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ABSTRACT 

Ru, Yi. M.S., Purdue University, December, 2007.  Volumetric Visualization of 
NEXRAD Level II Doppler Weather Data from Multiple Sites.  Major Professor:  
Gary R. Bertoline. 
 
 
 
Weather visualization is critical for operational forecasters and weather 

researchers to analyze, monitor, and predict severe weather events such as 

storms, tornadoes, and hurricanes.  Usually measured weather datasets such as 

NEXRAD Level II radar data contain some errors and have temporal aliasing 

issues, so that the raw data cannot represent the true meteorological patterns.  

Existing weather visualization packages usually ignore these problems, thus they 

fail to unveil some detailed information and cannot meet the needs of 

professional meteorologists.  Most displays generated by those packages are 

limited to 2D images, 3D point clouds, or iso-surfaces.  Those displays are not 

able to accurately represent the details of the data.  The limitation of visualizing 

data from a single radar site at one single time step in most packages blocks 

desirable information in the datasets. 

 

We developed an efficient and accurate visualization tool capable of displaying 

the long-track 3D NEXRAD Level II volumetric weather data from multiple sites.  

The data were captured and integrated from three sites (KEAX, KILX and KSLX), 

and rendered by using the hardware-accelerated volume-rendering technique.  

Customized transfer functions are also provided for users to map data values to 

optical properties such as color and opacity to create different views.  We also 

implemented a compression algorithm to compress 3D textures in order to 



 

 

ix

largely reduce the consumption of hard disk space and to enhance the rendering 

speed without degrading image quality.  An example study shows the tracking of 

a 24-hour supercell storm observed on March 12, 2006, in the Midwest of the 

United States.  Images and animations from our implementation coupled with 

results from a set of experiments demonstrate that our methods and approaches 

are fast and robust, making them suitable for processing and rendering huge 

amounts of Doppler Level II weather data from multiple stations. 

 



1 

 

CHAPTER 1. INTRODUCTION 

The occurrences of severe weather every year have caused many injuries and 

fatalities as well as severe damage to personal and public properties.  Statistics 

[DisasterReport] show that on average tornadoes cause 1,500 injuries and 80 

fatalities per year, thunderstorms result in 2,000 injuries and 150 deaths annually, 

and hurricanes account for 60 injuries and 17 deaths each year in the United 

States.  Figure 1.1 shows a tornado and its damage in central Oklahoma on May 

3, 1999 (on top row), and Hurricane Katrina and its aftermath on August 29, 2005 

(on bottom row).   

 

Weather forecasting and severe weather prediction are usually used to provide 

opportune warnings to the public that people can protect their lives and 

properties, change economic operations, and plan daily activities ahead of time.  

To accurately predict the weather, forecasters and researchers need to analyze 

data (precipitation, pressure, turbulence, wind speed, etc.) to understand how 

weather would change on our planet, forming and producing severe storms.  An 

accurate and efficient weather data visualization tool or system can significantly 

help forecasters to gain fresh insights on atmospheric conditions and formations, 

hence to enhance the accuracy of their forecasting simulation models.   
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Figure 1.1.  Examples of Tornado and Hurricane and the Aftermaths (Images 
Courtesy of National Oceanic & Atmospheric Administration (NOAA)) 

1.1. NEXRAD Level II Doppler Radar Data 

Today the nationwide meteorological networks such as Doppler radar and 

satellite-borne sensors provide weather forecasters and researchers with more 

observational data than ever before.  Particularly, the National Weather 

Surveillance 1988 Doppler Radar Network (WSR-88D, shown in Figure 1.2) - 

also known as the Next Generation Weather radar system (NEXRAD) - provides 

high spatial and temporal resolution information within 3D volumes on a 

continuous basis.  The network comprises over 150 radar sites (Figure 1.3) 

across the United States and some overseas locations.  The raw datasets 

produced by radars consist of three basic meteorological fields: reflectivity, radial 

velocity, and spectrum width.  Reflectivity is related to the weather phenomena 
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such as clouds and rain, while velocity is germane to wind, and spectrum width is 

relevant to turbulence.  As a primary component of meteorologists’ interest, 

reflectivity is the key point of the study. 

 

Figure 1.2.  Network of WSR88D (Weather Surveillance Radar, 1988, Doppler) 
Radars (Image Courtesy of National Oceanic & Atmospheric Administration 

(NOAA)) 
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Figure 1.3. A Doppler Radar Site at Jackson Kentucky (Image courtesy of NOAA) 

1.2. Statement of the Problem 

Developing such a weather visualization tool involves several problems: (1) The 

measured weather datasets usually contain some measurement errors.  For 

example, NEXRAD Level II Doppler data is characterized by a large proportion of 

missing or invalid data points [Djurcilov 1999].  Existing weather visualization 

packages usually ignore these errors, thereby resulting in the missing of some 

detailed information and negatively affecting the accuracy of the data 

representations [Riley 2003].  (2) Radar datasets are captured and produced in 

3D, however, most displays generated by existing visualization packages are 

limited to 2D images, 3D point clouds, or iso-surfaces, all of which cannot 

accurately represent the entire field.  Figure 1.4 shows a typical 3D sweep 

perspective view of reflectivity data in the Integrated Data Viewer (IDV) [IDV], 

where the scalar field of reflectivity is rendered as 3D point clouds that do not 

represent the data very well.  (3) Displaying multiple Doppler radar datasets and 

visualization of long-time datasets are very challenging.  First, to display data 

from multiple sites, current approaches usually first render the data from every 

single site as a 2D image, and then mosaic images from all sites together, 

producing a less attractive visualization.  Second, the radar data are renowned 
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for having temporal aliasing issues.  Because radars at different locations are 

operated at different paces, resulting in asynchronous data files from different 

stations, thereby it is problematic to display 3D data of multiple radar sites 

simultaneously.  Finally, it is challenging to render long sequences of datasets in 

real time because large amounts of data are involved, leading to a heavy 

computation load.  

 

Figure 1.4.  A Typical 3D Radar Sweep Perspective View of Reflectivity Data 
Rendered as 3D Point Clouds in IDV (Image courtesy of IDV gallery) 

In view of these technical issues, the problem of this study is to retrieve and 

integrate data from the multiple radar sites, and to display sequential 3D weather 

volumetric data in real time, providing detailed information to users especially for 

weather researchers. 
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1.3. Purpose of the Study 

Currently the Rosen Center for Advanced Computing (RCAC) research group 

together with the Envision Center for Data Perceptualization at Purdue University 

is aiming at providing a real-time rendering interface for users to remotely access 

and to interactively visualize the Doppler Level II weather data from TeraGrid 

[TeraGrid].  The interface will be widely accessible to users ranging from ordinary 

people to educational and scientific research groups.  

 

As one of the most significant parts of the research, the goal of this thesis work is 

the development of a real-time visualization system to render 3D Doppler radar 

data from multiple sites in real time.  Visualization on supercell storms that were 

observed on March 12, 2006, in the Midwest of the United States is the subject of 

a case study to verify our approaches.  The data were obtained from three 

Weather Surveillance Doppler radars – KEAX located in Kansas City, Missouri, 

KILX located in Lincoln, Illinois, and KSLX in Saint Louis, Missouri. 

1.4. Delimitations 

The study focuses on NEXRAD Level II Doppler radar data processing and 

rendering techniques.  It does not handle datasets from other sources such as 

geostationary satellites.  The field of interest is reflectivity.  The observation is 

limited to visualization on data from three radar stations.  The study does not 

process and display other fields such as spectrum width and velocity.  Moreover, 

the research emphasizes hardware-accelerated volumetric rendering techniques 

rather than other rendering techniques such as iso-surfacing.  

