9-18-2017

Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites

James W. Harris
Purdue University, harris21@purdue.edu

Wei-Chih Liao

John R. Di Iorio
Purdue University

Alisa M. Henry
Purdue University

Ta-Chung Ong

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/chepubs

Part of the Chemical Engineering Commons

Recommended Citation
Harris, James W.; Liao, Wei-Chih; Di Iorio, John R.; Henry, Alisa M.; Ong, Ta-Chung; Comas-Vives, Aleix; Coperet, Christopher; and Gounder, Rajamani, "Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites" (2017). School of Chemical Engineering Faculty Publications. Paper 4.
http://docs.lib.purdue.edu/chepubs/4

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Molecular Structure and Confining Environment of Sn Sites in Single-Site Chabazite Zeolites

James W. Harris,¹ ² Wei-Chih Liao,² ³ John R. Di Iorio,¹ Alisa M. Henry,¹ Ta-Chung Ong,² ³ Aleix Comas-Vives,² Christophe Copéret,² ³ Rajamani Gounder¹ ²

¹Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
²Department of Chemistry and Applied Biosciences, ETH-Zürich, Vladimir-Prelog-Weg 1-5, 8093 Zürich, Switzerland

ABSTRACT: Chabazite (CHA) molecular sieves, which are industrial catalysts for the selective reduction of nitrogen oxides and the conversion of methanol into olefins, are also ideal materials in catalysis research because their crystalline frameworks contain one unique tetrahedral-site. The presence of a single lattice site allows for more accurate descriptions of experimental data using theoretical models, and consequently for more precise structure-function relationships of active sites incorporated into framework positions. A direct hydrothermal synthesis route to prepare pure-silica chabazite molecular sieves substituted with framework Sn atoms (Sn-CHA) is developed, which is required to predominantly incorporate Sn within the crystalline lattice. Quantitative titration with Lewis bases (NH₃, CD₃CN, pyridine) demonstrates that framework Sn atoms behave as Lewis acid sites, which catalyze intermolecular propionaldehyde reduction and ethanol oxidation, as well as glucose-fructose isomerization. Aqueous-phase glucose isomerization turnover rates on Sn-CHA are four orders-of-magnitude lower than on Sn-Beta zeolites, but similar to those on amorphous Sn-silicates. Further analysis of Sn-CHA by dynamic nuclear polarization enhanced solid-state nuclear magnetic resonance (DNP NMR) spectroscopy enables measurement of ¹¹⁹Sn NMR chemical shift anisotropy (CSA) of Sn sites. Comparison of experimentally determined CSA parameters to those computed on cluster models using density functional theory supports the presence of closed sites ([Sn=OSi₄]) and defect sites ([HO]-Sn-[OSi₃]) adjacent to a framework Si vacancy, which respectively become hydrated hydrolyzed-open sites and defect sites when Sn-CHA is exposed to ambient conditions or aqueous solution. Kinetic and spectroscopic data show that large substrates (e.g., glucose) are converted on Sn sites located within distorsed mesoporous voids of Sn-CHA, which are selectively detected and quantified in IR and ¹⁵N and ¹⁹Sn DNP NMR spectra using pyridine titrants. This integrated experimental and theoretical approach allows precise description of the primary coordination and secondary confining environments of Sn active sites isolated in crystalline silica frameworks, and clearly establishes the role of confinement within microporous voids for aqueous-phase glucose isomerization catalysis.

1. Introduction

Single-site heterogeneous catalysts contain active sites that behave uniformly as a result of site isolation and well-defined structures. Their catalytic behavior depends on their local coordination, defined by the bonding of sites to the support and to ancillary ligands,¹ ² ³ ⁴ which provides a primary environment that influences the electronic properties of the active sites.¹ ² ⁶ ⁸ Their catalytic behavior also depends on their secondary environments, which can result from organic ligands,¹ ² ⁶ ⁸ or from confinement of sites within an inorganic cavity that provides enthalpic and entropic stabilization of bound reactive intermediates through van der Waals and electrostatic interactions.⁹ ¹² As a result, accurate descriptions of catalytic active sites require precise definitions of both the local structure and the secondary environments of the binding sites, in turn, requiring spectroscopic and kinetic probes sensitive to both environments.

Zeolites belong to one of the most widely used and studied classes of heterogeneous catalysts¹³ ¹⁴ for which primary and secondary environments influence catalytic reactivity. The substitution of some silicon atoms in the crystalline zeolite lattice with heteroatoms provides a route to prepare single-site catalysts that contain isolated metal atoms with well-defined local structures and confining environments. Among siliceous frameworks containing tetravalent heteroatoms (MIV = Sn, Ti, Zr, Hf), Sn-Beta zeolites have received considerable attention because of their ability to catalyze a broad range of reactions including the Baeyer-Villiger oxidation of ketones,¹⁵ the intermolecular Meerwein-Ponndorf-Verley oxidation of alcohols and Oppenauer reduction of aldehydes (MPVO),¹⁶ and the related intramolecular MPVO cycle of glucose-fructose isomerization.¹⁷ Different four-coordinate Sn local structures have been proposed, including “closed” sites with four framework bonds [Sn-[OSi₄]] and “open” sites with three framework bonds and an OH ligand [(HO)-Sn-[OSi₃]], which exist as either “hydrolyzed-open” (adjacent =Sn-OH) or “defect” sites (adjacent to a framework Si vacancy) (Scheme 1). Closed and open Sn sites have been identified using IR and ¹¹⁹Sn solid-state NMR spectroscopy together with density functional theory (DFT) calculations,¹⁸ ¹⁹ and their detailed local structures in Sn-Beta zeolites have been refined by the combined use of dynamic nuclear polarization enhanced solid-state NMR (DNP NMR) and DFT calculations.²⁰ DNP is used to significantly enhance the NMR sensitivity utilizing microwave-promoted polarization transfer from unpaired electrons to nuclei, typically protons,²¹ ²² whose hyperpolarization can be transferred to the targeted heteroatoms (e.g., ¹¹⁹Sn)²⁰ ²⁴ ²⁶ through cross-polarization (CP). DNP enables acquiring ¹¹⁹Sn chemical shift anisotropy (CSA) parameters at natural abundance, which can be compared to values calculated from DFT to discriminate local Sn structure and location.²⁷ In the case of Sn-Beta zeo-
lites, however, precise structural assignments are complicated by the presence of different metal-framework coordination modes, multiple tetrahedral-site (T-site) locations and crystal polymorphs, and the inhomogeneous spatial distribution of Sn throughout crystallites.

In contrast to most molecular sieves, chabazite (CHA) is a high-symmetry framework containing only one crystallographically unique T-site, which promises to clarify interpretations of experimental characterization data and to provide model structures that can be described more accurately by theory. Periodic DFT studies of metal-substituted zeolites have estimated Ti heteroatom stability in CHA, and compared adsorbate (water, ammonia, pyridine) binding energies at various heteroatom sites in CHA. Such studies have also estimated ammonia binding energies, and developed linear scaling relationships for O- and S-containing compounds, bound at different heteroatoms in CHA. Theoretical studies of metal-substituted CHA frameworks continue to proliferate, yet experimental progress to prepare and characterize such model catalysts has not been commensurate.

Here, we report the direct hydrothermal synthesis of siliceous CHA zeolites containing framework Sn atoms, their catalytic function as solid Lewis acids for substrates of varying size, and the detailed structural characterization of Sn active sites that distinguishes their primary and secondary environments. The single T-site nature of Sn-CHA allows more accurate theoretical modeling, and the use of CD_{3}CN titrants enables quantifying different Lewis acidic Sn structures detected by bulk spectroscopic techniques. We provide evidence that Sn-CHA catalyzes the MPVO reaction of propionaldehyde and ethanol, yet is essentially unreactive for glucose isomerization.

The combination of DNP NMR with DFT calculations enables identifying different local Sn structures (closed vs. open vs. defect), while the combination of IR and DNP NMR with pyridine titrants (ca. 0.6 nm diameter), which are unable to traverse eight-membered ring CHA apertures (ca. 0.4 nm diam.), enables probing different secondary confining environments in CHA (microporous vs. mesoporous voids) and establishing a structure-reactivity relationship that highlights the critical role of microporous confining environments around Sn sites for aqueous-phase glucose-fructose isomerization.

