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Abstract

Mathematical models of mitochondrial bioenergetics provide powerful analytical tools to help interpret experimental data
and facilitate experimental design for elucidating the supporting biochemical and physical processes. As a next step
towards constructing a complete physiologically faithful mitochondrial bioenergetics model, a mathematical model was
developed targeting the cardiac mitochondrial bioenergetic based upon previous efforts, and corroborated using both
transient and steady state data. The model consists of several modified rate functions of mitochondrial bioenergetics,
integrated calcium dynamics and a detailed description of the K+-cycle and its effect on mitochondrial bioenergetics and
matrix volume regulation. Model simulations were used to fit 42 adjustable parameters to four independent experimental
data sets consisting of 32 data curves. During the model development, a certain network topology had to be in place and
some assumptions about uncertain or unobserved experimental factors and conditions were explicitly constrained in order
to faithfully reproduce all the data sets. These realizations are discussed, and their necessity helps contribute to the
collective understanding of the mitochondrial bioenergetics.
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Introduction

Motivation for Model Study
The simulation of mathematical models of mitochondrial

bioenergetics provides a powerful analytical alternative to perform-

ing numerous exhaustive experiments. Such models aid in the

interpretation of experimental data and facilitate experimental

design for elucidating the supporting biochemical and physical

processes. Current experimental techniques limit the ability to

resolve details of the mitochondrial bioenergetic processes in vivo.

Specifically, many different chemical species and events must be

simultaneously monitored to track the profusion of enzymatic

reactions involved in the tricarboxylic acid (TCA) cycle, b-

oxidation, the electron transport system (ETS), ATP synthesis and

electrolyte dynamics. Currently, it is impossible to accurately and

simultaneously measure all of these enzymatic processes in vivo with

any degree of precision. Nevertheless, a plethora of experimental

data is available on mitochondrial bioenergetics that was collected

using a variety of techniques, experimental conditions, and tissue

sources. No existing experimental data set is complete that consists

of measurements of all of the supporting chemical species and

events; therefore, the correct interpretation of the available

experimental data in isolation or as a collective unit is difficult.

This requires careful consideration of all potential data-consistent

dynamics of the unobserved species and events. To aid in the

interpretation, a quantitative framework established via mathemat-

ical model development and parameter identification through

experiment simulation is commonly employed in a collective

manner so that a data-compatible, semi-mechanistic description

of the underlying bioenergetic processes emerges. With the addition

of each new experimental data set, the model matures either

through corroboration via evidence that supports the hypothesized

mechanisms encoded within the mathematical representation or

through modification of the model structure and parameters to

refine and/or reveal more insights and alter the supporting

hypothesized mechanisms underlying bioenergetic processes.

Several mathematical models have been developed [1–6] to

describe aspects of mitochondrial bioenergetics, but none currently

capture the complete dynamics of all metabolically relevant ion

and substrate regulatory functions observed during physiological

and pathophysiological conditions. As the next step towards

constructing a complete physiologically faithful mitochondrial

bioenergetics model, this manuscript describes the development

and corroboration of a mathematical model based on cardiac

mitochondria that builds upon these previously published models.

The Yugi and Tomita model [6] simulates mitochondrial

bioenergetics with the most breadth. They have compiled a large

mitochondrial bioenergetics model that qualitatively captures the

basic mitochondrial bioenergetic phenomena and included much

of the mitochondrial biochemistry from a variety of species and

organs. Although the Yugi and Tomita model has been

successfully modified to predict the dynamic response of b-

oxidation in the context of human disease [7], it does not

incorporate some details required to reproduce a few specific

bioenergetic regulatory features of interest herein. The Wu et al.

model [1] was chosen as the base model for this work due to its
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meticulous attention to thermodynamics and inclusion of the

various biochemical species present in the mitochondrial milieu.