1.5. Summary 

In this thesis, we introduce an interactive rendering system on visualizing 

Doppler weather data from multiple sites.  The system integrates data from 

multiple sites into an entire volume at every timestamp and stores them as a 3D 
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texture, which is a great advantage for creating weather animations where large 

amounts of data are involved.  Furthermore, we employ the hardware-

accelerated texture-based volume rendering technique to speed up rendering 

processes.  Results from our implementations show that our processing and 

rendering approaches are fast and efficient.  Another contribution of this work is 

the improvement in storing and reading 3D textures.  Through compression and 

decompression procedures for 3D textures, required disk space for the texture 

storage is highly reduced, and the rendering performance is also improved, while 

keeping the quality of images unchanged. 

 

The thesis is organized as follows: It starts with an introduction to motivations, 

problems, challenges, and objectives of this project, followed by detailed 

discussions of previous approaches, existing methods, and related work in 

Chapter 2.  Chapter 3 thoroughly describes schemes, methods, procedures, and 

implementations of our system.  Rendering images, experimental results, and 

analyses are presented in Chapter 4.  Chapter 5 concludes the contributions and 

limitations of our work, and suggests several possible future improvements and 

extensions to this work. 
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CHAPTER 2. RELATED WORK 

It is difficult and challenging to process huge amounts of Doppler radar datasets 

and to produce an accurate and efficient visualization.  The literature review 

summarizes previous work from four aspects: weather visualization systems, 

volume rendering techniques, Doppler data processing techniques, and data 

compression algorithms.  

2.1. Weather Visualization System  

For a long time, researchers have been working on developing weather 

visualization systems to help weather forecasters to better understand the data in 

order to provide timely and accurate weather forecasts.  The IDV package 

developed by Unidata, funded primarily by the National Science Foundation 

(NSF) is an open source Java-based software framework for analyzing and 

visualizing geo-science data.  The software can read different data formats, 

including satellite imagery, gridded data (for example, numerical weather 

prediction model output), surface observations, balloon soundings, the National 

Weather Service (NWS) WSR-88D Level II and Level III radar data, and NOAA 

National Profiler Network data, and display them in 2D or 3D fashions.  It can 

also allow users to change the color tables or earth maps with known formats.  

The National Climate Data Center (NCDC) also provides some visualization tools 

to display Level II radar data.  The NOAA NCDC Java NEXRAD Viewer and Data 

Exporter [JavaNEXRADViewer] are specific to load Level II, Level III, and Stage 

III radar data into an Open GIS [OGC]-compliant environment.  As part of the 

Collaborative Radar Acquisition Field Test (CRAFT) [Kelleher 2007] project, the 

Interactive Radar Analysis System (IRAS) [Priegnitz 1995] can read and display 
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Level II radar data via the Internet in real time.  All of these application Program 

Interfaces (APIs) are written entirely in the Java programming language, and 

both IDV and the NEXRAD Java Viewer are launched via Java Web Start.  

 

In 1990, Hibbard et al. presented the first version of Vis5D system [Hibbard 1990] 

for interactive visualization of large grid datasets from numerical weather models.  

In Vis5D, the data are constructed in the forms of 5D rectangular grid of points.  

The five dimensions include three spatial dimensions, time dimension, and one 

dimension from the physical variables.  For example, the three spatial 

dimensions of meteorological data are altitude, latitude, and longitude, and the 

variable dimension can be one of temperature, pressure, moisture, or three wind 

vector components. The system enables users to interactively visualize iso-

surfaces, contour-line slices, colored slices, and volume renditions of the data in 

real time.  Moreover, Vis5D supports comparison of multiple datasets.  Additional 

datasets can be imported to the system at any time where the new datasets can 

either be overlaid in the current display or displayed as a series of 3D 

spreadsheets.  Other features of the system include wind trajectory tracing and 

text annotations.  Extensions of the system include an enhanced version called 

Vis5D+ [Vis5D+] and the Cave5D system [CAVE5D] that runs in a CAVE-like 

virtual reality environment [CAVE]. 

 

Later, Hibbard proposed a Java class component library - VisAD [Hibbard 1998].  

The main feature of VisAD is to provide geographically distributed users with 

interactive and collaborative visualizations of a shared set of numerical data and 

computations.  Using VisAD, the four major components - data, display, user’s 

interface, and computational objects - can be linked together from different 

locations on the network.  The tool includes a mathematical model, processing 

numerical data with a number of data formats such as netCDF, HDF-5, HDF-

EOS, Vis5D and JPEG; and a display model, managing interactive visualization 

such as 3D viewpoints, animations, iso-surfaces and scalar maps.  
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Researchers at Georgia Institute of Technology developed a system [Jiang 2001] 

with real-time acquisition, organization, and visualization of atmospheric datasets 

in a geospatial environment.  In the system, Doppler data, high-resolution terrain, 

and associated data such as buildings and maps are merged and displayed 

together in an existing real-time environment called VGIS [Lindstrom 1996].  The 

system can operate on a personal computer, and the display is viewed on a 

monitor or large-screen projection.  

 

Focusing on local weather forecasting, IBM Thomas J. Watson Research center 

developed a meso-scale numerical prediction and visualization system called 

“Deep Thunder” [Treinish 2004] which is a complementary tool to the NWS.  The 

deep thunder project was developed on the basis of previous research projects 

done at IBM, involving the use of the IBM Open Visualization Data Explorer 

(OpenDX) [OpenDX].  It was first used during the 1996 Atlanta Olympic Games 

and has been improved by adding more features and functions since then.  For 

example, the idea of task-specific visualization design [Treinish 1998] was 

proposed to match diverse users’ goals.  Usually in weather forecasting, some 

applications are built on a common framework to avoid the re-design of 

interfaces and content elements.  However, the limitations of the framework, 

such as the lack of focus on the interface, may result in more troubles and 

challenges, precluding a novice from comfortably operating the system in a 

limited time period.  Instead of using a general-purpose tool directly, Treinish 

suggested that an appropriate design for a specific task could be developed 

ahead of time.  Using these design elements, specialized interfaces and tools are 

developed to improve and refine the general framework.  Other new technologies 

include (1) a web-based approach to enable users to remotely access 3D 

visualizations of operational meso-scale weather models [Treinish 2002] and (2) 

multi-resolution visualization techniques to provide more detailed and coherent 

visualization of weather models [Treinish 2000].  
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Although these powerful tools are being utilized in many weather visualization 

applications, due to the inherent limitations of these tools, they are not yet able to 

fully accommodate the needs of some users.  For example, most APIs are 

written in Java language, which makes the data retrieving and processing 

comparatively slow.  They usually cannot represent datasets with multi-fields at 

the same time.  An example is the Vis5D system, which can only handle one 

variable dimension at a time.  Additionally, most representations are limited to 2D 

images or 3D point clouds.  Many tools only can represent the dataset from one 

single site or simply mosaice 2D images for the datasets from multiple sites.  

Hence, the visual representations generated by most tools are not accurate.  

Another issue is that existing systems only handle the data generated at one time 

step.  They cannot visualize long-time sequential datasets.  

 

In order to provide accurate rendering and multi-field visualization, Riley et al. 

presented a new visualization system [Riley 2003] [Riley 2004] to produce a 

realistic representation based on the particles’ optical properties such as 

extinction and scattering.  The system can visualize volumetric weather data with 

multiple fields, including cloud water, ice, rain, snow, and graupel.  Song et al. 

proposed an integrated atmospheric visual analysis and exploration system 

[Song 2006].  The system supports a variety of rendering techniques, including 

physics-based atmospheric rendering, illustrative rendering, and particle and 

glyph rendering to provide users with flexible and efficient data analysis tools.  