2. Experimental and Theoretical Methods

2.1. Catalyst Synthesis

In each of the synthesis procedures reported in this section, reagents were used without further purification. Sn-CHA molecular sieves were synthesized by adapting the procedure reported for the synthesis of Ti-CHA by Eilertsen et al. In a typical synthesis, 40 g of ethanol (200 proof, Koptec) were added to a perfluoroalkoxy alkane (PFA, Savillex Corp.) container, followed by addition of 25 g of tetraethylorthosilicate (TEOS, 98 wt%, Sigma Aldrich) and then stirring for 300 s under ambient conditions. Next, a solution containing 0.601 g of Sn(IV)Cl_{2}(H_{2}O)_{5} (98 wt%, Sigma Aldrich) dissolved in 10 g of ethanol was added dropwise to the mixture comprised of TEOS and ethanol, and then stirred for 300 s under ambient conditions. After this period of homogenization, 0.577 g of hydrogen peroxide (H_{2}O_{2}, 30 wt%, Alfa Aesar) were added dropwise and the solution was stirred for 900 s under ambient conditions. Next, 42.329 g of an aqueous N,N,N-trimethyl-1-adamantylammonium hydroxide solution (TMAdaOH, 25 wt%, Sachem), the structure directing agent for CHA, were added dropwise to the Sn-containing solution under constant stirring. The solution gelatinized after approximately 15-20 g of TMAdaOH were added, and was hydrated with 49.920 g of deionized water (18.2 MΩ) and manually stirred with a Teflon spatula until a uniform solution was obtained. The remaining TMAdaOH was added dropwise and no further gelatinization occurred. The resulting solution was covered and stirred at ambient temperature for 24 h.

After this period of time, the solution was uncovered and ethanol (61.65 g, including that generated by hydrolysis of TEOS) and excess water (77.78 g) were allowed to evaporate to reach the target weight and desired H_{2}O/SiO_{2} ratio of 3. This resulted in a dry powder that was rehydrated with approximately 80 g of water (18.2 MΩ), stirred for 24 hours to obtain a homogeneous solution, and dehydrated again to reach the target H_{2}O/SiO_{2} ratio of 3. Attempts to crystallize Sn-CHA without this intermediate rehydration step resulted in amorphous products, even after extended periods of time in the synthesis oven (up to 10 days at 423 K). Next, 2.69 g of hydrotrofluoric acid (HF, 48 wt%, Alfa Aesar) were added dropwise to the synthesis powder and stirred manually with a Teflon spatula for 300 s and residual HF allowed to evaporate for an additional 900 s. Caution: when working with hydrotrofluoric acid use appropriate personal protective equipment, ventilation, and other safety measures. The final molar composition of the synthesis powder was 1 SiO_{2}/0.014 SnO/0.43 TMAdaOH/0.38 HF/3 H_{2}O. The powder was transferred to four Teflon-lined stainless steel autoclaves (45 cm^{3}, Parr Instruments) and heated at 423 K in an isothermal convection oven (Yamato DKN-402C) with rotation (ca. 40 RPM) for 48 hours.

Pure silica chabazite was synthesized following the procedure reported by Díaz-Cabanañas et al. In a typical synthesis, 13 g of TEOS were added to a PFA jar containing 25.849 g of an aqueous TMAdaOH solution and stirred under ambient conditions for 300 s. The vessel was left uncovered and ethanol, formed from the hydrolysis of TEOS, and excess water were evaporated to reach a target H_{2}O/SiO_{2} ratio of 3. This resulted

Scheme 1. Depictions of (a) framework Sn structures (closed, hydrolyzed-open, and defect) that may be present in Sn zeolites, and (b) the proposed molecular structures of Sn sites under dehydrated and hydrated conditions.
in a dry powder, at which point an additional 10 g of water were added to ensure complete hydrolysis of TEOS and to allow additional time for residual ethanol to completely evaporate. This rehydration procedure was performed twice. Once the synthesis solution had reached the desired H₂O/SiO₂ ratio of 3, 1.28 g of HF (48 wt%, Sigma Aldrich) were added dropwise to the synthesis and homogenized for 300 s using a Teflon spatula. Upon addition of HF to the powder-deposited synthesis mixture, the powder immediately became a thick paste that liquefied slightly under stirring. The solution was left uncovered under ambient conditions for 900 s to allow for any residual HF to evaporate before transferring the solution to two Teflon-lined stainless steel autoclaves (45 cm³, Parr Instruments) and heating in a forced convection oven at 423 K under rotation (ca. 40 RPM) for 48 h.

Sn-Beta was prepared in fluoride media by modification of a previously reported method⁴⁰ using Si-Beta zeolites as seed material. Si-Beta zeolites were synthesized using the same procedure as Si-Beta, except that dropwise addition of a solution of 0.30 g of tin (IV) chloride pentahydrate (SnCl₂·5H₂O, Sigma-Aldrich, 98 wt%) in 1.95 g of deionized water was performed prior to evaporation of ethanol and water, such that the synthesis gel had a molar SiO₂/SnO₂ ratio of 130. After the HF addition step and addition of the Sn-Beta synthesis gel to the Teflon liner, 1.73 g of water and 0.254 g of as-made Si-Beta seeds (ca. 4.2 wt% of total SiO₂) were added directly to the liner and the mixture was stirred manually using a Teflon spatula prior to heating in an isothermal oven held at 413 K for 21 days under rotation at 60 RPM.

The solids obtained from all zeolite syntheses were removed from their Teflon liners, washed thoroughly with water and acetone (Sigma Aldrich, >99.5 wt%, 5 washes each, ca. 25 cm³ (g zeolite)¹ each wash), isolated by centrifugation, and dried at 373 K for 16 h. The dry zeolite powders were then treated in dry air (Ultra Zero Grade, Indiana Oxygen, 1.67 cm³ s⁻¹ (g zeolite)⁻¹) to 853 K (0.0167 K s⁻¹) and held for 10 h in a muffle furnace (Nabertherm LE 6/11 equipped with a P300 controller).

Amorphous Sn-xerogel was synthesized using the procedure reported by van Grieken et al.⁴¹ 5.74 g of a 0.1 M HCl solution (Macron, 37%) were added to a mixture of 52.0 g of TEOS and 67.6 g of deionized water and stirred for 2 h at ambient temperature. Then, 0.77 g of SnCl₂·5H₂O were added and the mixture stirred for 1 h. Next, a 1 M NH₃ solution prepared from concentrated NH₃·H₂O (Sigma Aldrich, 28%-30 wt% NH₃ basis) was added dropwise until the gel point was reached (ca.12 cm³). The resulting clear gel was dried for 12 h at 433 K. The dried solids were washed with deionized water (5-10 washes, ca. 60 cm³ per wash) until a constant pH was reached, dried for 12 h at 433 K, and then treated in air (Ultra Zero Grade, Indiana Oxygen, 1.67 cm³ s⁻¹ (g zeolite)⁻¹) to 853 K (0.0167 K s⁻¹) for 10 h in a muffle furnace.

2.2 Zeolite Structural Characterization

The bulk Sn content of each sample in this study was determined using atomic absorption spectroscopy (AAS) performed with a Perkin Elmer A Analyst 300 Atomic Absorption Spectrophotometer. A 1000 ppm Sn standard (Alfa Aesar, TraceCERT, ±/- 4 ppm) was diluted to create calibration standards, and the instrument was calibrated each day before collecting measurements. Sn absorbance values were measured at 284.0 nm in an acetylene/nitrous oxide flame. Catalyst samples (ca. 0.02 g) were dissolved in 2 g of HF (48 wt%, Alfa Aesar) overnight and then further diluted with 30 g of deionized water, prior to elemental analysis. The Sn weight fractions were used together with the unit cell formula for the Beta framework to estimate the Si/Sn ratio in each sample.

Powder X-ray diffraction (XRD) patterns were collected on a Rigaku Smartlab X-ray diffractometer with an ASC-6 automated sample changer and a Cu Kα x-ray source (1.76 kW). Samples (ca. 0.01 g) were packed within zero background, low dead volume sample holders (Rigaku) and diffraction patterns were measured from 4-40° at a scan rate of 0.0025° s⁻¹ with a step size of 0.0052°.

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed on a FEI Quanta 3D FEG Dual-beam SEM with an Everhart-Thorlven detector for high vacuum imaging. SEM micrographs were collected in the focused beam operating mode with a voltage of 5 kV and spot size of 3 μm for samples after high temperature oxidative treatment, but without additional preparation (e.g., sputtering with a metal coating to avoid charging of the metal oxide surface). EDS was performed using an Oxford INCA X-trend-2 silicon drift detector equipped with an Xmax80 window for supplemental elemental analysis. EDS analyses were performed at 20 kV with a 6 μm spot size at a magnification of 5000-6000x.

