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Research Notes on Diagonal Projection 

 

 

Local probability based transformations and diagonal projection:  

a new Support Vector Machine-like method for classification of 

feature vectors 
 

Charles F. Babbs, MD, PhD 

 

Weldon School of Biomedical Engineering, 

 

Purdue University, West Lafayette, Indiana, USA 

 

 

Background 

 

Support vector machine (SVM) techniques perform classification of input feature vectors.  

A classifier takes a vector of feature values that describe an object as its input and assigns a 

label such as "class A" or "class B" as its output, depending on the particular values of the 

features in the input vector.  In our mammography application the feature vector 

)x,x,x( n21 x  represents a set of properties of a mammogram that can be reduced to 

individual real numbers, n21 x,x,x  .  The output is a label class A = abnormal, class B = 

normal.  Classifiers are developed using training data that have known or "ground truth" 

class labels.  During the training process the training data are used to specify the 

parameters in the logical rules used by the classifier to assign a label.  The parameters 

obtained from training data are incorporated into the classifier that is used for testing.   

 

During subsequent testing class labels are assigned to a series of unknown input vectors.  

In many classifiers the components of the input vector are plotted in an n-dimensional 

feature space.  The testing rules effectively divide the feature space into regions 

corresponding to the different class labels.  For example, in a two-class classification 

problem if the input vector plots into certain defined regions of feature space it is given 

label "A", otherwise it is given label "B".  

 

One approach to making such classifiers more sophisticated is to make the decision 

surfaces in feature space more complex—for example, curved, budging, convoluted in 

shape like the fiords of Norway, or even insular and disjointed in shape like the country of 

Pakistan.  The secret to making successful complex decision surfaces is the introduction of 

conditional rules for different regions of feature space.  That is "if x falls in this particular 

region then apply this rule, however if x falls in that particular region then apply a different 

rule".  Binary tree classifiers and multi stage cascading classifiers work in this way. 

 

The opposite strategy from sculpting a more complex decision surface, which is used in so-

called support vector machine (SVM) approaches, can be called "feature conditioning", 
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using functions of the original raw features instead of the raw features themselves.  The 

functions change the representation of the data, to warp the feature space in a way that 

makes for easy classification using a simple linear or planar decision surface in the new 

feature space.   

 

For example if the raw feature data are denoted )x,x,x( n21 x , then a transformed 

feature vector ))x(),x(),x(()( nn2211  x  could be used to make the raw features 

better behaved.  A whitening transformation is an example of such feature conditioning.  

The first generation Babbs/Sun power function transformation is another example of such 

a method.  In this case the idea of the power function transformation is to make the 

standard deviations of all features roughly the same size, so that the overall distribution in 

hyperspace is roughly spherical or globular (that is, the same diameter in all dimensions). 

 

In general, the transformation produces a mapping from the original feature space to a new 

feature space: ))(),(),(()( n21 xxxx   .  The arguments of the functions used may 

include more than one raw feature, as indicated here.  Such transformations are helpful 

when the raw feature distributions for each class are non-globular, interpenetrating, 

bimodal, or otherwise irregular in shape, in which case they cannot be separated neatly into 

classes by a simple plane in the original feature space.   

 

We can call the transformed features ))(),(),(()( n21 xxxx    "meta-features".  The 

meta-features are designed to be better behaved, to simplify the subsequent classification 

task, and to improve its accuracy.  For example, a simple plane in the warped feature space 

may separate classes "A" and "B", which would not have been possible in the original 

feature space.  (The effects are similar to Schwarz-Christoffel transformations in electrical 

engineering, in which complex electric fields and boundary conditions become simple after 

deliberate warping of space by functions of complex variables.) 

 

Here we introduce special meta-features based upon probability density functions of the 

training data.  These particular meta-features have particularly interesting properties, as 

will be seen, that simplify and may improve the accuracy of classification. 
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Local probability difference transformations 

 

Let us focus first on the training phase, and let us assume that sufficient ground truth 

training data are available to construct histograms of the distributions of each feature for 

both known A and known B classes, for example, normal vs. abnormal mammograms.  