Schpok et al. [Schpok 2003] described a software package called “Swell”, a 

multi-level, interactive, volumetric cloud modeling and animation system using an 

interactive cloud modeling tool.  The system has three major components: a 

high-level modeling and animation system, a renderer, and an interface.  

Volumetric implicit functions [Ebert 1997] are used for generating high-level 

clouds and volumetric procedures based on noise and turbulence simulations for 
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low-level clouds detail.  The rendering of clouds is based on a modified slice-

based volume rendering scheme.   

 

However, despite the improvement from the previous applications, these systems 

only focused on data from a single radar site, and therefore fail to provide users 

with a large view of the weather display.  

 

Some of the new techniques are under development to provide 3D views of data 

from multiple sites.  In 2005, Ueng et al. proposed a system to specifically 

visualize the Doppler radar data through a three-pass technique [Ueng 2005].  In 

the first pass, the data is re-sampled and filtered to create a multiple-resolution 

data structure.  In the second pass, cloud velocities are computed, and 

reflectivity data is interpolated by calculating gradients and intensities of each 

voxel.  In the third stage, the reflectivity and the velocity are rendered by using 

the splatting volume-rendering technique [Westover 1990].  The authors also 

provided a method to synchronize the data from multiple radar sites by means of 

the calculated velocity from each site.  The drawback of this system is that it 

ignores the effect of rain and evaporation by dropping the vertical component of 

the velocity.  A new technique called the Vortex Objective Radar Tracking and 

Circulation (VORTRAC) [Harasti 2006] was developed and is currently tested for 

analyzing hurricane strength at the National Hurricane Center (NHC) in Miami, 

Florida.  It is typically designed for tracking the central pressure and the radius of 

maximum wind of land-falling tropical cyclones.  By using a series of algorithms, 

data from Doppler radars was transformed into a detailed 3D view of an 

approaching hurricane every six minutes.  VORTRAC is a fusion of several 

single-Doppler radar data quality control and wind analysis methods. 

2.2. Volume Rendering Techniques in Weather Visualization  

Rendering is a significant part in a visualization system.  To make the scene 

more realistic, most researchers adopted the method of volume rendering 
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[Drebin 1988] - a method of representing, displaying, and manipulating objects in 

the forms of sampled data in three or more dimensions.  There is a huge pool of 

literature on volume rendering techniques [Lichtenbelt 1998] [Engel 2006].  In this 

section, we primarily focus on applied volume-rendering techniques in weather 

visualization.   

 

Generally, in weather visualization, as in many other fields of visualization, 

volumes are most often represented as a grid composed of a group of volumetric 

elements called voxels.  To synthesize an image of a volume, four general 

approaches – image-ordered ray casting [Levoy 1988], object-ordered splatting 

[Westover 1990], shear-warping [Lacroute 1994], and texture-based volume 

rendering [Wilson 1994] are commonly used to render the scene from 3D 

volumetric data.   

 

However, to generate photo-realistic images, more physical properties of the 

cloud material, such as light absorption and scattering, have to be considered.  

Hence, two major tasks are usually taken into account in a weather data 

visualization system: integrating the effects of optical properties along the path 

through the cloud volume, and incorporating the complex light scattering with the 

medium.  To complete these two tasks, Kajiya et al. [Kajiya 1984] used ray 

tracing methods, dealing with both single and multiple scattering.  Nishita 

presented global illumination approximation techniques, accounting for multiple 

anisotropic scattering and skylight on the cloud color [Nishita 1996].  Those 

methods are important for realistic rendering but are very time-consuming.  There 

have been many efforts to approximate the physical properties of clouds while 

reducing the amount of computations.  One of the possible approaches is to use 

3D textures to render the volume density to accelerate the rendering process.  

Dobashi [Dobashi 2000] presented a simple and computationally inexpensive 

method for near real-time animation of clouds.  The rendering method introduced 

in the paper is based on the splatting algorithm that can quickly render clouds as 
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billboards, and calculate shadows and shafts of light through the clouds by using 

graphics hardware.  Harris [Harris 2001] [Harris 2002] presented a method for 

realistic real-time rendering of constant-shape clouds for games.  The rendering 

approach is based on the splatting representation of particles and the shading 

method described by Dobashi et al. [Dobashi 2000].  Harris extended Dobashi’s 

model by simplifying light scattering as multiple forward scattering and 

anisotropic first-order scattering.  This approach not only retains the realistic 

rendering effects, but also makes the rendering speed much faster than 

Dobashi’s.  Harris also presented a physically-based, visually-realistic interactive 

cloud simulation system [Harris 2003].  The clouds are represented using a “flat” 

3D texture – a 2D texture that contains the tiled slices of a 3D volume.  To render 

complex scenes containing gaseous phenomena such as clouds, fog and smoke, 

Ebert et al. proposed a fast and efficient method [Ebert 1990], combining 

scanline A-buffer techniques to render surface-modeled objects with volume-

rendering techniques to render volumetric modeled objects.  To speed up 

rendering scenes with atmospheric data, Jang et al. proposed a splatting 

technique, using volume rendering integrated with a level of detail [Jang 2002].  

The level of detail is selected automatically based on the current view of the data.  

To achieve this, the authors used an adaptive tree structure that preserves the 

details of the non-uniform data at the lowest level of the tree.  The method is 

applied on the NEXRAD Doppler data to produce interactive visualizations in real 

time.   

 

Other research using the splatting volume-rendering method include: (1) an 

interactive, multi-level, cloud modeling and rendering system [Rana 2004], where 

the system adopts a two-level modeling approach - the high-level clouds are 

created from cubes, and the low-level clouds are generated from 2D textured 

billboards, and (2) a cloud system [Wang 2004] that can simulate a number of 

different cloud types that are manually designed and fine-tuned by artists in the 

3ds Max environment – a 3D graphic application developed by AutoDesk Media 



15 

 

and Entertainment.  Recent advancements include a hardware-accelerated 

technique [Engel 2001] employed in weather visualization systems, and a 

photorealistic-rendering technique in weather visualization, which provides 

weather forecasters and researchers with more detailed representations of the 

data [Kniss 2003].   

2.3. Doppler Data Processing 

Recently Doppler NEXRAD Level II radar data are widely used in weather 

forecasts and analysis such as tracking formation and the path of severe storms.  

To make full use of Doppler data, weather researchers did numerous work on 

processing precipitation reflectivity and radial velocity datasets.  For example, 

Chen et al. presented local least square and regularization frameworks [Chen 

2001A] [Chen 2001B] for computing 3D velocity from 3D radial velocity.  Qiu et 

al. [Qiu 2001] extended a 2D tracking algorithm to 3D, and applied it to 3D 

Doppler reflectivity data.  Zhou et al. [Zhou 2005] proposed a method to calculate 

wind field velocity from the data provided by a single Doppler radar site.  This 

approach is mainly based on a simplified assumption for the motion of the wind 

field.  Furthermore, since a full 3D wind field can offer a better understanding of 

the atmospheric data for meteorologists, Laroche et al. proposed a variational 

method to construct a 3D wind field [Laroche 1994].  Gao et al. [Gao 2001] 

retrieved the 3D wind field from a single Doppler data based on the improvement 

of a simple adjoint method [Qiu 1992].  Djurcilov et al. discussed techniques for 

visualizing datasets with large number of missing values [Djurcilov 1999].  None 

of these techniques, however, was developed for the purpose of volume-

rendering the data.   