Ar (87 K) and N₂ (77 K), and H₂O (293 K) adsorption and desorption isotherms were measured using a Micromeritics ASAP2020 Surface Area and Porosity Analyzer. Samples (ca. 0.03 g) were pelletized and sieved to retain 180-250 μm diameter particles prior to analysis. Samples were degassed by heating to 393 K (0.0167 K s⁻¹) under vacuum (<0.005 Torr) for 2 h, then heating to 623 K (0.0167 K s⁻¹) under vacuum for 8 h prior to measurement of adsorption and desorption isotherms. Micropore volumes were determined from a semi-log derivative analysis of Ar and N₂ isotherms (d(Vₐd/g))/(d(log(P/P₀)) vs. log (P/P₀)) to identify the completion of micropore filling. Reported pore volumes were converted from volumes adsorbed at STP to the number of moles adsorbed and then converted to liquid volumes using the liquid molar densities at their respective adsorption temperatures (Ar: 87 K, 0.0350 mol cm⁻³, N₂: 77 K, 0.0288 mol cm⁻³, H₂O: 293 K, 0.0554 mol cm⁻³). Pore size distributions were determined using non-local density functional theory (NLDFT) treatments or measured Ar adsorption isotherms.

(Scanning) transmission electron microscopy (S)TEM measurements were performed on a Talos F200X (FEI; high brightness gun (XFEG)) at Uₐc = 200 kV. STEM images (1024 x 1024 pixels) were recorded with a high-angle annular dark field (HAADF) detector. Four silicon drift detectors attached to the Talos F200X microscope allowed recording energy-dispersive X-ray spectroscopic (EDXS) maps with high signal:noise ratio (ca. 10 min measurement times) using the Esprit 1.9 program (Bruker).

2.3. Sn Active Site Characterization

2.3.1. Diffuse reflectance UV-Visible Spectroscopy

Diffuse reflectance UV-Visible (DRUV) spectra were collected on a Varian Cary 5000 UV-VIS-NIR using a Harrick Praying Mantis in-situ diffuse reflectance cell. The following spectra were collected on each sample: (i) after exposure to ambient conditions and held in dry He flow (4.17 cm³ s⁻¹ (g zeolite)⁻¹) at ambient temperature (“ambient”); (ii) after subsequent treatment to 523 K (ca. 0.5 K s⁻¹) for 1.8 ks in dry He flow
Site density (μmol g⁻²) = \left(\frac{\text{Integrated Peak Area (cm}^{-1})}{E (\text{cm} \mu \text{mol}^{-1})} \right) \times \frac{ac}{m (g)} \tag{1}

where \(ac\) and \(m\) are the cross-sectional area and mass of the wafer, respectively.

2.3.3. Ammonia Temperature Programmed Desorption

Ammonia temperature programmed desorption (TPD) was performed using a Micromeritics Autochem II 2920 Chemisorption Analyzer connected to an Agilent 5793N mass selective detector (MSD) to quantify the number of moles of ammonia desorbed from Sn-CHA. Sn-CHA (ca. 0.03 g, sieved to 180-250 μm) was supported in between two plugs of quartz wool in a quartz U-tube reactor, which was held inside a clamp-shell furnace. The catalyst was treated in air (25 cm³ s⁻¹ (g zeolite)⁻¹, Indiana Oxygen, Ultra Zero Grade) to 673 K (0.167 Torr) and then cooled under vacuum (10⁻¹ Torr) at ambient temperature to 823 K (0.083 K s⁻¹). The catalyst was treated to Ar, as reported previously. Each sample was treated with 50 μL of NH₃-C₃H₆O₄ (0.5 cm³ s⁻¹ (g zeolite)⁻¹, Indiana Oxygen, 99.999%) and then heated by flowing He (25 cm³ s⁻¹ (g zeolite)⁻¹, Indiana Oxygen) for 12 h, and then weakly bound and physisorbed NH₃ were removed by purging the sample in flowing He (25 cm³ s⁻¹ (g zeolite)⁻¹, Indiana Oxygen, 99.999%) and injected via flowing He (0.83 cm³ s⁻¹) to the MSD to quantify the amount of NH₃ desorbed from integrated MSD signals and a calibrated response factor for NH₃ relative to Ar, as reported previously.

2.3.4. DNP NMR Spectroscopy

Hydrated Sn-CHA was prepared by high temperature oxidative treatment at 853 K (described in Section 2.1) and exposure of the resulting solids to ambient conditions. Dehydrated Sn-CHA was prepared by treatment of the hydrated sample under high vacuum (10⁻⁴ Torr) to 773 K (0.067 K s⁻¹) overnight. After dehydration, the sample was transferred into an argon-filled glovebox, where all DNP sample preparations were performed. Dehydrated Sn-CHA was treated with ¹⁵N-pyridine by adding 50 μL of ¹⁵N-labeled pyridine (99% isotopic enrichment, Cortecnet Inc.) into a suspension of dehydrated Sn-CHA (0.10 g) in anhydrous pentane (ca. 1 cm³). The mixture was stirred at ambient temperature for 600 s, removed from the argon-filled glovebox under inert conditions, and then exposed to high vacuum (10⁻⁴ Torr) at ambient temperature for 900 s to remove solvent and excess pyridine. The ¹⁵N-labeled pyridine-treated Sn-CHA sample was then introduced into an argon-filled glovebox, where subsequent DNP sample preparation was conducted. All DNP samples were prepared by impregnating the solids with a 16 mM TEKPO₄ solution in 1,1,2,2-tetrachloroethane (TCE). Each impregnated solid was then packed in its own 3.2 mm sapphire rotor. A Teflon spacer was added within each rotor to contain the impregnated solid, and the rotors were then closed with zirconia drive caps.

The DNP NMR measurements were performed either using a Bruker 400 MHz (9.4 T) or a Bruker 600 MHz (14.1 T) DNP spectrometer coupled with corresponding gyrotron microwaves emitting at 263 and 395 GHz located at CRMN Lyon and ETH Zürich, respectively. All experiments were per-
formed using 3.2 mm HXY or HX low temperature magic-angle spinning (LTMAS) probes operating at 100 K. Cross-polarization (CP) MAS experiments with 1H ramped spin-lock pulse were used to transfer the DNP hyperpolarization from 1H to heteronuclei (15N, 29Si, and 119Sn). The spin-lock pulses were optimized matching the Hartmann-Hahn condition under MAS with minor adjustment to maximize the CP efficiency experimentally. The 1H 90° excitation and decoupling pulses were optimized and set to 100 kHz. DNP polarization build-up time constant (T_DNP) was measured using saturation-recovery experiments with microwaves on, and the recycle delays of all measurements were set to 1.3*T_DNP. For variant DNP build-up time experiments, the recycle delay were chosen as 1.1, 1.3*T_DNP, 10, and 20 seconds. 2D CP magic-angle turning (MAT) spectra were acquired with the 5-r pulse sequence of Grant and co-workers.46 Extractions of NMR spectra at the corresponding isotopic chemical shift in the isotropic dimensions were fit using the solid lineshape analysis (SOLA) feature in Bruker’s Topspin program in order to determine CSA parameters.

2.4. Density Functional Theory Calculations
The structures of the Sn-CHA cluster and their corresponding hydrated and pyridine-coordinated structures were fully optimized with B3LYP\(^{[47-50]}\) including D3 empirical dispersion corrections and Becke-Johnson damping\(^{[51-52]}\) using the Gaussian 09 code.\(^{[53]}\) Solvent (water) effects were included for the hydrated systems optimizing by means of the Polarizable Continuum Model (PCM) method.\(^{[54-56]}\) A combination of different basis sets was used to obtain the ground-state geometries and energies. Sn was described by the LanL2DZ effective core pseudopotential (ECP)\(^{[57-59]}\) augmented with a d polarization function; the O and N atoms directly bonded to Sn were described by a 6-31+G(d) basis set, while Si, C, H, and the remaining O atoms were described by the 6-31G(d,p) basis set. In the optimization, only Si and O atoms forming part of the rings containing the Sn atom were allowed to relax. Calculations of the NMR parameters\(^{[60-61]}\) were carried out at the B3LYP-D3 level as implemented in the ADF code (2012).\(^{[62]}\) The all-electron TZP basis set was used for all atoms in the NMR parameter calculations. Relativistic effects and spin–orbit couplings were taken into account through the ZORA method\(^{[64-66]}\) for the calculations of the isotropic chemical shift (δiso) and the principal components (δ_11, δ_22, and δ_33) of all considered species. For the calculations of δiso, the chemical shieldings of Sn(CH\(_3\)\(_2\))\(_2\) and CH\(_3\)NO\(_2\) were used as references for 119Sn and 15N, respectively. This methodology has been previously tested for molecular and surface Sn species and showed excellent agreement with experiments within 10-15 ppm for 119Sn NMR.\(^{[66]}\)

2.5. Kinetic Studies of MPVO Reactions with Sn-CHA
2.5.1 Intramolecular MPVO with glucose
Intramolecular MPVO reactions were performed in batch reactors using 1% (w/w) D-glucose (Sigma Aldrich, ≥99.5%) solutions prepared in deionized water (18.2 MΩ) with the pH controlled to 2 with hydrochloric acid (Macron, 37% (w/w)) to suppress background reactions. Catalysts (Sn-CHA and Sn-xerogel; ca. 0.1 g; Sn-Beta: 0.01 g, diluted 1:9 in Si-CHA-F) were added to glass reactors (10 cm\(^3\), VWR) and sealed with crimp-tops (PTFE/silicone septum, Agilent) before heating to 398 K atop a digital stirred hotplate (IKA RCT basic). Reactant solutions (ca. 2 cm\(^3\)) were pre-heated separately (600 s) and then injected to the capped, preheated reactors, and stirred at 750 rpm under autogenous pressure for either 600 s (Sn-Beta) or 6 h (Sn-CHA, Sn-xerogel) prior to quenching in an ice bath. The obtained solutions were filtered with 0.2 µm PTFE filters and mixed with a 1% (w/w) aqueous D-mannitol solution (Sigma-Aldrich ≥98%) used as an internal standard. Product analysis was performed using an Agilent 1260 high performance liquid chromatograph (HPLC) with a Hi-Plex Ca column (7.7 x 300 mm, 8 µm particle size, Agilent) an aqueous mobile phase (0.01 cm\(^3\) s\(^{-1}\), 353 K), and an evaporative light scattering detector (Agilent 1260 Infinity ELSD).