When frequency distributions are divided by the number in each class a "probability 

density function" or pdf is obtained.  The pdf is the frequency of points in each bin of the 

histogram, divided by the total number points available and the width of the class interval 

in the histogram.  The histograms usually have different shapes and positions for the 

different for classes A and B.  However, the area under each pdf curve is equal to 1.  Note 

that for each feature, x, the pdfA and pdfB are functions of individual feature values x. 

 

 

 

Define the local probability 
)x(pdf)x(pdf

)x(pdf
)x(p

iBiA

iA
iA


 .   

 

Define the local probability 
)x(pdf)x(pdf

)x(pdf
)x(p

iBiA

iB
iB


 .   

 

For a two class discrimination problem )x(p1)x(p iBiA  . 

 

These local probabilities are conditional probabilities.  They are the probabilities of an 

unknown being class A or class B, given a certain value of x.  Thus, they tend to capture 

the same type of information about the relative position of the input vector x in feature 

space, as do sophisticated binary tree or multi-stage classifiers. 

 

To implement a support vector machine, we seek functions )x(),x(),x( nn2211    that 

are related to which class, A or B, is more likely for a given input, x.  Here one could use 

the functions )x(p iA directly, which would have values near 1 when class A is likely and 

values near 0 when class B is likely.  However, a particular function with very interesting 

properties is the local probability difference (LPD), which is defined as follows: 
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)x(pdf)x(pdf

)x(pdf)x(pdf
)x(p

iBiA

iBiA
i




 . 

 

The local probability difference has value 1.0 when class A is almost certain, -1.0 when 

class B is almost certain, and 0 when A and B are equally likely.  The sketches below 

illustrate the behavior of the LPD function for normally behaved features and for 

anomalous features in which information is coded in the variance of the distribution rather 

than the mean.   
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Anamolous Features
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Based upon known training data, a complete vector of local probability difference (LPD) 

functions can be used to define a new transformed feature space 

 

))x(p),x(p),x(p()( nn2211  x . 

 

Thus the LPD function captures the essence of the relative density of training points in 

hyperspace, virtually regardless of the particular geometry of the actual empirical 

distributions in Euclidian space.  In particular, the LPD function captures essential 

probability information for overlapping and crossed distributions in one or two 

dimensions.  Of 32 possible types of two-dimensional complex distributions that we have 

already explored, there is only one type—the diagonally crossed distribution—that is 

poorly represented by the LPD function.  Here is a diagonally crossed distribution of two 

features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For such diagonally crossed distributions of features x and y, one can use the preliminary 

transformation z(x,y) = 1 –2x –2y + 4xy  to "uncross" classes A and B, reducing x and y to 

a new one dimensional feature, z , that can be well handled by a subsequent LPD function. 
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Decision rules using local probability difference transformations 

 

Assume temporarily that we can create ))x(p),x(p),x(p()( nn2211  x  during the 

training phase of analysis by some sort of curve fitting procedure using the class A and 

class B training data.  (We'll discuss how to get the probability density functions and 

probability difference functions from the training data in the next section.) 

 

Now given raw input  x  and the ability to create  ))x(p),x(p),x(p()( nn2211  x , 

we are ready to plot the conditioned features in hyperspace.  This hyperspace has its origin 

at point (0, 0, 0 … 0) and extends from one extreme point (1, 1, 1, … 1) to the opposite 

extreme point (-1, -1, -1, … -1). 

 

A provisional choice for a decision plane in hyperspace is a locus of points equidistant 

from the point of greatest "A-ness" (1, 1, 1, … 1) in one corner of transform space and the 

point of greatest "B-ness" (-1, -1, -1, … -1) at the diagonally opposite corner of transform 

space.  For a chosen point x in the equal distance decision plane is given by 

 

   



n

1i

2

i

n

1i

2

i 1)x(p1)x(p . 

 

Simplifying,  

 





n

1i

i

n

1i

i )x(p2)x(p2 ,  or   0)x(p
n

1i

i 


. 