2.4. Data Compression Algorithm 

Nowadays data compression is widely used in Computer Science and 

Information Technology because of its desirable features for data storage and 
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data communication.  With data compression algorithms, the data files are 

shrunk down to smaller sizes, which could save expensive resources such as 

disk space and transmission bandwidth.   

 

There are two typical type of data compression: lossy and lossless [Lynch 1985] 

[Storer 1988].  Namely, the lossless compression algorithms, also referred as 

redundancy reduction algorithms, can reconstruct the original data by finding 

repetitive patterns in the data, encoding and decoding them in an efficient way.  

Obviously, the algorithms will have very poor performance when the redundant 

patterns do not exist or are not easily discovered.  On the contrary, lossy 

compression algorithms cause loss of data, which means the data or messages 

could not be recovered after applying lossy algorithms.  However, the algorithms 

are still applied when some loss is acceptable or when lossless compression 

could not accomplish the compression task.   

 

Lossless data compression algorithms include: run-length encoding (RLE), 

prediction by partial matching (PPM), Burrows-Wheeler transform (BWT), and 

Huffman entropy encoding etc.  As one of the simplest lossless compression 

algorithms, RLE algorithm is very suitable for messages or files that contain large 

runs of consecutive identical data values.  The algorithm simply replaces 

repeated values with the value and the length of the run. 

 

Lossy data compression algorithms include: fractal transform, wavelet 

compression, vector quantization and so on.  S3 Texture compression (S3TC, 

DXTn) belongs to the lossy data comression group, which is originally developed 

by S3 Graphics. Ltd [Iourcha 1997].  It consists of a group of related image 

compression algorithms.  Its desirable features including fixed-rate data 

compression together with the single memory access make it very suitable for 

compressing textures in image processing applications.  Volume texture 

compression (VTC) algorithm is simiar to S3TC compression, but optimized for 
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processing 3D textures, which could save some bus bandwidth and memory at 

the cost of image quality.  

 

However, data compression can cause extra work.  Specifically, compressed 

messages or files must be decompressed before they are processed or viewed.  

Therefore, the design of data compression involves trade-offs among various 

factors: the degree of compression, the required quality of data, and the time and 

spaces required to process the data. 

2.5. Conclusion 

Current weather visualization systems enable meteorologists to interactively 

visualize iso-surfaces, contour-line slices, color slices, and volume renderings of 

the data in real time by a large variety of rendering techniques such as volume 

rendering, illustrative rendering, glyph rendering and photorealistic rendering.  

Based on previous studies, it is believed that future visualization systems are 

likely to be improved by adding advanced transfer functions, providing flexible 

ground mapping projection, and enhancing properties of multi-fields.  Future 

breakthroughs of weather visualization also rely largely on the technical 

advancement of hardware.  Visualization of multiple Doppler radar datasets is 

capable of providing a larger view with higher resolution in large-region weather 

studies.  Despite recent technological improvements, visualization of sequential 

long-time datasets still remains largely unsolved. 
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CHAPTER 3. PROCEDURES 

The NEXRAD Level II Doppler data visualization system discussed in this thesis 

consists of two major components: data processing and rendering that are 

aligned in a subsequent order.  Each component contains a number of inter-

connected computational operations, which are presented in greater detail in the 

following sections.  A synopsis of the entire setup and data flow is given in Figure 

3.1.   

3.1. Data Processing 

The raw weather datasets used in this study are referred to as NEXRAD Level II 

Doppler data.  The data, captured by a given radar system, are typically 

compressed using some compression algorithms and are stored as a series of 

binary files.  In addition, the radar data are captured by radars at different time, at 

different locations, and stored in their respective local spherical coordinate 

systems.  It would be beneficial to process the data before the data can be 

directed into our system.  Therefore, in the data processing stage, the 

compressed radar data comprised of sample coordinates and sample values are 

first retrieved from the data files captured in approximate same time.  Then local 

spherical coordinates of the samples are converted to global geographic 

coordinates, and the sample values are aligned by linear interpolation from 

multiple sites according to the designated time.  Finally, the values are re-

sampled into the rectilinear grid structure that is useful for volumetric rendering, 

and the formed 3D volumetric data are compressed and stored on the hard disk. 
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Figure 3.1.  Overview of the Visualization System 
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3.1.1. Radar Data Extraction  

The NEXRAD Level II Doppler data are collected as radars go through a 

programmed set of movements, which involve a continuous rotation over 360° in 

azimuth and a simultaneous increase in elevation by 1° to 3° per complete sweep 

[Huber 2007].  The spatial resolution is 1 kilometer for reflectivity and 0.25 

kilometer for velocity and spectrum width in range; 1° for all the three fields in 

azimuth.  The radar makes up to 20 azimuthal scans in elevation ranged from 

0.5° to 19.5° determined by the Volume Coverage Patterns (VCPs).  Usually 

radars do more sweeps for severe storms and fewer sweeps for clear weather.  

Figure 3.2 is a graphical representation showing the structure for reflectivity of 

Doppler data.  Velocity and spectrum width components also have similar 

structures.  Radars produce the raw datasets on a continuous basis, making the 

temporal resolution around 5 to 6 minutes in severe weather.  

 

Figure 3.2.  3D Structure of NEXRAD Level II Doppler Radar Data (Reflectivity) 

Once raw radar datasets were obtained, they were processed by using the 

TRMM Radar Software Library (RSL) [TRMM].  The library allows for the retrieval 

Range: 460 points per ray 

Azimuth: 360 rays per sweep 

Z 
Elevation: 0.5° to 19.5°  



21 

 

of some components such as reflectivity, from compressed Doppler data files.  

The retrieved data were stored in the computer’s main memory for processing.   

3.1.2.  3D Rectilinear Grid  

To ensure an efficient volume rendering in the rendering stage (Figure 3.1), all 

data need to be organized and re-sampled in a rectilinear grid structure which 

contains a collection of cells arranged on a regular lattice [Schroeder 2003].  

Since this study involves the raw data from three geographic sites – KILX, KEAX 

and KLSX, the grid needs to cover all three sites and to store the data in memory 

in an efficient way.  To accomplish this task, a bounding box that contains all 

data from three sites was generated first.  Due to the unique spatial distribution of 

the radar data, there are more data points distributed in the X-Y plane than in the 

Z direction (the elevation direction) in the grid.  Therefore, the grid (Figure 3.3) is 

designed to have a non-uniform structure such as 256 by 256 by 128, which 

provides the grid with 128 layers of X-Y planes, each consisting of a 2D uniform 

grid of 256 by 256.  This structure is also referred as “semi-regular” because 

though the topology of the grid is regular, the points arranged are partially regular. 

 

Figure 3.3.  256x256x128 Grid Structure (left) and Bounding Box (right) 
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3.1.3. Conversion from Spherical Coordinates to Geographic Coordinates  

The completion of the 3D grid is followed naturally by re-sampling of radar 

reflectivity data values into it.  For each site, the TRMM library stores the data in 

the local spherical coordinates (azimuth, elevation and range) with the origin 

placing on the location of each radar station.  If only the data from a single site is 

considered, the values can be directly re-sampled into the grid.  However, to 

integrate the data from the multiple sites, a global coordinate system has to be 

used. 

 

Figure 3.4.  Computing Geographic Coordinates of Sample Points 
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Here, coordinates of each sample point are converted from the local spherical 

coordinate system to the global geographic coordinate system prior to the re-

sampling operation.  This conversion is graphically interpreted in Figure 3.4.   