2.5.2 Intermolecular MPVO with Ethanol and Acetone
Intramolecular MPVO reactions were performed in batch reactors using solutions of 0.05-0.2 M acetone (Sigma-Aldrich, ≥99.9%) and propionaldehyde (Alfa Aesar, 97%) in ethanol (Sigma-Aldrich, ≥99.5%) as the solvent. Control experiments were performed using solutions of acetaldehyde (Sigma-Aldrich, ≥99.5%), isopropanol (Sigma-Aldrich, ≥99.5%), acetone, propionaldehyde, and ethanol. All chemicals were used as received without further purification. Catalysts (ca. 0.02 g) were added to thick-walled glass reactors followed by addition of reactant solutions (2-5 cm\(^3\)). Crimp-top sealed reactors were heated at 333 K atop a digital stirred hotplate while stirring at 750 RPM under autogenous pressure for various time intervals (0.25 – 6 h) prior to quenching in an ice bath. Resulting product solutions were filtered through 0.2 µm PTFE filters, and mixed with ca. 30 µL of a 5% (w/w) solution of either 2-butanol (Sigma-Aldrich, ≥99.5%, acetone-ethanol reactions) or n-pentanol (Sigma-Aldrich, >99%, propionaldehyde-ethanol reactions) diluted in ethanol as internal standards. Product analysis was performed using an Agilent 7890A gas chromatograph (GC) equipped with a DB-Wax column (J&W Scientific, 60 m x 530 µm x 1.00 µm) and an Agilent 7693 autosampler. Isotopic labeling studies were performed using propionaldehyde and d\(_5\)-ethanol (C\(_3\)D\(_5\)OH, Cambridge Isotopes, 98%). Product analysis was performed using an Agilent 7890A GC equipped with a DB-Wax column (J&W Scientific, 60 m x 530 µm x 1.00 µm), an Agilent 7693 autosampler, and an Agilent 5975C mass spectrometer. Calibration curves for ethanol, acetone, isopropanol, propionaldehyde, n-propanol, and acetaldehyde were created using standards of known concentration relative to known concentrations of 2-butanol or n-pentanol. Initial rates of product formation were determined by extrapolating to zero time using batch reactions under differential acetone or propionaldehyde conversion (<5%, ca. 900 s).

3. Results and Discussion
3.1. Synthesis of Sn-CHA and Bulk Structural Characterization of Stannosilicates
Hydrothermal synthesis routes to prepare pure-silica CHA molecular sieves containing framework Sn heteroatoms ([Si,Sn]-CHA, or “Sn-CHA”) have not been reported previously to our knowledge (although a mixed heteroatom [Si,Sn,Al]-CHA has been reported\(^{[67]}\)); therefore, syntheses were performed by adapting reported procedures for the fluoride-assisted hydrothermal synthesis of Ti-CHA\(^{[38]}\) (details in Section 2.1). Generally, synthetic routes for Sn-CHA involved first homogenizing the silicon precursor (tetraethyloxysilicate) and the tin precursor (an ethanolic solution of stannic chloride pentahydrate) in an aqueous hydrogen peroxide solution, and then adding the organic structure-directing agent (N,N,N-trimethyl-1-adamantylammonium hydroxide). After a
reaction and homogenization period (24 h), ethanol and excess water were evaporated from this solution to obtain the low water contents typical of fluoride-assisted zeolite crystallization (H₂O/SiO₂ = 3), which required performing one intermediate rehydration (H₂O/SiO₂ = 40) and dehydration cycle; attempts to crystallize Sn-CHA without this rehydration cycle were unsuccessful (10 days, 423 K). Finally, aqueous hydrofluoric acid was added as the mineralizing agent to form a powder, which crystallized Sn-CHA (2 days, 423 K).

Structural characterization data are listed in Table 1 for all samples in this study. Stannosilicate molecular sieves are labeled Sn-X-Y-Z, where X is the framework type (CHA or Beta), Y is the mineralizing agent used (-F: fluoride, -OH: hydroxide), and Z is the silicon-to-tin molar ratio determined from atomic absorption spectroscopy. Powder XRD patterns were used to confirm the intended crystal topologies (Section S.2, Fig. S.1) and that samples did not contain extracrystalline SnO₂ domains larger than 3 nm in diameter.⁶⁶ SEM images (Section S.3, Fig. S.2) of Sn-CHA-F samples show analogs of small crystallites with a broad size distribution (0.5-3 μm) and the presence of some amorphous debris located at the external surfaces of crystal domains, while those for Si-CHA-F show larger crystals (5-20 μm). Argon (CHA) and nitrogen (Beta, xerogel) adsorption isotherms (Section S.4, Fig. S.3 and S.4) were used to determine the micropore volumes reported in Table 1, which were consistent with previous reports for each topology.⁶⁹-⁷¹ except those measured for Sn-CHA-F-60 and Sn-CHA-F-70, which were lower (0.15-0.16 cm³ g⁻¹) than those measured for Si-CHA-F and Al-CHA (0.20-0.23 cm³ g⁻¹).⁶⁹,⁷⁰ Ar desorption branches on Sn-CHA-F-60 and Sn-CHA-F-70, but not on Si-CHA-F, showed Type-H4 hysteresis loops with a characteristic step-down at a relative pressure of ca. 0.4, indicating the presence of disordered mesoporous voids.⁷² Non-local density functional theory (NLDFT) treatments of Ar adsorption isotherms used to determine pore size distributions (Section S.4, Figs. S.5-S.6) provide further evidence for mesoporous voids (5-10 nm diam.) in Sn-CHA-F samples, but not Si-CHA-F. TEM images (Section S.5, Figure S.7) show further evidence for crystalline domains and some disordered mesoporous and amorphous regions in Sn-CHA-F. Replicate synthesis of Sn-CHA resulted in samples with different Sn content (Si/Sn = 60 and 70) but otherwise indistinguishable bulk structural characteristics, while the Sn-Beta-F-116 sample studied here is representative of a larger suite of Sn-Beta-F samples (>20) we have studied previously.⁶⁰,⁷³

Diffuse-reflectance UV-visible (DRUV) spectra of Sn-CHA-F-70, Sn-Beta-F-116, and Sn-xerogel (Section S.6, Figure S.9) were collected after dehydration treatments (523 K), in order to avoid the ambiguity of interpreting overlapping absorption bands (220-250 nm) for hexacoordinate framework Sn centers with coordinated ligands (e.g., water)⁷⁴ and for any Sn located within nanometer-sized non-framework SnO₂ domains.⁷⁵-⁷⁸ DRUV spectra showed dominant absorption bands for isolated tetrahedral Sn in Sn-CHA-F-70 (ca. 220 nm) and Sn-Beta-F-116 (ca. 210 nm).⁷⁷,⁷⁸ but also showed broad bands (ca. 250 nm) characteristic of hexacoordinate Sn, reflecting either the presence of minority SnO₂ or incomplete dehydration at 623 K (Fig. S.10; TGA analysis in Section S.8). Absorption edge energies (Table 1) extracted from Tauc plots (Fig. S.11) were characteristic of isolated, tetrahedral Sn in zeolitic frameworks (≥4.1 eV)⁷⁷,⁷⁹ for both Sn-CHA samples (4.12-4.33 eV) and for Sn-Beta-F-116 (4.23 eV), and higher than for SnO₂ domains (ca. 3 nm) supported on Si-Beta (4.09 eV).⁴⁰ Sn K-edge X-ray absorption spectra (XAS) for Sn-CHA-F-70, Sn-Beta-F-116, and Sn-xerogel (Fig. S.14, Supporting Information) indicated average Sn coordination numbers of six (5.7-5.8 ± 0.6) under ambient conditions and four (3.8-4.0 ± 0.4) after dehydration, the behavior expected of framework Sn centers (additional details in Section S.8). The average Sn-O bond length in Sn-CHA-F-70 derived from EXAFS (1.96 ± 0.02 Å) was longer than expected from density functional theory (DFT) predictions for closed and defect Sn sites (1.88 Å, Section 3.5), perhaps indicating the presence of residual water in Sn-CHA-F-70 at 523 K. These bulk characterization techniques indicate that the Sn-CHA and Sn-Beta samples studied here contain predominantly Sn atoms isolated within framework positions. We next use site-sensitive characterization techniques that provide increasing resolution into the molecular-level details of local Sn coordination and geometry.