 

This is the decision plane!  For any given input )x,x,x( n21 x  , we have 

 

For 0)x(p
n

1i

i 


 , label  x  "A", otherwise label  x  "B".  We just add up the conditioned 

features.  Simple and effective.  The simplicity of this decision rule is consistent with the 

idea that the local probability difference functions reflect an essential quality of the feature 

distributions related to their separability. 
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We can produce a range of classifiers with different biases by introducing a constant that 

represents the distance of the decision plane along the diagonal from (1, 1, 1, … 1) to  

(-1, -1, -1, … -1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us introduce this constant as a bias term, b, for a decision hyperplane passing through 

arbitrary point, P, and perpendicular to the diagonal.  Now point P is not necessarily 

equidistant from the two diagonal corners.  We see from the Figure that there are two right 

triangles connected at the corners, joined at distance, b, from the origin along the main 

diagonal.  In hyperspace the distance from the origin (0, 0, 0 … 0) to either corner,  

(1, 1, 1, … 1) or (-1, -1, -1, … -1), is just n .  Hence, by Pythagorean theorem, the shared 

side of the two right triangles has distance 

 

       2
n

1i

2

i

2
n

1i

2

i bn1)x(pbn1)x(p  


 , which leads to  

 

nb4)x(p4
n

1i

i  


  or  



n

1i
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n
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(Note this same result can be obtained using the formula for projection of a point in 

hyperspace onto a line, derived earlier.  Details not shown here.) 
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Note that the bias, b, represents the projection of any point P onto the inter-diagonal line, 

so we can use the simple projection onto this line 

 





n

1i

i )x(p
n

1
b  

 

to create a one dimensional representation of the data in hyperspace for the purpose of 

constructing ROC curves.  If we re-scale this projected distance as 

 





n

1i

i )x(p
n

1
b  , 

 

that is, just normalizing by the distance from the origin to a corner, then we have a scale 

ranging from –1 at one extreme (the class B-most point) through zero (the halfway point) 

to +1 at the other extreme (the class A-most point).  This variable, b', is just the average 

value of the conditioned features. 

 

In an unbiased mode, b' > 0 generates the label A and b' <= 0 generates the label B.  

However, any desired decision threshold can be obtained along the ROC curve  

with -1 < b' < 1.  In particular, if class A is considered abnormal, then larger positive 

values of b' are associated with a larger true positive fraction (TPF) and a smaller false 

positive fraction (FPF).  In a Yajie-like classifier for mammogram analysis one can vary b' 

to generate desirable low FPF regional classifiers that will be most effective whole image 

analysis. 

 

 

Finding transform functions from training data semi-automatically 

 

Background:  Mammogram analysis is a form of supervised computer learning in which 

some rational human intervention is needed during the training phase.  In particular the 

statistical distributions of raw feature data should be scanned by a knowledgeable human 

for obvious errors, extreme outliers highly unusual shape, etc.  In addition, as with the 

Babbs/Sun power function transformation, it is helpful to cast features into standard form.  

Here standard form means that feature values are re-centered such that there are no 

negative values and the smallest positive value in the combined class A or class B 

distribution is close to zero.  For example, the temperature of samples of liquid water 

would be changed from the Fahrenheit scale (32 – 212) to the centigrade scale (0 to 100), 

or at least to a scale of "Fahrenheit minus 30" (2 to 180), so that there is no long leader 

region on the scale with no data.  This standard format makes the procedure for curve 

fitting work more consistently, avoiding ungraceful division by zero and numerical 

overflow. 
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In symbols, we define raw training data for classes A and B as 
Ax  and 

Bx   .  During 

human supervision of the training process we also define reasonable maximum and 

minimum values indicating the practical range of each feature.  For example if, human 

body temperature, T, were a feature, which in health and disease ranges from 36 to 43 C in 

ordinary hospital patients, we might define C35Tmin   and C45Tmax  .  Thus for each 

distribution of raw feature data we define  

 

minAx ,  maxAx   minBx ,  and  maxBx  by human inspection of the distributions. 

 

Then we also define  minBminAmin x,xminx  . 

 

The images in standard form are then re-centered as follows for both A and B distributions: 

 

 

minxxx   . 

 

 

(For distributions of some of Yajie's features there are many instances of mammograms 

with raw feature values equal to zero.  In this case it is helpful to choose 

 minBminAmin x,xminx   as slightly < 0 as an aid to subsequent curve fitting.)  