 

Specifically, given the geographic coordinates of the location of a radar site 'O , 

denoted as ( , , )lon lat alt  , and the local spherical coordinates of a sample point A, 

denoted as ( , , )r θ ϕ , the geographic coordinates ( ', ', ')lon lat alt  of the sample point 

A is defined as in equation 3.1: 

' ' 'cos / ;
' ' 'sin / ;
' ,e

lon lon O A lonScale
lat lat O A latScale
alt OA R

ϕ
ϕ

= +
= +
= −

 
Eq. 3.1 

where eR is the approximated earth radius ( 6,367,450.0m≈ ), latScale (the scale in 

latitude) is the width per latitude degree denoted as /180eR π⋅ , and lonScale (the 

scale in longitude) is the width per longitude degree defined as cos( ) /180.eR lat π⋅   

 

OA and O’A’ are defined in following equations: 
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2 2
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= + ⋅

= + ⋅

 

Eq. 3.2 

 

The resulting coordinates ( ', ', ')lon lat alt   are used to find the appropriate cell in 

the grid where the sample point should be placed.  More specifically, the cell 

indices in x, y, z dimensions are solved by  
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'

'

'

_ min_ ;
_
_ min_ ;
_
_ min_ .
_

lon bbox Xindex x
bbox x

lat bbox Yindex y
bbox y

alt bbox Zindex z
bbox z

−
=

−
=

−
=

 

Eq. 3.3 

 

_bbox x , _bbox y , _bbox z represent the length of the side of the bounding box 

respectively.  _ minbbox X , _ minbbox Y , _ minbbox Z  denote the minimal values 

of the bounding box. 

3.1.4. Integrating Data from Multiple Sites 

From the work in previous sections, we located the cell in the grid which the 

current sample point should go to.  The next step is to fill the reflectivity value at 

the sample point into the cell, where integrating data from multiple radar sites are 

coming onto the stage.  Obviously and undeniably the large coverage of the 

Doppler radar network in the United States brings a lot of benefits, in the 

meantime, it results in a large overlapping region between adjacent radars, 

leading to ambiguous and sometimes perplexing results if the data are not 

properly operated.  However, combining radar data from overlapping sites is a 

nontrivial task [Watson 1995].  First, radars perform scans in a local spherical 

coordinate system with a unique origin placed on its own location.  Fortunately, 

we had solved this problem with the coordinates conversion illustrated in section 

3.1.3.  Further complicating the issue is the fact that radars at different location 

are operated at different tempos, which means the data from one site are 

collected at the time and rate different from another site.  To resolve such 

complications and visualize a sequence of datasets from one time point to 

another time point, interpolations between two time stamps are necessary to 

reduce the temporal-aliasing issue and to synchronize the data from different 

sites.  In our implementation, we define a series of time - it .  For each time step 
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t  in it , we check the downloaded radar product files to find two files at time at , bt  

exactly before and after t .  This is applicable because the downloaded file 

names contain the date and time information as well as the site name when the 

scan was performed.  The sample value tv  at time t  is given in the following 

equation reflecting linear interpolation: 

(1 ) ( ).
a b

a a
t t t

b a b a

t t t tv v v
t t t t

− −
= ⋅ − + ⋅

− −
 Eq. 3.4 

 

We conduct the above interpolation between the data from every site.  For 

example, synchronizing the weather data at a specific time t  - 00:05:00 on 

3/12/2006 from KEAX, KLSX and KILX - involves the steps illustrated in Figure 

3.5.  Leftmost boxes indicate searched files on the disk, where, for instance, the 

file name 6500KILX03122006_000306 contains information including the radar 

station name – “KILX”, the date – “03/12/2006”, and the scanning time – 

“00:03:06”.  

 

Figure 3.5.  Interpolation between Different Timestamps 
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There are also some extreme values in the raw datasets because of 

measurement mistakes or malfunctions of radars.  Hence, the data are also 

subjected to the noise attenuation method in which thresholds are set to remove 

extreme values created from measurement errors and to smooth the re-sampled 

data.  Specifically, the data values are limited from 0 to 80dBZ.  Resulting 

interpolated sample values are stored in the 3D grid structure described in 

section 3.1.2.  

3.1.5. Constructing and Compressing the Volume 

When the reflectivity values are re-sampled at each grid cell into the pre-defined 

3D array, the volume is constructed.  It is easy to conceive that, in partially 

overlapping regions, values obtained from more than one site are likely to be 

sampled to the same cell, which means some cells have duplicate values, 

whereas others only have a single value.  To eliminate the potential error 

resulting from the redundant data sampling, we sum up all of values in the cell 

and then average them.  Since the distribution of sample values may still be 

sparsely populated in the volume space, vertical interpolation is applied to fill the 

gaps in the volume.  As in figure 3.6, given value 2kv  and 1kv , the value in 

between such as at k could be obtained using the linear interpolation same as in 

Eq. 3.4.  If all the cells under a known value 2kv are empty, all of these empty 

cells are filled with the given value ( ' 2k kv v=  as shown in the figure 3.6).  
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Figure 3.6.  Vertical Interpolation 

Displaying an animation may involve creation of a large number of images.  For 

each image, we store the compressed 3D volumetric data in order to save the 

space on the hard disk and to reduce the number of disk Input/Output operations 

and frequent page faults during the rendering process, using the modified Run 

Length Encoding (RLE) compression algorithm.  Because the Level II radar 

reflectivity data usually range from -35 dBZ to 80 dBZ, a 8-bit byte is adopted to 

represent the reflectivity value, and the first bit of the byte is set to 0 or 1 

indicating if it is a repetition.  If the value is repetitive, the first bit is set to 0, and 

the value is followed by a 32-bit unsigned integer to count the number of the 

repetition.  If it is not, the first bit is set to 1 by taking it to the bitwise OR 

operation with 10000000(128).  The compression algorithm is exemplified in the 

following illustration. 
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Figure 3.7.  Compressing the Data using Modified RLE Algorithm 

3.2. Weather Data Rendering 

A simple and commonly used rendering approach is to display the weather data 

with a polygon mesh colored by a 1D look-up table.  Using this approach, the 

dataset from each site is represented as a number of layered cone-shaped 

objects as shown in Figure 3.8.   

 

Figure 3.8.  Representation of Polygon Meshes at a Site (The left image is a side 
view, and the right is the top view.)  
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This type of representation, simple and straightforward notwithstanding, becomes 

inadequate when data from multiple sites need to be handled.  As discussed in 

section 3.1.4, generating a display covering areas of multiple sites needs to 

combine the data in overlapping regions.  If the dataset at each site is 

represented by quadrilateral meshes – a boundary representation, combining the 

datasets becomes computationally expensive, and involves calculations such as 

complex intersection and union operations.  Additionally, since the object is 

represented as a collection of connected surface elements, one cannot find any 

information once looking beyond the object surface.  As shown in Figure 3.8, it is 

noticeable that the scene lacks the internal matter so that it leaves gaps between 

individual cone formations.   

 

To overcome these limitations from the traditional surface mesh models, we 

adopt the texture-based volume rendering technique [Wilson 1994].  In essence, 

the texture-based rendering process consists of three steps: (1) generating the 

3D texture, (2) slicing the 3D volume into polygons and mapping the texture onto 

the slices, and (3) compositing and texture mapping.  A more detailed description 

of these steps is given in the subsequent sections.  

3.2.1. Texture-based Volume-Rendering Technique 

To attain more realistic scenes, direct volume rendering [Levoy 1988] has been 

used to display the high-quality visualization of the weather data.  Generally, data 

values in the scalar filed are considered as the density of particles making up the 

volume in which light is emitted and absorbed.  The technique maps the volume 

data to optical properties, and composites the optical values along the rays, to 

generate an image directly from the data.  An optical model based on the 

physical light transport theory, is employed to measure the amount of light when 

it passes through a volume starting from 0s  and ending at ds .  (Figure 3.9) 
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Figure 3.9.  Optical Model of Volume Rendering (The top image shows the 
absorption of light, and the bottom image shows the emission and self-absorption 

of light.) 

