rendering process. This phenomenon is controlled by both

the size of the datasets and number of sampling planes. In a word, the

resolution determines texture reading and updating time as well as the data

processing time, and the number of slices dictates the actual rendering time.

47

Figure 4.7. Proportion of Time Spent on the Rendering Stage (for resolution of
256x256x128)

4.3.3. Performance of Combining Different Resolutions and Sampling Rates

To further verify the argument in section 4.3.2, an additional experiment was

conducted. In this experiment, we measure the frame rate – the number of

frames per second - under various combinations of the resolution and the

sampling rate to evaluate the performance. The frame rate fps is defined in

Equation 4.1:

1 2 3

1 .fps
t t t

=
 + +

 Eq. 4.1

1 2 3, ,t t t are defined same as in section 4.3.2. The resulting data are shown in

Table 4.3, and its graphical representation is shown in Figure 4.8.

48

Table 4.3. Frame Rates measured with Different Resolution and Number of
Slices

0

5

10

15

20

25

64 128 256 512 1024

Number of slices

Fr
am

e
ra

te
 (f

ps
)

128x128x64 256x256x128 512x512x256

Figure 4.8. Number of Frames per Second (FPS) versus Number of Slices

The plot indicates two important features:

(1) With the resolution increased, the frame rate drops accordingly for most test

cases. The trend is due to the fact that the higher resolution requires longer

texture reading and updating time (1 2t t+), thereby decreasing the number of

frames processed per unit time. Another observation is that, the impact of

resolution on frame rates is more dramatic at a lower sampling rate.

Comparatively, at a higher sampling rate, the change of the frame rate is less

dependent on the volume resolution. The reason is that at the low sampling rate,

Resolution
Slices 128x128x64 256x256x128 512x512x256

64 20 18 4
128 15 12 4
256 8 8 3.5
512 5 5 2.5
1024 3 3 1.5

49

the proportion of the time spent on the actual rendering 3t over the total

rendering time is less than the proportion at a high sampling rate. An increase of

resolution which primarily increases 1 2t t+ , therefore exerts a greater influence on

the frame rate.

(2) With an increase in the number of slices, the frame rate declines accordingly.

This is because the sampling rate dictates the actual rendering time 3t , with a

higher sampling rate leading to the reduced frame rate. It is also noticed that, the

effect of sampling rate on the frame rate is more substantial when a lower

resolution is used. With the highest resolution (512x512x256), the frame rate is

almost independent of the sampling rate. The reason of this observation is that

with the lower resolution, the time cost of texture reading and updating texture

(1 2t t+) is relatively insignificant as compared to on the actual rendering time 3t .

Since 3t is dictated by the sampling rate, the majority of the computation

resource is recruited for the actual rendering at a higher sampling rate. At low

resolution, the magnitude of 1 2t t+ is too small to effectively dilute the effect of

sampling rate, making it the single most important rate-controlling parameter for

the visualization process.

4.3.4. Testing with Different Hardware

We also have tested the program on five different machines. The results are

shown in Figure 4.9. With better hardware such as CPU and GPU, the rendering

speed is significantly improved. For example, the computer with a Dual-Core

AMD Opteron 2.2GHz processor with 2GB RAM and an NVIDIA GeForce

8800GTX graphics card with 768MB memory can render around 45 frames per

second with the resolution of 128x128x64 of and 256 slices.

50

23

67

116 122
146

40

84

154 138
170174

286 273

337

463

0

100

200

300

400

500

NVIDIA GeForce
8800GTX 768MB

NVIDIA Quadro
FX2500M, 512M

NVIDIA Quadro
FX3500, 256MB

NVIDIA GeForce
7700GO, 256MB

NVIDIA Quadro
FX4000, 256MB

Dual-Core AMD
Opteron 2.2GHz,

2GB RAM

Intel T2400,
1.83GHz, 2GB

RAM

Intel Pentium 4,
3.2GHz, 2GB

RAM

Intel Core™2,
1.98GHz, 2GB

RAM

Intel Xeon
3.0GHz, 3.25GB

RAM

Computer hardware

D
at

a
re

nd
er

in
g

tim
e

(m
se

c)

128x128x64
256x256x128
512x512x256

Figure 4.9. Rendering Time on Different Machines

4.3.5. Effects of the 3D Texture Compression Algorithm

The last evaluation was conducted to show the benefits of the texture

compression work. Table 4.4 shows that the disk space needed for one dataset

is dramatically decreased by utilizing the RLE compression algorithm. For

example, for a 256x256x128 dataset, the space on the disk required is
8 8 7 232 2 2 2 8M× × = = bytes. With the compression, the size of dataset is shrunk

to 54K, which is about 0.66% of the size of an uncompressed texture.