 

For simplicity of notation, we shall use the unadorned symbol x to represent a feature 

value in standard form, and a simple bold x to represent a feature vector in standard form. 

 

Once features are cast in standard form, having all positive values and no long leader 

regions, we can implement a variety of strategies to fit curves to the data.  Polynomial 

curve fitting or polynomial regression techniques are flexible and powerful methods, 

which involve both art and science.  There are many possible routes to finding a 

satisfactory polynomial curve fit.  Here two of several possible approaches are described in 

detail.  Polynomial curve fits work well for interpolation between given data points, but 

they tend to behave wildly extrapolation outside the prescribed range and work very poorly 

for extrapolation.  Human supervision of the curve fitting process is important to prevent 

evaluating these functions outside their well-behaved range.  Here two of several possible 

approaches are discussed in detail.   
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Method 1—fitting polynomials to cumulative feature distributions 

 

The first method is to fit polynomial functions to cumulative pdf data, which are less 

susceptible to noise and sampling variability than probability density data.  Then 

differentiate the cumulative probability density functions to get smooth estimates of actual 

probability density functions.  This strategy helps prevent over-fitting of the training data. 

 

Let  


x

AA dx)x(pdf)x(P  and  


x

BB dx)x(pdf)x(P . 

 

Also, let xAmin and xAmax be the minimum and maximum values of x for the distribution of 

class A training data, and let xBmin and xBmax be the minimum and maximum values of x for 

the distribution of class B training data.  For these respective ranges of A and B training 

data one can fit the polynomial functions 

 





n

0i

i

i

n

n

2

210A xaxaxaxaa)x(P̂    and  

 





n

0i

i

i

n

n

2

210B xbxbxbxbb)x(P̂   

 

to the training data.  (The fitting process will be discussed next.)  The probability density 

functions for the training data can then be found by differentiation:  

 




 
n

1i

1i

i

1n

n

2

321
A

A xaixnaxa3xa2a
dx

)x(P̂d
)x(pdf    for maxAminA xxx   

 

and 

 




 
n

1i

1i

i

1n

n

2

321
B

B xbixnbxb3xb2b
dx

)x(P̂d
)x(pdf   for maxBminB xxx  . 
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Now define the overall fitted probability density functions  
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otherwise,xbi
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Once the coefficients of the polynomials are known from analysis of training data, then 

one can proceed to the testing phase using the local probability difference function for any 

raw feature value, xi , as 

 

)x(pdf)x(pdf

)x(pdf)x(pdf
)x(p

iBiA

iBiA
i




 . 

 

To find the set of coefficients ai and bi for each feature, we can determine automatically 

various percentiles of the class A and class B distributions of training data for each feature. 

A percentile is a value below which a given percentage or fraction of values occur.  We 

denote percentiles by subscripts in percent.  For example, the tenth percentile, x10 , is the 

value below which 10 percent of the values fall.  In terms of probability density functions a 

percentile is a value with a specified cumulative frequency, for example 

 

 


10x

dx)x(pdf1.0  and  


50x

dx)x(pdf5.0 . 

 

To perform a polynomial curve fit we first determine a range of percentiles for both class 

A and class B training data, for example x0 , x10 , x30 , x50 , x70 , x90 , x100 .  The percentiles 

for the A and B distributions are, of course, different.  If we have the complete distribution 

for the entire population of mammograms, then x0 = xmin , and x100 = xmax .  If we only have 

a small sample of training data, then x0 > xmin , and x100 < xmax . 
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These constraints lead to simultaneous linear equations that can be solved for the desired 

coefficients of the polynomial curve fit, based upon a sample of training data for which 

various percentiles have been computed.  For class A data (the same would be done 

separately for class B data) we have 

 
n

minn

2

min2min10 xaxaxaa0    

 
n

10n

2

1021010 xaxaxaa1.0    

 
n

30n

2

3023010 xaxaxaa3.0    

 
      

 
n

maxn

2

max2max10 xaxaxaa1   . 