Our model structure and the parameter values were selected so

that simulations of the experimental conditions on porcine or rat

heart mitochondria simultaneously fit the inorganic phosphate (Pi)

control over mitochondrial bioenergetics [8] and TCA interme-

diate dynamics [9] data sets upon which the Wu et al. model was

developed as well as additional experimental data on the extra-

mitochondrial calcium-dependent steady state matrix calcium

concentrations [10] and mitochondrial matrix volume dynamics

[11]. Numerous other experimental studies were used to fit

constants for the employed rate expressions as described in the

Supplemental Material (Text S1). The resulting extended model is

corroborated with additional experimental data on the steady state

behavior of the TCA cycle [9], volume dynamics under various

bioenergetic/pharmacological interventions [11] and the bioener-

getic/volume responses of mitochondria to variations in buffer

osmolarity [12]; a local sensitivity analysis was also used to explore

the robustness of the model structure relative to these simulated

experiments. This manuscript describes all phases of this process

including the model development, parameter estimation and

corroboration. It concludes with a discussion of the insights on the

bioenergetic processes obtained during the model extension.

Results

Model Development
The model integrates mitochondrial bioenergetic processes as

shown in Figure 1 including oxidative phosphorylation, the ETS,

the TCA cycle and related reactions, the Na+/Ca2+ cycle and the

K+-cycle. To maintain thermodynamic consistency, all reactions in

the model, as shown in Table 1, are represented as thermody-

namically balanced and reversible. (It should be noted that some of

the reactions could have been treated as irreversible reactions since

the conditions necessary to reverse them lie very far from

physiological conditions.) The model is primarily based on the

mitochondrial bioenergetics model proposed by Wu et al. [1] and

extended to address: 1) updated formalisms for the calcium-

sensitive dehydrogenases, as well as, several modified TCA cycle

related rate expressions; 2) a two-site model for the adenine

nucleotide transporter [13]; 3) the Na+/Ca2+ cycle including a

non-linear dependence on inner mitochondrial membrane poten-

tial difference, yinside - youtside, (Dy) for the calcium uniporter

(CaUNI) [14], magnesium inhibition kinetics for the CaUNI, and

the proton-regulation of the mitochondrial Na+/H+ exchanger

(mNHE); and 4) the K+-cycle including the mitochondrial ATP-

dependent K+ channel (mKATP), electrophoretic K+-leak and the

mitochondrial K+/H+ exchanger (mKHE) with the mitochondrial

matrix volume regulation dynamics hypothesized by Garlid [15].

Each addition is described in the following paragraphs.

The model proposed in the manuscript is a 73 state system of

differential-algebraic equations (DAEs) that consists of 65 non-

linear ordinary differential equations (ODEs); five algebraic

conservation expressions to compute matrix ATP, guanidine

triphosphate (GTP), reduced nicotinamide adenine dinucleotide

(NADH), ubiquinol (UQH2) and reduced cytochrome c (c2+); one

algebraic expression to compute matrix water volume; one

algebraic expression to compute inner membrane space (IMS)

water volume and one algebraic expression to compute matrix

chloride content (Cl2). The majority of the experimental data used

to parameterize the model proposed in this manuscript were

derived from heart tissue of either bovine, porcine or rat with some

data obtained from liver tissue. Part S1 of the Supplemental

Material (Text S1) lists the state variables and general parameters,

Part S2 contains the system of DAEs comprising the model and

Part S3 provides a detailed description of the rate expressions and

their parameters used to construct the system of DAEs. Part S3

also includes the fitness for some rate expressions calibrated with

additional experimental data not explicitly indicated in this

manuscript.