51

Table 4.4. Costs of Disk Storage of the 3D Textures

Resolution
Size 128x128x64 256x256x128 512x512x256

Size before
Compression 1M 8M 64M

Size after
Compression 10.2K 54.0K 308.4K

Compression
Rate

99.1% 99.34% 99.53%

4.4. Summary

From the experimental results, we could conclude that both volume resolution

and number of sampling planes have great influence on image quality and

program performance. Typically, the resolution determines texture reading and

updating time as well as the data processing time on CPU, and the number of

slices regulates the actual rendering time on GPU. Practically, we need to take

both effects of sampling rate and resolution into consideration to find a best-fit

setting to ensure a good visualization.

52

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1. Summary

The project presents a visualization tool that displays and manipulates

sequences of the Level II Doppler radar data in 3D volumes from multiple sites.

A case study is provided to record the supercell storms on March 12, 2006, in the

Midwest of the United States. We propose a feasible integration method to

process data from multiple sites and a fast approach to render the data in real

time. Our methods have the following advantages:

• The data are integrated from three radar sites in an entire volume, with which

integrating data from more sites will not suffer from limited memory on GPU.

Additionally, with one integrated dataset, the shading code is easier to be

implemented. The rendering speed is also improved because of reduced

computations on GPU.

• The radar data are displayed in 3D and the rendering speed is fast by utilizing

the graphics hardware.

• 3D textures are stored as compressed files that not only save around 99% of

originally required disk space but also speed up the rendering procedures.

The resulting images and animation demonstrate how fast and robust our

techniques are both, making it suitable for rendering the Doppler radar data from

multiple sites in production of weather visualization.

5.2. Limitation

Currently the field studied and visualized is limited to reflectivity. Visualization on

other important fields such as velocity and spectrum width still remains

53

unresolved. Although the rendering process could be done in real-time, the data

processing is done beforehand.

The 3D texture-based volumetric rendering technique with the hardware

acceleration is efficient at this stage, however it still will become computationally

expensive when large-scale volume-data are involved.

The system was performed and tested on a standalone windows machine, and

the interactive visualization is available for a single user at a time. It could not

handle a large amount of jobs submitted; hence it is not feasible for multiple

users to visualize the data at the same time.

5.3. Future Work

Weather data comprises a large number of volumetric scalar fields, vector fields

and tensor fields. For a long time, studies have focused on methods and

techniques for visualization of a single field. Displaying multiple fields

simultaneously remains as an important and challenging task for scientific

researchers [Johnson 2004]. An extension to this work is to construct and

visualize other meteorological fields and derived quantities such as velocity and

spectrum width to graphically represent wind and turbulence, which will

supplement knowledge on the data to meet more needs of possible users.

We would like to improve our visualization algorithm by using the adaptive

volumetric rendering technique. A hierarchical volume will be constructed, and

the hierarchy will be traversed to find the best-fit volume according to some level

of quality and speed. We also could combine lighting effects to illuminate the

volume samples.

Another interesting path to explore is to integrate the visualization into TeraGrid.

Since real-time Doppler data are also available at Purdue University in TeraGrid,

54

direct data extraction can be conducted by connecting to Storage Resource

Broker (SRB) distributed file systems. The visualization will be displayed on a

website through Virtual Network Computing graphical sharing system (VNC).

Then the visualization tool would be available to ordinary people as well as

researchers for the purpose ranging from education to scientific research. With

this interface such as a web portal, users can have access to the remote Doppler

data and interactively visualize them online in a near-real-time fashion.

One more challenging but very important enhancement will be refining the

system that is able to handle both computing and rendering jobs in a distributed

way. The benefits include: accelerating the processing and rendering speed;

providing scalability to the system; guaranteeing accessibility for more users.

Furthermore, we could pre-process and produce datasets readable for other

simulation systems such as ParaView [ParaView].