 

In addition, to encourage curve fits having proper sigmoid shape for cumulative probability 

distributions, we also include the boundary conditions that  

 

 



n

1i

1i

minAi

1n

minAn

2

minA3minA21
minAA xaixnaxa3xa2a

dx

)x(P̂d
  

 

and 

 

 



n

1i

1i

maxAi

1n

maxAn

2

maxA3maxA21
maxAA xaixnaxa3xa2a

dx

)x(P̂d
  

 

at xAmin and at xAmax, the minimum and maximum values of x for the distribution of class A 

training data, and similarly at xBmin and at xBmax .  Here  is a small value of slope near 

zero.  For a Gaussian-like distributions )xx/(05.0 199  .  This estimate, or zero, can be 

used to similar effect. 
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Example:  Suppose we want to fit a 7
th

 order polynomial to the data for class A. 
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210A xaxaxaxaxaxaxaa)x(P̂   

 

subject to the boundary conditions that  

 

0)x(P̂ minAA   ,   1)x(P̂ maxAA   ,  
dx

)x(P̂d minAA  ,  and  
dx

)x(P̂d maxAA  . 

 

If we have found the 20
th

, 40
th

, 60
th

, and 80
th

 percentiles for the class A training data, then 

we have a system of 8 linear equations: 
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This system can be solved for the constants a0 through a8 for each component of the feature 

vector.  This process is repeated using the training data for class B mammograms to obtain 

the training data-based constants, b0 through b8 , for the probability density functions 

describing the class B distributions. 

 

With the training data-based constants  ai  and  bi  now available for all features, i , the 

testing and classification module can be specified to evaluate the local probability 

difference functions p(x) for every feature, using 
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and the discriminate function  

 

)x(pdf)x(pdf

)x(pdf)x(pdf
)x(p

iBiA

iBiA
i




 . 

 

 

The following tables and figures show application of the cumulative regression method to 

two sets of test data.  Class A is a normal distribution with mean 3 and standard deviation 

1.  Class B is a linear combination of equal parts of Class A and a normal distribution with 

mean 6 and standard deviation 1.  

 
X Class A X Class B 

0.66 0.95 

2.16 3 

3 4.5 

3.84 6 

5.34 8.05 
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The matrices for linear equations and the solutions (here for a 6
th

 order polynomial) are 

 

        

rhs matrix -- Class B 6th order 

0.01 1 0.66 0.4356 0.287496 0.189747 0.125233 0.125233 

0.2 1 2.16 4.6656 10.0777 21.76782 47.0185 101.56 

0.5 1 3 9 27 81 243 729 

0.8 1 3.84 14.7456 56.6231 217.4327 834.9416 3206.176 

0.99 1 5.34 28.5156 152.2733 813.1394 4342.165 23187.16 

0.0106838 0 1 1.32 1.3068 1.149984 0.948737 0.7514 

0.0106838 0 1 10.68 85.5468 609.0932 4065.697 26052.99 

slope at 1st and 99th 
percential about 0.01*5 / 
(x99 -x1)    

        

rhs matrix -- Class A 6th order 

0.01 1 0.95 0.9025 0.857375 0.814506 0.773781 0.773781 

0.25 1 3 9 27 81 243 729 

0.5 1 4.5 20.25 91.125 410.0625 1845.281 8303.766 

0.75 1 6 36 216 1296 7776 46656 

0.99 1 8.05 64.8025 521.6601 4199.364 33804.88 272129.3 

0.0070423 0 1 1.9 2.7075 3.4295 4.072531 4.642686 

0.0070423 0 1 16.1 194.4075 2086.641 20996.82 202829.3 

 

 

In this example the sample percentiles were taken at percentiles 1, 20, 50, 80, and 99 for 

class B and at percentiles 1, 25, 50, 75, and 99 for class A.  For the bimodal Class A data 

the percentiles were deliberately chosen for evaluation at the peaks and the trough of the 

distribution.  The heading "rhs" indicates the right hand side values. 
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This system of linear equations was solved using the Gauss-Jordan method to obtain the 

following coefficients.  