3.2. Quantifying Lewis acidic Sn sites using d₃-acetonitrile and pyridine titration and IR spectroscopy

Infrared (IR) spectra of Sn-CHA samples saturated with CD₃CN are shown in Figure 1, and used to quantify their number of Lewis acidic Sn sites. Sn-Beta zeolites show ν(C≡N) vibrations characteristic of CD₃CN bound to open (2316 cm⁻¹) and closed (2308 cm⁻¹) Sn sites (Section S.9, Fig. S.15),¹⁹ which were quantified using integrated molar extinction coefficients (E; cm μmol⁻¹) measured previously for these sites.⁴⁰ On Sn-CHA zeolites, ν(C≡N) vibrations for CD₃CN bound to Lewis acidic Sn sites (2310 cm⁻¹), to extracrystalline Sn⁸⁰ or to Si-OH groups next to open Sn sites⁸¹ (2287 cm⁻¹);
dominant features in an amorphous xerogel\(^\text{13}\)), and to silanol groups (2275 cm\(^{-1}\)) increased simultaneously with CD\(_{3}\)CN coverage (Fig 1a).\(^{40}\) One convoluted peak at 2310 cm\(^{-1}\) for CD\(_{3}\)CN bound to open and closed Lewis acidic Sn sites was observed for Sn-CHA-F with increasing CD\(_{3}\)CN coverage (Fig 1a), as also observed on high-defect Sn-Beta zeolites (Sn-Beta-OH).\(^{73}\) In contrast, low-defect Sn-Beta-F zeolites show two distinct peaks at 2316 cm\(^{-1}\) and 2308 cm\(^{-1}\) at different CD\(_{3}\)CN coverages (Fig. S.15).\(^{40,73}\) Lewis acidic Sn sites were quantified (Table 2) after deconvolution of IR spectra at saturation CD\(_{3}\)CN coverages\(^{40,73}\) to extract contributions from component peaks for open and closed Sn sites and silanol groups (deconvoluted spectra for Sn-CHA-F-60 in Fig. 1b). The concentrations of silanol groups on Sn-CHA-F-60 and Sn-CHA-F-70 were 2-12x higher than on Sn-Beta-F zeolites.\(^{40}\) These data are consistent with larger H\(_2\)O uptakes measured on Sn-CHA-F (0.12-0.15 cm\(^3\)g\(^{-1}\)) at P/P\(_0\) = 0.2; Fig. S.4b) than on Si-CHA-F (by 7x) and on Sn-Beta-F zeolites (by 13x, on average).

The fraction of Lewis acidic Sn sites (per total Sn) titrated by CD\(_{3}\)CN was unity within experimental error (±20%) in Sn-CHA-F-60 (1.18) and Sn-CHA-F-70 (1.14), consistent with bulk characterization methods reflecting the predominance of framework Sn sites (Section 3.1). This quantification assumed equimolar binding of CD\(_{3}\)CN to each Sn site, consistent with saturation of Lewis acidic Sn sites below monolayer CD\(_{3}\)CN coverages (per total Sn) during sequential dosing experiments on Sn-Beta zeolites.\(^{40}\) Equimolar CD\(_{3}\)CN binding stoichiometry to each Sn site is also consistent with the absence of hexacoordinate Sn resonances in \(^{199}\)Sn NMR spectra of Sn-Beta saturated with acetonitrile,\(^{82}\) and with quantitative titration of Lewis acid sites using pyridine, n-propylamine, and ammonia,\(^{40}\) the adsorption of which leads to pentacoordinate \(^{199}\)Sn resonances in NMR spectra.\(^{18}\) Equivalent fractions of Lewis acid sites in Sn-CHA-F-60 (1.08, Table 2) and Sn-CHA-F-70 (1.20, Table 2) were also quantified by ammonia titration and temperature programmed desorption methods developed previously on Sn-Beta zeolites (Section S.10).\(^{40}\) These titration data indicate that the Sn-CHA samples studied here contain predominantly Lewis acidic Sn sites incorporated within framework locations, and that integrated molar extinction coefficients for IR vibrations of CD\(_{3}\)CN bound at Sn sites in Beta zeolites can also be used to quantify Sn sites in CHA zeolites.

Framework Sn sites may be confined within either microporous or mesoporous voids, both of which are detected in Ar adsorption isotherms and TEM images, of Sn-CHA. The location of Sn within different confining environments was probed using pyridine as a probe molecule (ca. 0.6 nm), which cannot access microporous voids in CHA that are limited by eight-membered ring window apertures (ca. 0.4 nm). Any vibrations observed for pyridine bound to Lewis acidic Sn sites thus reflect Sn atoms located at external crystallite surfaces or within mesoporous voids, similar to previous reports for H\(^+\) sites located in partially-mesoporous Al-CHA zeolites synthesized in fluoride media.\(^{83}\) IR spectra measured after pyridine saturation (423 K) of Sn-CHA-F (Section S.9, Fig. S.16) showed prominent peaks at 1450 cm\(^{-1}\) and 1610 cm\(^{-1}\) reflecting deformation modes of pyridine coordinated to Lewis acid sites,\(^{82}\) and a minor peak for protonated pyridine at 1545 cm\(^{-1}\) (20x smaller area than 1450 cm\(^{-1}\) peak) as observed previously for post-synthetically prepared Sn-Beta-OH zeolites.\(^{71}\) The fraction of Sn sites accessible to pyridine was 0.20 (per total Sn) for both Sn-CHA-F-60 and Sn-CHA-F-70 (Table 2), using values for the integrated molar extinction coefficient for pyridine adsorbed to Lewis acidic Sn sites (E(1450 cm\(^{-1}\)) measured previously for pyridine adsorption on Sn-Beta-F zeolites.\(^{40}\) The accessibility of 20% of the Sn sites in Sn-CHA to pyridine would be consistent with a uniform distribution of Sn among microporous and mesoporous voids of the Sn-CHA samples studied here, which show lower than expected micropore volumes (by 20-25%) and the presence of mesoporous voids. Indeed, TEM-EDS data of Sn-CHA-F-70 (Section 5.5, Figure S.8) indicate that Sn is present in a composition (Si/Sn ~60) similar to that measured by SEM-EDS (~65, Table 1) and AAS (~70, Table 1), and that there is no spatial segregation of Sn in Sn-CHA particles. We next use active site-sensitive characterization techniques, in the form of catalytic probe reactions, which directly report on the function of framework Sn sites in Sn-CHA.

![Figure 1](#)

Figure 1. (a) IR difference spectra (relative to zero coverage) of Sn-CHA-F-70 upon sequential dosing of CD\(_{3}\)CN to saturation coverages. Vertical dashed lines are shown for open (2316 cm\(^{-1}\)) and closed (2308 cm\(^{-1}\)) Sn sites. (b) IR spectra of CD\(_{3}\)CN-saturated Sn-CHA-F-60, with thin dotted line representing the sum of the component peaks, shown as thin solid lines for CD\(_{3}\)CN bound to open (2316 cm\(^{-1}\)) and closed Sn sites (2308 cm\(^{-1}\)). Sn sites within high defect surfaces (2287 cm\(^{-1}\)), hydrogen bound to SiOH groups (2275 cm\(^{-1}\)), and gas phase or physisorbed CD\(_{3}\)CN (2265 cm\(^{-1}\)).