55

LIST OF REFERENCES

[CAVE] http://www.evl.uic.edu/pape/CAVE/.

 [CAVE5D] http://www.ccpo.odu.edu/~cave5d/.

[Chen 2001A] Chen, X., Barron, J. L., Mercer, R. E., Joe, P., "3D Least
Squares Velocity from 3D Doppler radial Velocity," Visual Interface June
2001, 56-63.

[Chen 2001B] Chen, X., Barron, J. L., Mercer, R. E., Joe, P., "3D
Regularized Velocity from 3D Doppler radial Velocity," IEEE International
Conference on Image Processing 2001, Volume 3, 664-667.

[DisasterReport]
http://www.wind.ttu.edu/Research/DebrisImpact/Reports/DDS.pdf.

[Djurcilov 1999] Djurcilov, S., Pang, A., “Visualizing Gridded Datasets
with Large Number of Missing Values,” In proceedings of the conference
on Visualization ’99, 405-408.

[Dobashi 2000] Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T.,
Nishita, T., "A Simple, Efficient Method for Realistic Animation of
Clouds," Proc. SIGGRAPH2000, 2000-7, pp. 19-28.

[Dobashi2001] Dobashi, Y., Nishita, T., Miyazaki, R., Yoshida, S.,
"Modeling and Dynamics of Clouds Using a Coupled Map Lattice," Proc.
Siggraph 2001 Technical Sketches, pp. 229, Los Angeles (USA), August
2001.

[Drebin 1988] Drebin, R. A., Carpenter, L., Hanrahan, P., “Volume
Rendering,” Proceedings of SIGGRAPH ’88, Computer Graphics, August
(22), 65-74.

[Ebert 1990] Ebert, D. S., Parent, R. E., “Rendering and Animation of Gaseous
Phenomena by Combining Fast Volume and Scanline A-buffer Techniques,”
Computer Graphics, 24(4), 357-366.

56

[Engel 2001] Engel, K., Kraus, M., Ertl, T., “High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading,”
Proceedings of the ACM SIGGRAPH/ENROGRAPHICS Workshop on
Graphics Hardware 2001, 9-16.

[Engel 2006] Engel, K., Hadwiger, M., Kniss, J. M., Rezk-Salama, C.,
Weiskopf, D., “Real-Time Volume Graphics,” Wellesley, MA: A K Peters,
Ltd.

[Gao 2001] Gao, J., Xue, M., Shapiro, A., Xu, Q., Droegemeier, K. K., "Three-
Dimensional Simple Adjoint Velocity Retrievals from Single-Doppler Radar,"
Journal of Atmospheric and Oceanic Technology, Vol. 18, 26-38.

[Harasti 2006] Harasti, P. R., Lee W. C., Bell, M. M., “Real-time implementation

of VORTRAC at the National Hurricane Center,” ERAD 2006 Proceedings,

P11A.6.

[Harris 2001] Harris, Mark J., “Real-Time Cloud Rendering,” Computer Graphics
Forum (Eurographics 2001 Proceedings), 20(3), 76-84.

[Harris 2002] Harris, Mark J., “Real-Time Cloud Rendering for Games,”
Proceedings of Game Developers Conference 2002, March 2002.

[Harris 2003] Harris, Mark J., Baxter III, William V., Scheuermann, T., Lastra, A.,
“Simulation of Cloud Dynamics on Graphics Hardware,” Proceedings of Graphics
Hardware 2003.

[Hibbard 1990] Hibbard, B., Santeck, D., "The Vis-5D System for Easy
Interactive Visualization," Proceedings of IEEE Visualization October 1990,
28-35.

[Hibbard 1998] Hibbard, B., "VisAD: Connecting People to Computations and
People to People," ACM SIGGRAPH Computer Graphics, 32(3):10-12.

[Huber 2007] Huber, M., Trapp, J., "A Review of NEXRAD Level II: Data,
Distribution, and Applications," Journal of Terrestrial Observation, in press.

[Iourcha 1997] Iourcha, K. I., Nayak, K. S., Hong, Z., “System and method for
fixed-rate block-based image compression with inferred pixel values,” US Patent
5956431, 1997.

[IDV] http://www.unidata.ucar.edu/software/idv/.