 
Name Solutions  Name Solutions 

b_0 -0.03656  a_0 0.119503 

b_1 0.193422  a_1 -0.27135 

b_2 -0.29771  a_2 0.204208 

b_3 0.194428  a_3 -0.04682 

b_4 -0.04034  a_4 0.005282 

b_5 0.002689  a_5 -0.00023 

b_6 -1.1E-17  a_6 -2.1E-18 

 

Results of the curve fit vs. true values (from the standard functions for the normal 

distribution) are shown below.  The probability density functions (pdf(x)) are shown on the 

next page.   
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The cumulative curve fitting method is insensitive to individual peaks in the training data, 

which may be a desirable feature to avoid over-fitting of the training data—a known 

problem in automatic classification. 
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Method 2—fitting polynomials directly to histogram data 

 

Suppose that a bin of a histogram contains  n  counts of total of  N  training points.  If  w is 

the bin width (that is the difference between the upper limit and the lower limit of the bin) 

and if  x  is the midpoint of the bin, then pdf(x) = n/(N w). 

 

For a unimodal distribution let x1, x2, x3, x4, and x5 represent the midpoints of bins in the 

histogram of the training data near the tails (1 and 5), the mode (3), and halfway down the 

slopes (2 and 4).  Let p1, p2, … p5  be the corresponding measured pdf values from the bins 

of the histogram. 

 

If the cumulative probability density is represented as 
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then 

 

5

732 xa76xa32a2
dx

))x(pdf(d
)x(fpd   . 

 

Working with pdf and pdf slopes for training data directly, we have the following system 

of linear equations for unknown coefficients, ai .  
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where for the direct pdf curve fit the value of    can be zero or )xx/(3.0 199  . 
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Using the same test distributions of unimodal and bimodal binomial distributions as before, 

we have: 

 

 
Percentiles rhs matrix -- Class B 6th order 

1 0.0258 1 1.32 1.3068 1.149984 0.948737 0.7514 0.578578 

10 0.1758 1 3.44 8.8752 20.35379 43.76065 90.32199 181.2461 

50 0.3989 1 6 27 108 405 1458 5103 

90 0.1758 1 8.56 54.9552 313.611 1677.819 8617.278 43028.94 

99 0.0258 1 10.68 85.5468 609.0932 4065.697 26052.99 162310.1 

slope1 0.064103 0 2 3.96 5.2272 5.74992 5.692421 5.259797 

slope99 -0.0641 0 2 32.04 342.1872 3045.466 24394.18 182370.9 

         

slope at 1st and 99th percential about +- 0.06*5 / (x99 -x1)     

         

 rhs matrix -- Class A 6th order 

1 0.0129 1 1.9 2.7075 3.4295 4.072531 4.642686 5.145643 

26 0.20165 1 6 27 108 405 1458 5103 

50 0.1295 1 9 60.75 364.5 2050.313 11071.69 58126.36 

74 0.20165 1 12 108 864 6480 46656 326592 

99 0.0129 1 16.1 194.4075 2086.641 20996.82 202829.3 1904905 

slope1 0.042254 0 2 5.7 10.83 17.1475 24.43519 32.4988 

slope99 -0.04225 0 2 48.3 777.63 10433.2 125980.9 1419805 

 

 

and solutions 

 

 
Name Solutions Name Solutions 

b_1 -0.12583  a_1 0.469255 

b_2 0.292666  a_2 -0.67197 

b_3 -0.30402  a_3 0.451127 

b_4 0.177455  a_4 -0.14177 

b_5 -0.04836  a_5 0.022939 

b_6 0.006088  a_6 -0.00185 

b_7 -0.00029  a_7 5.87E-05 

 

 

with the graphical results of the curve fit on the following page. 
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For the bimodal distribution (Class A) we assigned x1 and x5 to the tails, x2 and x4 to the 

first and second peaks, and x3 to the nadir between peaks.  Then we proceeded as before 

for unimodal Class B training data. 

 

This method tracks the individual peaks of the empirical pdf data better. 
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Thus we have come full circle in creating a new support vector machine-like classifier.  