The model is expressed as a summation of two terms as shown below [Engel 

2006]: 
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Eq. 3.5 

where 0I  is the initial intensity at 0s , τ is the absorption coefficient, and L  

indicates the emission coefficient.  

 

 In the equation, the first term calculates the amount of incoming light that 

reaches the end of the volume.  The second term adds the amount of light 

emitted at each point along the ray, taking into account the amount of attenuation 

from each point to the end of the ray as well.  Practically, the integral is usually 

solved by an iterative computation procedure, which composites the pixel values 

ds0 sd 

I0 

0
( )

0

ds

s
t dt

I e
τ−

  ∫Initial intensity at s0 
Absorption along the path 

from s0 to sd 

ss0 sd 

( )

0
( ) ( )

d

s
d t dt
L s s e ds

τ
τ

−∫   ∫

Absorption along the 

path from s to sd 

ray 

ray 

Emission and absorption at s 



31 

 

either from the viewpoint to the volume referred as the front-to-back order or from 

the volume to the viewpoint referred as the back-to-front order.  Here, we choose 

the back-to-front approach [Engel 2006]:   
'

'

(1 ) ,

(1 ) .
dst src dst src src

dst src dst src

C C Cα α

α α α α

← − +

← − +
 

Eq. 3.6 

 

As shown in Figure 3.10, the new composited value '
iC  is computed from the 

color at current location iC  blended with previous composited color '
1iC −  .  

 

Figure 3.10.  Alpha Blending in Back-to-front Order 

' '
1(1 ) ,i i i i iC C Cα α −= + −  

' '
1(1 ) .i i i iα α α α −= + −  

Eq. 3.7 

 

To speed up the rendering process, we adopt the 3D texture-based volume 

rendering technique [Wilson 1994] with Graphics Processor Unit (GPU) hardware 

acceleration.  This technique consists of two basic steps: (1) constructing the 3D 

texture and (2) generating back-to-front ordered slices and texture-mapping the 
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slices with the volume data using NVIDIA CG vertex and fragment shading 

program.   

3.2.2.  Decompression and 3D Textures 

Since the compressed volumetric data are stored on the hard disk, as described 

in section 3.1.5, the initial step before the rendering process is to decompress the 

volumetric data and bring them back to the main memory.  The 3D texture then is 

constructed and stored in GPU memory.  

 

The decompression process entails the following procedure: (1) For the incoming 

streamed byte from the file, the bitwise AND operation with 10000000(128) is 

used to obtain the first bit of the byte and mask the rest bits of the byte.  (2) If the 

first bit is set to 1, which means it is a non-repetitive value, the bitwise OR 

operation with 01111111(127) is then activated to retrieve the rest bits of the byte 

and to obtain the reflectivity value.  (3) If, otherwise, the first bit is set to 0, 

indicating that the value is a repetitive, the algorithm then composites the next 

four bytes into an unsigned integer to acquire the repetitive number.  (4) When 

the retrieved value and its repetitive number are obtained, they are then written 

into an array, allowing for the construction of the volume.  By repeating these four 

steps until the last byte is reached, the data are decompressed and streamed 

into a large 1D array with the size defined by the multiplication of the volume 

length, the volume width and the volume height.  The 1D array of voxel data are 

then transferred to a 3D texture and stored in the GPU.    

3.2.3.  Viewport-aligned Parallel Slices  

In object-order volume rendering, a stack of 2D parallel polygonal slices are 

usually used to represent 3D discrete scalar field.  Once the 3D texture is stored 

in GPU, it will be mapped into these semi-transparent slices to texture them.  The 

slices are referred as proxy geometry, which only represent the shape of the data 
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domain – the bounding box, instead of the shape of the real object.  In our 

implementation, the 3D volume is represented as a unit cube, and is divided into 

viewport-aligned slices in the equal-distance fashion, the back-to-front order 

parallel to the image plane (Figure 3.11).   

 

Figure 3.11.  Viewport-aligned Parallel Slices  

In order to keep a consistent sampling rate along all viewing rays casting from 

the image plane, orthogonal projection is adopted.  To avoid re-computing the 

slices when the viewing direction changes, we keep the viewing direction and 

slicing planes fixed along the z axis, and apply the model-view transformation 

matrix to the volumetric object whenever a rotation or a translation transformation 

is involved.  Initially, the number of slices is designed as an adjustable parameter 

on the interface with the default value of 256.  Users can change the value for the 

purpose of adjusting the volume resolution for less or more details in the image.  

The detailed analysis and resulting images are given in Chapter 4. 

Viewing Direction 

Proxy geometry (slices) 
Slices order 

Image Plane 



34 

 

3.2.4. Transfer Functions 

After the stored 3D texture was applied to the proxy geometry, the scalar 

reflectivity value is mapped onto the slices by performing 3D texture lookup 

functions.  At this stage, however, the optical properties of each sample, such as 

the color and opacity still remain undecided.  Having considered the fact that the 

reflectivity is a scalar field, we choose a 1D look-up color table as the transfer 

function and store it as a 1D texture.  By taking the 3D texture samples – the 

reflectivity data – as the look-up color table indices, and mapping them into the 

display attributes, the color and density of the volumetric object are identified.  

The look-up color table is similar to the one used in the NWS web page [NWS] 

and is widely used for radar reflectivity data (Figure 3.12).  

 

Figure 3.12.  1D Look-up Color Table  

To support the interactive transfer function, we create an interface that acts as 

the transfer function window, allowing users to create and modify transfer 

functions to their interest.  The created or modified transfer functions are then 

applied to map the data onto the appropriate color and opacity.  Figure 3.13 

shows the developed transfer function window for red, green, blue (RGB) and 

alpha channels representing the NWS look-up color table [NWS] in Figure 3.12.   
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Figure 3.13.  Transfer Function Window for RGB and Alpha Channels  

To facilitate users’ interaction with transfer functions, we employ the cubic 

Hermite spline (Cardinal Spline) to represent the color table.  Mathematically, the 

cubic Hermite spline is a third-degree spline with each polynomial in Hermite 

Form.  The cubic Hermite form is defined by the starting point 1P  at 1t and the 

ending point 2P  at 2t , with the starting tangent vector 1 'P  and the ending vector 

2 'P .   

 

The computation of the interpolation at a specific time t  is given by the following 

equation: 
3 2

1 2 1 2( ,1) ( , , ', ') ,T
t HP t t t M P P P P= , ,    Eq. 3.8 

where HM is the Hermite basis matrix as in 

2 2 1 1
3 3 2 1

.
0 0 1 0
1 0 0 0

HM

−⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

Eq. 3.9 
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The utility of the transfer function is exemplified by a demonstration shown in 

Figure 3.14.  When certain sample points on the spline curve of the red channel 

are modified by a user, the transfer function is recalculated, giving a new spline 

that fits the new dataset, all in the real time fashion.    

 

Figure 3.14.  Example of the Red Channel Transfer Function 

3.2.5. CG Shading and Animation 

The shading and animation was performed using the NVIDIA CG shading 

programming language (Figure 3.15), which is very suitable for volumetric 

rendering the scene as well as accelerating the rendering speed.   

 

In the vertex shader, the vertex processor converts a vertex position into the 

transformed position, computes the texture coordinates as outputs, and clips the 

volumetric object against the pre-defined planes.  In the fragment shader, the 

fragment processor reads the textures and the fragment in, and maps the texture 

color and density onto the fragment.   