[Jang 2002] Jang, J., J, Ribarsky, W., Shaw, C., Faust, N, “View-Dependent

57

Multiresolution Splatting of Non-Uniform Data,” In proceedings of the symposium
on Data Visualization 2002, 2002.

[JavaNEXRADViewer] http://www.ncdc.noaa.gov/oa/radar/jnx/index.php.

[Jiang 2001] Jiang, T., Wasilewski, T., Faust, N., Hannigan, B., Parry, M.,
"Acquisition and Display of Real-Time Atmospheric Data on Terrain,"
Eurographics-IEEE Visualization Symposium 2001, 15-24.

[Jonson 2004] Johnson. C., "Top Scientific Visualization Research
Problems," IEEE Computer Graphics and Applications, vol. 24, no. 4, pp.
13-17, Jul/Aug, 2004.

[Kajiya 1984] Kajiya, J. T. and Von Herzen, B. P., "Ray Tracing Volume
Densities," Computer Graphics, 18, 3 (July 1984), 165-174.

[Kelleher 2007] Kelleher, K., Droegemeier, K. K., et al., “Project
CRAFT: Technical Aspects of a Real Time Delivery System for NEXRAD Level II
Data via the Internet,” American Meteorological Society, 88, 1045-1057.

[Kniss 2003] Kniss, J., Kindlmann, G., Hansen, C., Shirley, P., McPherson, A., “A
Model for Volume Lighting and Modeling,” IEEE Transactions on Visualization
and Computer Graphics, 9 (2), 109-116.

[Lacroute 1994] Lacroute, P. and Levoy, M., “Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation,” Proc. SIGGRAPH '94,
Orlando, Florida, July, 1994, 451-458.

[Laroche 1994] Laroche, S., Zawadzki, I., "A Variational Analysis Method for
Retrieval of Three-dimensional Wind Field from Single-Doppler Radar Data,"
Journal of Atmospheric and Oceanic Technology, Volume 3, 77-86.

[Levoy 1988] Levoy, M., “Display of Surfaces from Volume Data,” IEEE
Computer Graphics and Applications, Vol. 8, No. 3, May, 29-37.

[Lichtenbelt 1998] Lichtenbelt, B., Crane, R., Naqvi, S., "Introduction to
Volume Rendering," Upper Saddle River, NJ: Prentice Hall PTR.

[Lindstrom 1996] Lindstrom, P., Ribarsky, W., Hodges, L. F., Faust, N.,
Turner, G. A., "Real-Time, Continuous Level of Detail Rendering of Height
Fields," Proceeding of SIGGRAPH ’96, Computer Graphics, 109-118.

[Lynch 1985] Lynch, T. J., "Data Compression: Techniques and
Applications," Belmont, CA: Lifetime Learning Publications.

58

[Nishita 1996] Nishita, T., Dobashi, Y., Nakamae ,E., “Display of Clouds
Taking Into Account Multiple Anisotropic Scattering and Skylight,” Computer
Graphics Proceedings, Annual Conference Series: SIGGRAPH '96, 379-386.

 [NWS] http://www.nws.noaa.gov/radar_tab.php.

[OGC] http://www.opengeospatial.org/.

[OpenDX] http://www.research.ibm.com/dx/; http://www.opendx.org/.

[ParaView] http://www.paraview.org.

[Priegnitz 1995] Priegnitz, D. L., "IRAS: Software to display and analyze WSR-
88D radar data," Eleventh International Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography, and Hydrology, 197-
199.

[Qiu 1992] Qiu, C., Xu, Q., "A Simple Adjoint Method of Wind Analysis for
Single-Doppler Data," Journal of Atmospheric and Oceanic Technology, Vol.
9, 588-598.

[Qiu 2001] Qiu, W., Mercer, R. E., Barron, J. L., "3D Storm Tracking in 3D
Doppler Precipitation Reflectivity Datasets," Irish Machine Vision and Image
Processing Conference, Volume 3, 77-86.

[Rana 2004] Rana, M. A., Sunar, M. S., Nor Hayat, M. N., "Framework for
Real Time Cloud Rendering," International Conference on Computer
Graphics, Imaging and Visualization (CGIV'04), 56-61.

[Riley 2003] Riley, K., Ebert, D., Hansen, C., Levit, J., "Visually Accurate
Multi-Field Weather Visualization," Proceedings of IEEE Visualization 2003,
279-286.