The general paradigm of the support vector machine is to convert the raw feature vector 

)x,x,x( n21 x  into a transformed feature vector ))x(),x(),x(()( nn2211  x , 

which can be easily classified by a plane in n-dimensional space.  In our case we have 

chosen ))x(p),x(p),x(p()( nn2211  x .  Our decision plane is defined simply as 




n

1i

i )x(p  a constant such as zero.  In the case of pairs of "crossed" feature distributions 

which are individually not separable but are negatively correlated, then a transformation of 

the form  z = 1 –2x –2y +4xy  can be done to convert the initially useless features of the 

crossed pair into one useful ordinary feature.  This new hybrid feature can be treated in the 

same way as other ordinary features.   

 

 

Remarks 

 

Remark 1 

 

In dealing with multiple features, some features are strong, that is, highly discriminating, 

and some features are weak, or poorly discriminating.  For real feature data, often both 

kinds of features have an equal amount of noise.  One problem with linear classifiers in 

high dimensional feature space is that adding extra weaker features tends to add noise but 

not much discriminating signal.  As a result the overall signal-to-noise ratio of the linear 

classifier can decrease as more features are added, limiting peak performance. 

 

The local probability difference function  

 

)x(pdf)x(pdf

)x(pdf)x(pdf
)x(p

iBiA

iBiA
i




  

 

has a small value for weaker features in regions of overlap between class A and class B 

distributions.  For a constant amount of noise in the individual input feature x, the amount 

of noise reflected in p(x) is less for poorly discriminating regions of large overlap in the 

domain of x.  Thus adding weaker features does not necessarily degrade the signal-to-noise 

ratio of the diagonal projection 



n

1i

i )x(p
n

1
b  as much as would occur with an ordinary 

linear classifier.  Hence the overall power of the classifier can continue to increase with the 

number of added features. 
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Remark 2 

 

If feature x1 is perfectly correlated with feature x2, then the function p(x1) will be 

perfectly correlated with p(x2).  From the form of  

 





n

1i

i )x(p
n

1
b  

 

the correlation will merely increase the weight or contribution of the redundant feature x2.  

This effect is not especially harmful to performance of the classifier, except that it tends to 

dilute the contribution of the other features, making them less effective.  That is to say, 

correlation makes the overall classifier behave a little more like a single-feature classifier.  

For this reason correlated features are less desirable.  The best features have high intrinsic 

separability and are poorly correlated. 

 

 

Remark 3 

 

Because the diagonal projection 



n

1i

i )x(p
n

1
b  is a simple average, we have the 

possibility of deliberately introducing a weighted average, 

 





n

1i

ii )x(pw
W

1
b  

 

where W is the sum of the weights wi .  This makes some features more equal than others.  

One could examine the effects of different weighting schemes on the overall results of 

classification.  For example, one could take sets of correlated features and adjust weights 

within each set so that the weights of the separate sets are about equal.  This is one strategy 

for dealing with correlated features.  One could also give stronger features more weight 

than weaker features.  Note that the p transformation automatically gives lesser weight to 

features that have little intrinsic separability and even to regions of feature space where 

there is less separability.   

 

 

Remark 4 

 

Let us regard 



n

1i

i )x(p
n

1
b  as a sum of random variables.  If we lump together the 

highly correlated ones, then we can use the statistical properties of the features to predict 

the statistical properties of b'.  Such predictions are useful for validation of computer code 

and as a tool designing classifiers with a particular theoretical behavior.   
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Note that for all features the variance of p(x) , denoted V(p) is < 1, since the maximum 

expected value of  2p  is 1.  For "good" features we can say    1)p(VpE
2

  .  If 

these features (or internally correlated feature groups) are independent, then the variance 

 

n

1
1

n

1
)b(V

n

1i
2

 


  and the standard deviation 
n

1
)b(s  . 

 

Because of the central limit theorem of statistics, the weighted sums b'A and b'B will tend to 

have a normal distribution in shape as the number of features increases, even though the 

individual distributions of the p variables tend to be more like exponential distributions in 

shape.  Hence the separation of the classes in the b' domain looks like this: 

 

 

If added new features are independent and have a typical amount of separation, increasing 

the number of features averaged together will decrease the spread of the two distributions 

and greatly improve the frequency of correct classification, roughly as a function of n . 
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