3.3. Catalytic interrogation of the confining environment around Sn sites in Sn-CHA

3.3.1. Intermolecular propionaldehyde-ethanol MPVO reactions

The Lewis acidic behavior of framework Sn sites of Sn-CHA-F-60 was probed using intermolecular MPVO reactions of ethanol and propionaldehyde, chosen because both molecules (<0.4 nm) can traverse 8-MR CHA windows. Intermolecular MPVO reactions proceed via coordination of an alcohol and an aldehyde (or ketone) to a Lewis acid site, subsequent deprotonation of the alcohol, and kinetically-relevant hydride transfer from the alcohol carbon to the carbonyl carbon in a six-membered transition state, as demonstrated experimentally for Lewis acidic Beta zeolites\(^{85}\) and by theoretical simulations for aluminum alkoxide complexes.\(^{86}\) Beta zeolites,\(^{87,88}\) Intermolecular MPVO rate data (333 K) were measured using dilute propionaldehyde solutions in ethanol solvent (0.6 M propionaldehyde), and a representative transient reaction profile is shown in Figure S.18 (Section S.11). 1-Propanol for-
mation rates increased with reaction time and reached 2.75 turnovers (per mol Sn) after 6 h, demonstrating the catalytic nature of Sn sites in Sn-CHA-F-60 (Fig. S.18a). 1,1-diethoxypropane, a condensation product of two ethanol molecules and one propionaldehyde molecule, was also detected and is consistent with intermolecular MPVO reactions of ethanol and acetone (discussion in Section S.11) in the presence of solid Lewis acids (e.g., ZrO2), which catalyze aldol condensation reactions of acetaldheyde products88-92 with primary alcohols to form acetals.89 The total formation of 1-propanol and 1,1-diethoxypropane was nearly equal to the consumption of propionaldehyde (Fig. S.18b), resulting in carbon balance closure for C3 compounds in the ethanol-propionaldehyde reaction on Sn-CHA-F-60. Ethanol conversions were ≤7% in all cases (Fig. S.18b), and the total concentrations of acetaldheyde, ethanol, and twice the 1,1-diethoxypropane concentration resulted in carbon balance closure for C3 compounds. Closure of both C2 and C3 carbon balances demonstrates that further byproduct formation, other than 1,1-diethoxypropane, was not observed over Sn-CHA during intermolecular MPVO reactions of ethanol and propionaldehyde under the conditions studied here.

The initial 1-propanol formation rate measured on Sn-CHA-F-60 (Table 3) was 40× lower than that measured on Sn-Beta, but 60× higher than on Sn-xerogel. Rates were 90× higher on Sn-Beta-F-116 than on Sn-CHA-F-60 when normalized by the number of Sn sites in open coordination, which is the more reactive site in Sn-Beta predicted by theory87,88 and identified by experiment for glucose isomerization mediated by an analogous intramolecular hydride shift.40 The higher intermolecular MPVO reaction rates on Sn-CHA may reflect transport limitations in Sn-CHA, differences in prevalent coverages of reactive intermediates, or differences in transition state stability between the different frameworks. Isotopic tracer experiments using CD3OH reactants were performed to confirm that 1-propanol products were formed over Sn-CHA-F-60 via a Lewis-acid mediated intermolecular hydride shift mechanism. The 1-propanol from reaction showed mass spectra with a one-unit increase in fragments for CH3CH2CHDOH (m/z = 60) and CHDOH (m/z = 32), as expected for deuterium incorporation within propionaldehyde (Section S.11, Fig. S.20).

3.3.2. Glucose-fructose isomerization via intramolecular MPVO cycles

Intramolecular MPVO cycles isomerize glucose into fructose via mechanisms whose details are generally accepted on Lewis acid sites incorporated within Beta zeolites, and were used to probe the reactivity of pyridine-accessible Sn sites in Sn-CHA. The catalytic cycle involves quasi-equilibrated adsorption, ring-opening and deprotonation of glucose at framework Sn sites, followed by a kinetically-relevant intramolecular 1,2-hydride shift step, and then by quasi-equilibrated fructose ring-closure and desorption.93,94 First-order rate constants, measured in a kinetic regime in which adsorbed water molecules at framework metal centers are most abundant surface intermediates, are 10-50x higher (at 373 K) among low-defect than among high-defect Ti-Beta (per Ti site) and Sn-Beta (per open Sn site) zeolites.95

Table 2. Fraction of Lewis acidic Sn sites (mol per mol Sn) and SiOH densities (mol per g) on each sample quantified using different Lewis base titrants. Binding stoichiometries of one per Sn for each titrant.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Pyridinea</th>
<th>CD-CNb</th>
<th>Open</th>
<th>Closed</th>
<th>SiOH</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-CHA-F-60</td>
<td>0.21</td>
<td>1.18</td>
<td>0.42</td>
<td>0.76</td>
<td>5.26*10^-4</td>
<td>1.08</td>
</tr>
<tr>
<td>Sn-CHA-F-70</td>
<td>0.20</td>
<td>1.14</td>
<td>0.36</td>
<td>0.78</td>
<td>8.46*10^-4</td>
<td>1.20</td>
</tr>
<tr>
<td>Sn-Beta-F-116</td>
<td>0.71</td>
<td>1.07</td>
<td>0.45</td>
<td>0.76</td>
<td>5.71*10^-5</td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Errors are ± 20%</th>
<th>Errors are ± 5%</th>
</tr>
</thead>
</table>
DNP enhanced 119Sn$[^1\text{H}]$ CPMAS NMR characterization of Sn-CHA-F-70 was performed in its hydrated and dehydrated states. An asymmetric peak characteristic of hexacoordinated Sn (ca. -720 ppm) was detected in the hydrated state (Fig. S.22a), while a broad peak characteristic of tetracoordinated Sn (ca. -430 ppm) was detected after dehydra-
tion (Fig. S.22b), with asymmetric broadening and a wider distribution of reso-
nances reflecting the greater inhomogeneity or asymmetry of Sn sites after dehydra-
tion. The 119Sn$[^1\text{H}]$ CPMAS NMR sensitivity was considerably higher on the hydrated sample (ca. 1800 s signal averaging time for a spectrum with a signal-to-
noise ratio = 35, Fig. S.22a), reflecting the proton-rich envi-
ronment present within microporous voids, than on the dehy-

Table 3. Intramolecular and intermolecular MPVO reaction rates measured on the samples in this study.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Glucose isomerization rate (per total Sn)a</th>
<th>Glucose isomerization rate (per pyridine accessible Sn)b</th>
<th>Ethanol-propionaldehyde MPVO rate (per total Sn)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn-CHA-F-60</td>
<td>3.62*10^{-6}</td>
<td>1.72*10^{-5}</td>
<td>1.96*10^{4}</td>
</tr>
<tr>
<td>Sn-Beta-F-116</td>
<td>2.90*10^{-1}</td>
<td>2.90*10^{-1}</td>
<td>8.24*10^{3}</td>
</tr>
<tr>
<td>Sn-xerogel</td>
<td>7.45*10^{-6}</td>
<td>7.45*10^{-6}</td>
<td>3.48*10^{6}</td>
</tr>
</tbody>
</table>

a398 K, 1% w/w glucose in water, Errors are ± 15%. b398 K, 1% w/w glucose in water, Errors are ± 15%. All Sn sites in Sn-Beta-F-116 and Sn-xerogel assumed to be pyridine accessible. c333 K, 0.6 M propionaldehyde in ethanol solvent, 1-propanol formation rate, Errors are ± 15%. *n. p., no products observed.

The increased NMR sensitivity afforded by DNP enables performing 2D 119Sn$[^1\text{H}]$ CP magic-angle turning (CPMAT) experiments, which can separate the chemical shift anisotropy (CSA) for each isotropic 119Sn site that contributes to the broadened 119Sn NMR resonance observed in the 1D spectra. CSA is a second rank tensor defined by three principal components (δ_{11}, δ_{22}, and δ_{33}), and can also be described using the Herzfeld-Berger convention by the isotropic chemical shift (δ_{iso}), span (\(\Omega\)), and skew (\(\kappa\)) (Eqs. 2-4):

$$\delta_{iso} = \frac{1}{3} (\delta_{11} + \delta_{22} + \delta_{33})$$

$$\Omega = \delta_{11} - \delta_{33}$$

$$\kappa = \frac{3(\delta_{22} - \delta_{iso})}{\Omega}$$

CSA is very sensitive to the neighboring electronic environment of the observed nuclei, and is thus an effective probe to elucidate Sn site structures at the molecular level.

The 2D 119Sn$[^1\text{H}]$ CPMAT NMR spectrum of the hydrated Sn-CHA-F-70 sample, which is shown in Figure 2, contained a single asymmetrically broadened peak on the isotropic dimension (\(\delta_{iso} = -713 \text{ ppm}\)) and did not contain a sharp feature for extraframework SnO$_2$ (-605 ppm).7 The corresponding projection (at δ_{iso}) on the isotropic dimension was extracted and fit to acquire the experimental CSA parameters listed in Table 4. Two components with the same isotropic chemical shift, but different span (\(\Omega\)) and skew (\(\kappa\)), were required to fit the experimental data, a surprising result considering the single T-site in the CHA framework (Figs. 2a and S.22c). This two-component fitting suggests that at least two similar Sn sites are present, with slightly different coordination environments or local geometries, but coincidentally at the same isotropic chemical shift. These CSA components do not reflect contributions of Sn sites incorporated in minority amorphous stannosilicate domains, which are characterized by different iso-
tropic chemical shifts (\(\delta_{iso} = -600, -626, \text{ and } -690 \text{ ppm, Fig. S.23}\)). 2D 119Sn$[^1\text{H}]$ CPMAT experiments performed with varying DNP build-up time (1-20 s recycle delays), did not affect the relative areas of the two component peaks used in the CSA fitting (Section S.1, Table S.4), indicating that both sites are distributed evenly within the sample and unaffected by $^1\text{H}-^1\text{H}$ spin diffusion on the time scale studied. Overall, these data suggest that these two components represent Sn sites of different local structure incorporated within the CHA framework and evenly distributed among mesoporous and microporous voids.