[Riley 2004a] Riley, K., Ebert, D., Hansen, C., Levit, J., “A System for Realistic
Weather Rendering," Proceedings of the 84th American Meteorological
Society Annual Meeting, January.

[Riley 2004b] Riley, K., Ebert, D. S., Kraus, M., Tessendorf, J., and Hansen,
C., "Efficient Rendering of Atmospheric Phenomena," Proceedings
Eurographics Symposium on Rendering 2004, 375-386.

[Riley 2006] Riley, K., Song, Y., Kraus, M., Levit, J., and Ebert, D.,
"Visualization of Structured Nonuniform Grids," IEEE Computer Graphics and
Applications, Vol. 26, No. 1, 24-33.

59

[Schpok 2003] Schpok, J., Simons, J., Ebert, D. S., Hansen, C., “A Real-Time
Cloud Modeling, Rendering, and Animation System,” Symposium on Computer
Animation, 2003.

[Schroeder 2003] Schroeder, W., Martin, K., Lorensen, B., “The
Visualization Toolkit: An Object Oriented Approach to 3D Graphics 34d
Edition”, Kitware, Inc.

[Song 2006] Song, Y., Yi, J., Svakhine, N., et al. "An Atmospheric Visual
Analysis and Exploration System," IEEE Transactions on Visualization and
Computer Graphics, Vol. 12, No. 5, 2006.

[Storer 1988] Storer, J. A., "Data Compression: Methods and Theory,"
Computer Science Press, Rockville MD.

[Treinish 1998] Treinish, L., "Task-specific Visualization Design: a Case Study
in Operational Weather Forecasting," Proceedings of IEEE Visualization 1998,
405-409.

[TeraGrid] www.teragrid.org.

[Treinish 2000] Treinish, L., Praino, A., "Multi-resolution visualization
Techniques for Nested Weather Models," Proceedings of IEEE Visualization
2000, 513-516.

[Treinish 2002] Treinish, L., "Interactive, Web-based Three-dimensional
Visualizations of Operational Mesoscale Weather Models," Proceedings of 18

th

International Conference on Interactive Information and Processing Systems
for Meteorology, Oceanography and Hydrology, American Meteorological
Society, J159-161.

[Treinish 2004] Treinish, L., Praino, A., "Customization of a MesoScale Numerical
Weather Prediction System for Transportation Applications," Proceedings of 20

th

International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography and Hydrology, American Meteorological Society,
J159-161.

[TRMM] http://trmm-fc.gsfc.nasa.gov/trmm_gv/software/rsl/index.html

[Ueng 2005] Ueng, S., Wang, S., “Interpolation and Visualization for Advected
Scalar Fields,” IEEE Visualization 2005 – (VIS’05), 78-88.

[Vis5D+] http://vis5d.sourceforge.net.

60

[Wang 2004] Wang, N., “Realistic and Fast Cloud Rendering,” Journal of
graphics tools, 9(3):21-40.

[Watson 1995] Watson, R. J., Bebbington, D. H. O., “Combining ground based
meteorological radar data from multiple overlapping sites,” Geoscience and
Remote Sensing Symposium, 1995. IGARSS '95. 'Quantitative Remote Sensing
for Science and Applications', International, Vol.3, 1660-1662.

[Westover 1990] Westover, L. A., “Footprint Evaluation for Volume Rendering,”
Proceedings of SIGGRAPH ‘90, Vol. 24(4), 367-376.

[Wilson 1994] Wilson, O., VanGelder, A., Wilhelms, J., “Direct Volume Rendering
Via 3d Textures,” University of California at Santa Cruz, Santa Cruz, CA, 1994.

[Zhou 2005] Zhou, Y., Stull, R., “Single-Doppler Radar Wind-Field Retrieval
Experimentation on a Qualified Velocity-Azimuth Processing Technique,” Ninth
Symposium on Integrated Observing and Assimilation Systems for the
Atmosphere, Oceans, and Land Surface, 2005.

LIST OF REFERENCES

	Purdue University
	Purdue e-Pubs
	12-5-2007

	Volumetric Visualization Of NEXRAD Level II Doppler Weather Data From Multiple Sites
	Yi Ru