37 

 

 

 

Figure 3.15.  CG Vertex and Fragment Programs 

 

Figure 3.16.  Volumetric Rendering and Graphic User Interface 
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Our program also includes the Graphic User Interface (GUI) to reflect 

functionalities that allow users to interact with the data and to choose the 

representation from different perspectives.  An actual image of the created user 

interface is shown in Figure 3.16.   

 

To visualize the weather data over a period of time, it is more desirable to 

present them as a sequence and viewed as an animation.  For this purpose, we 

stored 3D textures on the disk based on an interval of five minutes.  The program 

is designed to orderly read in the sequential texture files on a continuous basis 

and to conduct the rendering job, where the rendering time relies on both the 

CPU and GPU speed.  Detailed discussions will be shown in Chapter 4.  An 

adjustable parameter is also provided to moderate the interval between two 

frames through the user interface.  As a supplement of the thesis, a CD is 

provided to show a movie about the 24-hour supercell storms which were 

observed on March 12, 2006, from the three locations (KEAX, KILX and KSLX) in 

the Midwest of the United States.
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CHAPTER 4. RESULTS 

In this chapter, some rendering results are first presented to verify our 

methodology, and a number of experiments are described to show the costs and 

performance of computation and rendering in the system.  The datasets used in 

our system for testing were downloaded from NWS FTP server, which contain 

the data from scanning 24-hour supercell storms on Match 12, 2006, in the 

Midwest region of the United States.  All simulations have been carried out on a 

Windows desktop equipped with a 3.20GHz Pentium 4 processor, 2.0 GB of 

main memory, and an NVDIA Quadro FX 3500 graphics card with 256 MB of 

video memory.  An exception is in section 4.3.4 where we aim to compare results 

between different computer hardware.  The resulting image resolution is set to 

796x532 for all the experiments.  

4.1. Visualization Results 

The fist example includes four rendering images at different timestamps (Figure 

4.1) selected from the animation.  The images are rendered when the viewing 

direction is tilted approximately 20 degrees relative to Z axis.  The complete 24-

hours animation can be obtained on the attached CD.  From the animation, we 

could see the changing weather pattern on that particular day. 
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Figure 4.1.  Images Rendered from Different Timestamps – top left: 00:10:00; top 
right: 06:10:00; bottom left: 18:10:00; bottom right: 23:10:00 
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The second example in Figure 4.2 shows that the different observations of the 

data by applying different iso-values. 

 

Figure 4.2.  Images Rendered by Applying Different Iso-values 

4.2. Quality of Visualization 

4.2.1. Effect of Volume Resolutions on Visualization Results  

Our first experiment was done for the purpose of comparing the visualization 

results using different volume resolutions.  In this experiment, the effect of 

volume resolution was exemplified by visualizing datasets with three different 

levels of detail.  Datasets from the first group have the lowest resolution of 

128x128x64, the volume size of the second group is set to 256x256x128, and the 

third group has the highest resolution of 512x512x256.  The results of 
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visualization show clear evidence of the effect of the volume resolution, 

illustrated in Figure 4.3.  In particular, the reduction in volume resolution results in 

blurriness and fuzziness in the image, while the shape of the object is still 

preserved.  However, when the resolution of the volume is increased, the 

generated image appears to capture finer details of data.   

 

Figure 4.3.  Images Rendered from Different Resolution Datasets – Resolution: 
top left: 128x128x64; top right: 256x256x128; bottom left: 512x512x256 

4.2.2. Effects of Sampling Rates on Visualization Results 

In the second set of experiments, the effect of the sampling rate – decided by the 

number of slices of sampling planes - on quality of the rendering was studied.  

Specifically, the weather datasets were rendered with different sampling rates 

whereas the volume data resolution remains unchanged.  In this experiment, the 

volume data resolution is set to a fixed size of 256x256x128, and the number of 

sampling planes varies from 64, 128, 256 and 512.  The images pictured in 

Figure 4.4 clearly show that applying fewer slices of the proxy geometry serves 
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to reduce quality of the image.  The image quality is improved when the number 

of slices is increased.  The color difference is caused by the color blending using 

different number of slices. 

 

Figure 4.4.  Images Rendered from Different Sampling Rates – Resolution: top 
left: 64 slices; top right: 128 slices; bottom left: 256 slices; bottom right: 512 

slices 

4.3. Costs and Performance 

4.3.1. Effects of Volume Resolution on Costs of Data Processing 

Although it has been shown in section 4.2.1 that the choice of lower volume 

resolution will cause some loss of details in the resulting image, it, however, has 

some benefits both during the data processing stage and the rendering stage.  In 

the data processing stage, each volume dataset is generated from six raw radar 

datasets (see section 3.1.4) and stored on the hard disk at one timestamp.  For 
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visualizing the weather for an entire day (24 hours), more than 280 texture files 

are generated based on the interval time of five minutes. 

 

The processing time required under different resolution is given in Table 4.1.  For 

the lowest resolution tested (128x128x64), the average processing time is about 

six seconds for generating each dataset of volumetric data.  The approximate 

total time of computation and integration for generating all the texture files ranges 

from about half an hour (30 minutes) with the lowest resolution to one hour with 

the highest resolution (512x512x256) .  In other words, the data processing with 

the highest resolution costs twice as much time as with the lowest resolution 

(Figure 4.5).  

Table 4.1. Costs of Processing Radar Data of Different Resolution 

Resolution 128x128x64 256x256x128 512x512x256 
Average 

processing 
time (secs) 

6 8 12 

Total 
processing 
time (mins) 

30 45 57 

 

 

Figure 4.5.  Volume Resolution versus Processing Time 
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4.3.2. Effects of Volume Resolution on Costs of Data Rendering 

The reduction of the dataset resolution also could speed processing in the 

rendering state.  To demonstrate this relationship, we measured the time it takes 

to complete the rendering procedure under different volume resolutions.  The 

total processing time is made up of three individual steps: 1t - reading the 

volumetric dataset from the hard disk with decompression, 2t  - the time of 

reconstructing and updating the 3D texture in GPU, and 3t  - the actual rendering 

time for one frame.   

 

The results, which are shown in Table 4.2 and Figure 4.6, were obtained using a 

constant sampling rate – 256 slices.  It can be seen from the table that the total 

time of the rendering stage increases with higher resolution.  

Table 4.2. Costs of Rendering Radar data of Different Resolution 

Resolution 128x128x64 256x256x128 512x512x256 

Average time of reading 

texture (msecs) <1 -  8 5.19% 100 28.01% 

Average time of updating 

texture (msecs) 3.8 3.02% 24 15.58% 131 36.69% 

Average time of actual 

rendering (msecs) 122 96.98% 122 79.22% 126 35.29% 

Total time(msecs) 126 154 357 
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Figure 4.6.  Volume Resolution versus Data Rendering Time 

Another important observation from the Table 4.2 is that the actual rendering – 

rendering on GPU - computation accounts for the majority of time during the 

rendering stage, which is largely independent of the volume resolution.  The pie 

chart in Figure 4.7 gives a graphical representation of the time distribution at the 

rendering state.  In other words, reducing the volume resolution facilitates faster 

processes of reading and updating texture, which, however, does not help much 

to speed the actual rendering process.  This phenomenon is controlled by both 

the size of the datasets and number of sampling planes.  In a word, the 

resolution determines texture reading and updating time as well as the data 

processing time, and the number of slices dictates the actual rendering time.    
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Figure 4.7.  Proportion of Time Spent on the Rendering Stage (for resolution of 
256x256x128) 