Table 4. Chemical shift anisotropy (CSA) parameters for the two different Sn sites identified in the hydrated and dehydra-
ted states of Sn-CHA-F-70.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CSA Parameters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>chemical shift</td>
<td>Span ((\Omega), ppm)b</td>
<td>skew ((\kappa), ppm)b</td>
</tr>
<tr>
<td>Hydrated Sn-CHA</td>
<td>-713 ± 3</td>
<td>139 ± 4</td>
<td>0.05 ± 0.06</td>
</tr>
<tr>
<td>Site 2</td>
<td>-712 ± 3</td>
<td>56 ± 4</td>
<td>-0.25 ± 0.25</td>
</tr>
<tr>
<td>Dehydrated Sn-CHA</td>
<td>-442 ± 9</td>
<td>159 ± 12</td>
<td>0.24 ± 0.08</td>
</tr>
<tr>
<td>Site 4</td>
<td>-484 ± 10</td>
<td>139 ± 14</td>
<td>0.16 ± 0.11</td>
</tr>
</tbody>
</table>

aErrors are determined by peak width

bErrors are the results of error propagation calculations

The 2D 119Sn$[^1\text{H}]$ CPMAT NMR spectrum of dehydrated Sn-
CHA-F-70 showed two asymmetrically broadened resonances on the isotropic dimension (\(\delta_{iso} = -437 \text{ and } -480 \text{ ppm, fit from the 1D DNP enhanced CP-Total Sideband Suppression spectr um, which were analyzed to acquire experimental CSA parameters (Section S.12, Fig. S.24)\). The resonance at -480 ppm
appears between the range of chemical shifts characteristic of tetracoordinated (ca. -430 ppm) and pentacoordinated Sn (ca. -550 ppm), but was too low in intensity to estimate CSA parameters (Table 4). The Sn site at -480 ppm may represent a minor fraction of Sn that is not completely dehydrated in Sn-CHA-F-70 despite vacuum treatment (773 K), which might reflect strongly adsorbed water molecules bound at silanol and stannol groups in defect Sn sites (Scheme 1). The CSA parameters for the resonance at -437 ppm are similar to those reported previously for dehydrated Sn-Beta, although the larger span for Sn-CHA (159 ppm) than for Sn-Beta (ca. 100 ppm)²⁷ may reflect more distorted local Sn environments in CHA (Table 4).

Dehydrated Sn-CHA-F-70 was saturated with ¹⁵N-pyridine at ambient temperature and characterized by ¹⁵N and ¹¹⁹Sn DNP NMR to further probe the structure of Sn sites that bind pyridine. The 1D ¹¹⁹Sn[¹H] CPMAS NMR spectrum of ¹⁵N-pyridine-saturated Sn-CHA-F-70 (Fig. S.28) shows a broad distribution of resonances ranging from -400 to -750 ppm, while the 2D ¹¹⁹Sn[¹H] CPMAT NMR spectrum (Fig. S.29) shows two peaks in the isotropic dimension characteristic of pentacoordinated (ca. -596 ppm) and hexacoordinated Sn (ca. -694 ppm), whose corresponding CSA parameters are listed in Table 5. The pentacoordinated Sn resonance was expected from the equimolar binding of pyridine to Sn,⁴⁰ while the hexacoordinated Sn resonance implies that some Sn sites can bind a second pyridine molecule. The binding of two pyridine molecules at a single Sn site, which was not observed by IR spectroscopy (423 K), likely resulted from the excess ¹⁵N pyridine used to saturate Sn-CHA at ambient temperature prior to NMR experiments.

Figure 2. (a) 2D ¹¹⁹Sn CPMAT spectrum of hydrated Sn-CHA-F-70 and (b) extracted 1D ¹¹⁹Sn NMR spectrum for Sn-CHA-F-70 (blue trace) fit with two sets of CSA parameters (light blue and green traces) and their combination (red trace) resulting in better description of the experimental spectrum. The spectrum was acquired on Bruker 600 MHz (14.1 T) DNP NMR spectrometer. MAS = 4 kHz; CP contact time = 1.5 ms; recycle delay = 3.5 s; 256 scans per t₁ increment, and 85 t₁ increments were acquired. The CSA fit was done using solid lineshape feature in Bruker’s topspin program.

Two isotropic peaks were observed in the 1D DNP enhanced ¹⁵N[¹H] CPMAS NMR spectrum of ¹⁵N-pyridine saturated Sn-CHA-F-70 (Fig. S.30), and the 2D ¹⁵N CPMAT NMR is shown in Figure 3, with the associated CSA parameters given in Table 5. The resonance at 262 ppm reflects pyridine bound to Lewis acidic Sn sites, similar to that observed for stannosilicate materials with pores large enough to accommodate pyridine (MFI, MCM-41, Beta, xerogel, Fig. S.31).⁹ The resonance centered at 289 ppm reflects pyridine interacting with silanol groups,⁹ an assignment corroborated by the ¹⁵N[¹H] CPMAS NMR spectrum of ¹⁵N-pyridine saturated Si-CHA-F (δiso = 286 ppm, Section S.13, Fig. S.32). Among the metallosilicates studied by Gunther et al., only high-defect zeolites synthesized in alkaline media showed a ¹⁵N resonance for pyridine bound to SiOH groups.⁹⁸ Thus, the observation of this resonance in Sn-CHA-F-70 reflects the presence of a considerable concentration of silanol defects, consistent with H₂O adsorption isotherms that quantified 12× higher H₂O uptake in Sn-CHA-F-70 than in Sn-Beta-F,⁴⁰ and with CD₃CN titration that quantified 2-12× higher SiOH concentrations in Sn-CHA than in Sn-Beta-F (Table 2).⁴⁰ The presence of these defects is also consistent with the high percentage of (HO)-Si-(OSi)(Q₅) sites (21%) quantified by direct-polarized ²⁹Si solid-state NMR spectrum (Fig. S.27). Taken together, the IR and NMR data for pyridine-saturated Sn-CHA zeolites indicate that ca. 20% of its framework Sn sites are located within mesoporous voids that also contain a high concentration of SiOH defects.
Figure 3. (a) 2D 15N{$[^1H]$} CPMAT NMR spectrum and (b) extracted 1D 15N NMR spectra and corresponding CSA fit for pyridine-saturated Sn-CHA-F-70. The spectrum was acquired on Bruker 600 MHz (14.1 T) DNP NMR spectrometer. MAS=4 kHz; CP contact time=8.0 ms; recycle delay = 4.5 s; 112 scans per t_1 increment, and 112 t_1 increments were acquired. The CSA fit was performed using the solid lineshape feature in Bruker’s Topspin program.

3.5. DFT calculations of 119Sn DNP NMR chemical shifts, spans, and CSA parameters

The different local structures of Sn sites proposed to be present in zeolitic frameworks, which are closed, hydrolyzed-open, and defect sites (Scheme 1), were investigated by DFT calculations, with optimized structures for Sn-CHA shown in Figure 4. The hydrated states of Sn sites (pseudo-octahedral geometry) were modeled with two water molecules bound to Sn for closed and defect sites, and one water molecule bound to Sn for the hydrolyzed-open site given its additional bond to the proximal silanol group. Two additional water molecules outside the Sn coordination sphere and implicit water (dielectric constant, ε, set to 80.4) were also included in the model (Fig. 4).

<table>
<thead>
<tr>
<th>Table 5. Chemical shift anisotropy (CSA) parameters for pyridine-saturated, dehydrated Sn-CHA-F-70 and Si-CHA-F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalyst</td>
</tr>
<tr>
<td>Sn-CHA-F-70</td>
</tr>
<tr>
<td>Lewis acidic Sn sites</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>One pyridine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Two pyridine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SiOH groups</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Si-CHA-F</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DFT-optimized structures of hydrated closed and defect Sn sites have average Sn-O distances of 2.04 Å, and the hydrolyzed-open Sn site has an average Sn-O distance of 2.02 Å. All values are similar to the average Sn-O bond distances for hydrated Sn-CHA measured by XAS (2.01 ± 0.02 Å, Section S.8). Calculated 119Sn NMR CSA parameters for hydrated defect and hydrolyzed-open sites (Section S.14, Table S.5) provided closest agreement to the two sets of CSA parameters required to fit the experimental data. Given the peak width of the NMR resonances (6 ppm) and the error between calculated and experimental values (± 10 ppm), it is not possible to distinguish hydrolyzed-open and defect sites from the isotropic peak. Moreover, the difference between the DFT calculated spans for hydrated hydrolyzed-open and defect Sn sites (74 ppm) resembles the difference in the spans of the two components required to fit the experimental 119Sn DNP NMR data for hydrated Sn-CHA (ca. 83 ppm). Therefore, we conclude that the two components identified in 2D 119Sn{$[^1H]$} CPMAT NMR spectra reflect hydrated hydrolyzed-open and defect framework Sn sites. We note, however, that experimental DNP NMR measurements may enhance contributions from 119Sn sites in close proximity with protons due to more efficient polarization transfer, as observed in the increased sensitivity to (HO)$_2$Si(OSi)$_2$(Q$_2$) and Q$_3$ silanol groups in 29Si DNP NMR (Figs. S.25-S.26) compared to direct-excitation 29Si NMR (Fig. S.27).

DFT-optimized structures of dehydrated hydrolyzed-open Sn sites showed average Sn-O distances of 1.98 Å, similar to the average Sn-O bond distance measured for dehydrated Sn-CHA by XAS (1.96 ± 0.02 Å, Section S.8). The DFT-optimized structure was a pentacoordinate Sn site, while the average coordination number from XAS was four. Furthermore, the calculated 119Sn NMR parameters for hydrolyzed-open Sn sites (-566 ppm, Table S.5) did not agree with those measured experimentally (-437 and -480 ppm). Closed and defect Sn sites showed average Sn-O distances of 1.88 Å,
which are significantly lower than the Sn-O bond distance in dehydrated Sn-CHA measured by XAS (1.96 ± 0.02 Å) and may reflect incomplete dehydration of Sn-CHA prior to XAS measurements. Calculated 119Sn NMR parameters of dehydrated defect Sn sites were indistinguishable from dehydrated closed Sn sites (Fig. 4; Table S.5), in contrast to calculated 119Sn NMR chemical shifts of Sn-Beta27 which are separated by ca. 20 ppm for defect and closed sites.

The similar isotropic chemical shifts for both sites appear to reflect strong hydrogen bonding between SiOH and SnOH groups in defect Sn sites that are present in close proximity in the CHA framework. Calculated NMR parameters for pyridine-saturated Sn-CHA (119Sn and 15N) suggest that the pentacoordinate Sn sites observed experimentally reflect one pyridine molecule coordinated to closed Sn sites, while two pyridine molecules most likely coordinate to defect Sn sites and result in hexacoordinated Sn (Fig. 4; Table S.6). These structural assignments of the different pyridine binding modes to Sn sites are also consistent with the calculated pyridine adsorption energies (Table S.7), which further indicate that closed and defect Sn sites favor binding of one and two pyridine molecules, respectively, at 298 K.

In summary, comparison of the experimental and calculated 119Sn NMR parameters suggests that the Sn sites observed in hydrated Sn-CHA are predominantly defect and hydrolyzed-open Sn sites, whose signals may be preferentially enhanced by DNP due to their proton-rich environment, while those observed in dehydrated Sn-CHA are predominantly defect and closed Sn sites, which cannot be distinguished by NMR. The high ratio of Si Q₃ sites in direct-polarized 29Si NMR (21%, Fig. S.27) also suggests that silanol defects are present in large concentrations on Sn-CHA-F zeolites prepared using the methods here, and likely located within mesoporous voids. In pyridine-titrated dehydrated Sn-CHA, polarization transfer from protons within coordinated pyridine can enhance the 119Sn NMR signal, and the different binding stoichiometries of pyridine molecules (one or two) results in Sn sites with different coordination numbers (five or six, respectively), such that both closed and defect sites can be detected and distinguished. These assignments also suggest that closed sites present after sample dehydration under vacuum can undergo reversible structural changes to form hydrolyzed-open sites upon hydration.

![Figure 4](https://example.com/figure4.png)

Figure 4. DFT optimized structures for (a) hydrated closed Sn sites, defect-open Sn sites, and hydrolyzed-open Sn sites, for dehydrated closed Sn sites, defect Sn sites, and hydrolyzed-open Sn sites, and (b) for pyridine saturated closed Sn, and defect Sn sites. Calculated isotropic chemical shifts (δ_{iso}), span (Ω), and skew (κ) are shown for each site. Details of DFT calculations are in supporting information, Section S.14.

4. Conclusions

Chabazite molecular sieves containing isomorphously substituted framework tin heteroatoms (Sn-CHA) were prepared via direct fluoride-mediated hydrothermal synthesis routes. Lewis
acidic Sn sites in Sn-CHA were titrated in equimolar stoichiometry by ammonia and d$_4$-acetanilide, providing values identical within experimental error to the total Sn content. These data indicate that integrated molar extinction coefficients for IR vibrations of CD$_4$-CN bound at Sn sites in Sn-Beta can be used to quantify such sites in Sn-CHA. IR spectra of Sn-CHA zeolites titrated by pyridine, a molecule too large to traverse eight-membered ring CHA windows, indicated that 20% of the framework Sn sites were located within disordered mesoporous voids.

Sn-CHA zeolites catalyze intermolecular MPVO and subsequent condensation reactions of ethanol and propionaldehyde, confirming that framework Sn sites confined within CHA micropores function as Lewis acid centers capable of mediating hydride shift steps. In contrast, aqueous-phase glucose-fructose isomerization at Sn sites located within mesoporous voids of Sn-CHA and amorphous silica matrices proceeds at turnover rates that are four orders-of-magnitude lower than Sn sites confined within Sn-Beta zeolites. These data provide evidence that unconfined Sn sites in stannosilicates are effectively unreactive for aqueous-phase glucose isomerization.

DNP NMR characterizations of Sn-CHA zeolites show that Sn sites were incorporated into framework lattice positions, consistent with UV-Visible and X-ray absorption spectra that detect tetracoordinated Sn centers upon sample dehydration. The NMR signal enhancements enabled by DNP allow resolving two distinct Sn sites characterized by identical isotropic chemical shift but different chemical shift anisotropy. Comparison of experimentally measured 119Sn NMR CSA parameters with those calculated from DFT supports the presence of framework Sn sites with (defect) and without (closed) neighboring framework Si vacancy defects in dehydrated Sn-CHA, which form hydrated defect and hydrolyzed-open sites upon exposure to ambient conditions or aqueous solution. Such assignments to Sn sites in different local coordination environments (e.g., defect, hydrolyzed-open, closed) were made possible by the structural simplicity of the CHA framework, which contains one lattice T-site and facilitates more accurate theoretical modeling of experimental spectra. Overall, integrating the controlled synthesis of a model crystalline catalyst containing isolated metal centers, the detection of specific spectroscopic signatures sensitive to their primary coordination and secondary confining environments, and the computation of plausible active site structures, was essential to resolve the local structure of metal binding sites and to demonstrate the role of secondary confining voids in catalysis.

Supporting Information. Statement of author contributions, X-ray diffraction patterns, scanning electron micrographs, adsorption isotherms and pore size distributions, transmission electron micrographs, diffuse reflectance UV-visible spectra and Tauc plots, thermogravimetric analysis, X-ray absorption spectra, supplementary infrared spectra, ammonia temperature programmed desorption, intermolecular MPVO reactions, additional details for NMR spectra, supplementary NMR spectra, DFT calculations

AUTHOR INFORMATION

Corresponding Author

*E-mail: ccoperet@ethz.ch, rgunder@purdue.edu

Present Addresses
†Present address: Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. J. W. H. and W.-C. L. contributed equally to the work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Purdue researchers acknowledge the financial support provided by the Purdue Process Safety and Assurance Center (P2SAC) and a 3M Non-Tenured Faculty Grant. At Purdue, we thank Juan Carlos Vega-Vila for assistance with glucose isomerization reactions, Evan Wegener and Dr. Jeffrey T. Miller for XAS measurements and data analysis, Jason Bates for measurement of H$_2$O adsorption isotherms, and Michael Cordon for assistance with SEM imaging. We also thank Sachem, Inc. for supplying the organic structure-directing agent used in synthesis of CHA molecular sieves. The work of WCL and ACV is supported by Swiss National Foundation (200020_149704 and Ambizione project PZ00P2_148059, respectively). ACV also acknowledges the Holcim Stiftung for financial support. WCL thanks Mr. Erwin Lam for the help and discussion about DFT calculations. We thank Dr. David Gajan and Dr. Anne Lesage at CRMN Lyon for assisting with measurements and Dr. Frank Krumieich for recording TEM images.

REFERENCES

(95) Gouder, R.; Davis, M. E. Monosaccharide and Disaccharide Isomerization over Lewis Acid Sites in Hydrophobic and Hydrophilic Molecular Sieves. *J. Catal.* 2013, 308, 176-188.