4.3.3. Performance of Combining Different Resolutions and Sampling Rates  

To further verify the argument in section 4.3.2, an additional experiment was 

conducted.  In this experiment, we measure the frame rate – the number of 

frames per second - under various combinations of the resolution and the 

sampling rate to evaluate the performance.  The frame rate fps  is defined in 

Equation 4.1: 

 

1 2 3

1 .fps
t t t

=
 +  + 

 Eq. 4.1 

 

1 2 3, ,t t t are defined same as in section 4.3.2.  The resulting data are shown in 

Table 4.3, and its graphical representation is shown in Figure 4.8. 
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Table 4.3. Frame Rates measured with Different Resolution and Number of 
Slices 
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Figure 4.8.  Number of Frames per Second (FPS) versus Number of Slices 

The plot indicates two important features:  

(1) With the resolution increased, the frame rate drops accordingly for most test 

cases.  The trend is due to the fact that the higher resolution requires longer 

texture reading and updating time ( 1 2t t+ ), thereby decreasing the number of 

frames processed per unit time.  Another observation is that, the impact of 

resolution on frame rates is more dramatic at a lower sampling rate.  

Comparatively, at a higher sampling rate, the change of the frame rate is less 

dependent on the volume resolution.  The reason is that at the low sampling rate, 

Resolution  
Slices 128x128x64 256x256x128 512x512x256 

64 20 18 4 
128 15 12 4 
256 8 8 3.5 
512 5 5 2.5 
1024 3 3 1.5 
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the proportion of the time spent on the actual rendering 3t  over the total 

rendering time is less than the proportion at a high sampling rate.  An increase of 

resolution which primarily increases 1 2t t+ , therefore exerts a greater influence on 

the frame rate.    

 

(2) With an increase in the number of slices, the frame rate declines accordingly.  

This is because the sampling rate dictates the actual rendering time 3t , with a 

higher sampling rate leading to the reduced frame rate.  It is also noticed that, the 

effect of sampling rate on the frame rate is more substantial when a lower 

resolution is used.  With the highest resolution (512x512x256), the frame rate is 

almost independent of the sampling rate.  The reason of this observation is that 

with the lower resolution, the time cost of texture reading and updating texture 

( 1 2t t+ ) is relatively insignificant as compared to on the actual rendering time 3t .  

Since 3t  is dictated by the sampling rate, the majority of the computation 

resource is recruited for the actual rendering at a higher sampling rate.  At low 

resolution, the magnitude of  1 2t t+  is too small to effectively dilute the effect of 

sampling rate, making it the single most important rate-controlling parameter for 

the visualization process.  

4.3.4. Testing with Different Hardware 

We also have tested the program on five different machines.  The results are 

shown in Figure 4.9.  With better hardware such as CPU and GPU, the rendering 

speed is significantly improved.  For example, the computer with a Dual-Core 

AMD Opteron 2.2GHz processor with 2GB RAM and an NVIDIA GeForce 

8800GTX graphics card with 768MB memory can render around 45 frames per 

second with the resolution of 128x128x64 of and 256 slices. 
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4.3.5. Effects of the 3D Texture Compression Algorithm  

The last evaluation was conducted to show the benefits of the texture 

compression work.  Table 4.4 shows that the disk space needed for one dataset 

is dramatically decreased by utilizing the RLE compression algorithm.  For 

example, for a 256x256x128 dataset, the space on the disk required is 
8 8 7 232 2 2 2 8M× × = = bytes.  With the compression, the size of dataset is shrunk 

to 54K, which is about 0.66% of the size of an uncompressed texture.  
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Table 4.4. Costs of Disk Storage of the 3D Textures 

Resolution 
Size 128x128x64 256x256x128 512x512x256 

Size before 
Compression 1M 8M 64M 

Size after 
Compression 10.2K 54.0K 308.4K 

Compression 
Rate 

99.1% 99.34% 99.53% 

 

4.4. Summary 

From the experimental results, we could conclude that both volume resolution 

and number of sampling planes have great influence on image quality and 

program performance.  Typically, the resolution determines texture reading and 

updating time as well as the data processing time on CPU, and the number of 

slices regulates the actual rendering time on GPU.  Practically, we need to take 

both effects of sampling rate and resolution into consideration to find a best-fit 

setting to ensure a good visualization. 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1. Summary 

The project presents a visualization tool that displays and manipulates 

sequences of the Level II Doppler radar data in 3D volumes from multiple sites.  

A case study is provided to record the supercell storms on March 12, 2006, in the 

Midwest of the United States.  We propose a feasible integration method to 

process data from multiple sites and a fast approach to render the data in real 

time.  Our methods have the following advantages: 

• The data are integrated from three radar sites in an entire volume, with which 

integrating data from more sites will not suffer from limited memory on GPU.  

Additionally, with one integrated dataset, the shading code is easier to be 

implemented.  The rendering speed is also improved because of reduced 

computations on GPU. 

• The radar data are displayed in 3D and the rendering speed is fast by utilizing 

the graphics hardware. 

• 3D textures are stored as compressed files that not only save around 99% of 

originally required disk space but also speed up the rendering procedures. 

 

The resulting images and animation demonstrate how fast and robust our 

techniques are both, making it suitable for rendering the Doppler radar data from 

multiple sites in production of weather visualization.   

5.2. Limitation 

Currently the field studied and visualized is limited to reflectivity.  Visualization on 

other important fields such as velocity and spectrum width still remains 
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unresolved.  Although the rendering process could be done in real-time, the data 

processing is done beforehand.   

 

The 3D texture-based volumetric rendering technique with the hardware 

acceleration is efficient at this stage, however it still will become computationally 

expensive when large-scale volume-data are involved. 

 

The system was performed and tested on a standalone windows machine, and 

the interactive visualization is available for a single user at a time.  It could not 

handle a large amount of jobs submitted; hence it is not feasible for multiple 

users to visualize the data at the same time. 

5.3. Future Work 

Weather data comprises a large number of volumetric scalar fields, vector fields 

and tensor fields.  For a long time, studies have focused on methods and 

techniques for visualization of a single field.  Displaying multiple fields 

simultaneously remains as an important and challenging task for scientific 

researchers [Johnson 2004].  An extension to this work is to construct and 

visualize other meteorological fields and derived quantities such as velocity and 

spectrum width to graphically represent wind and turbulence, which will 

supplement knowledge on the data to meet more needs of possible users. 

 

We would like to improve our visualization algorithm by using the adaptive 

volumetric rendering technique.  A hierarchical volume will be constructed, and 

the hierarchy will be traversed to find the best-fit volume according to some level 

of quality and speed.  We also could combine lighting effects to illuminate the 

volume samples. 

 

Another interesting path to explore is to integrate the visualization into TeraGrid.  

Since real-time Doppler data are also available at Purdue University in TeraGrid, 
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direct data extraction can be conducted by connecting to Storage Resource 

Broker (SRB) distributed file systems.  The visualization will be displayed on a 

website through Virtual Network Computing graphical sharing system (VNC).  

Then the visualization tool would be available to ordinary people as well as 

researchers for the purpose ranging from education to scientific research.  With 

this interface such as a web portal, users can have access to the remote Doppler 

data and interactively visualize them online in a near-real-time fashion.   

 

One more challenging but very important enhancement will be refining the 

system that is able to handle both computing and rendering jobs in a distributed 

way.  The benefits include: accelerating the processing and rendering speed; 

providing scalability to the system; guaranteeing accessibility for more users.  

Furthermore, we could pre-process and produce datasets readable for other 

simulation systems such as ParaView [ParaView].  
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