The TCA and related enzyme rate expressions are structurally

identical to Wu et al. except for a few alterations. To include the

calcium-dependence of matrix dehydrogenases, the rate expres-

sions for pyruvate dehydrogenase (PDH), isocitrate dehydrogenase

(IDH) and a-ketoglutarate dehydrogenase (aKGDH) were mod-

ified. PDH, an important regulatory enzyme involved with

mitochondrial bioenergetics, is responsible for the oxidative

decarboxylation of pyruvate, transacylation of an acetyl group to

CoA and production of reducing equivalents for the ETS. A

similar rate expression found in Wu et al. was used with a few

notable modifications. The proton, divalent cation and adenine

nucleotide regulatory mechanisms were inserted into the expres-

sion to reproduce the available data [16]. IDH is responsible for

the oxidative decarboxylation of isocitrate to produce a-ketoglu-

tarate and reducing equivalents for the ETS. The rate expression

used in the model is from Qi et al. [17]. The key TCA regulatory

enzyme, aKGDH, is responsible for the oxidative decarboxylation

of a-ketoglutarate transferring a succinyl group to CoA and

producing reducing equivalents for the ETS. The consensus hexa-

uni-ping-pong mechanism with the appropriate activation and

inhibition modifications was used to reproduce a wide variety of

data from four independent data sets [18–21].

Two additional rate expressions that deviated from Wu et al. are

the glutamate-aspartate exchanger (GAE) and dicarboxylate

carrier (DCC). The GAE is a key enzyme in the malate-aspartate

shuttle and is particularly important maintaining state 3 NADH

levels when mitochondria respire on glutamate and malate. This

electrogenic exchanger is activated by calcium and swaps

glutamate and a proton with aspartate taking advantage of the

energized state of mitochondria established by the ETS. The

enzyme reaction was modeled based on a rapid equilibrium bi-bi

mechanism with a third substrate, protons, added to the rate

Author Summary

Mathematically modeling biological systems challenges
our current understanding of the physical and biochemical
events contributing to the observed dynamics. It requires
careful consideration of hypothesized mechanisms, model
development assumptions and details regarding the
experimental conditions. We have adopted a modeling
approach to translate these factors that explicitly considers
the thermodynamic constraints, biochemical states and
reaction mechanisms during model development. Such
models have numerous constant parameters that must be
determined. Integrating thermodynamics and detailed
mechanistic representation of the principal phenomena
help constrain these parameter values; therefore, only a
handful of the total number of model parameters (,10%)
must be adjusted during parameter estimation through
model simulations. Additionally, all models must undergo
some form of corroboration prior to application. In
practice, this corroboration should challenge all possible
dynamics of the model, but it is recognized that in this
data rich world, we are surprisingly data poor. Eventually
such developed and corroborated models are capable of
supporting current hypotheses, guiding experimental
designs and contributing to the overall knowledge base
of biological processes.

Modeling Mito. Bioenergetics with Volume Dynamics

PLoS Computational Biology | www.ploscompbiol.org 2 January 2010 | Volume 6 | Issue 1 | e1000632



expression; it was fit to data from bovine heart mitochondria

[22–23]. The DCC exchanges TCA cycle intermediates malate,

succinate and hydrogen phosphate. This exchanger was also

modeled as forming a ternary complex with its substrates, and the

kinetic parameters were fit to rat liver mitochondrial experimental

data [24–25].

The ANT is the enzyme responsible for exchanging unchealated

ATP and ADP across the mitochondrial inner membrane.

Previous models used a ping-pong mechanism that employed a

single adenine nucleotide binding site whereby Dy affected only

ATP binding [26]. This type of mechanism has been shown to

inadequately describe the enzyme kinetics, and studies have

identified at least two distinct adenine nucleotide binding sites

[27–28]. The model presented by Metelkin et al. [13] addresses

these issues and was therefore chosen to describe the ANT kinetics.

The parameters were refit to the original data to include the effect

of Na+ and K+ chelation of adenine nucleotides.

The model proposed in this manuscript incorporates mitochon-

drial calcium dynamics similar to Nguyen et al. [2], Cortassa et al.

[3] and Dash and Beard [14]. The CaUNI is similar to the

expression found in Dash and Beard including the nonlinear

dependence on Dy with the addition of explicit magnesium

inhibition based on experimental data. In Part S3 of the

Supplemental Material (Text S1), the magnesium inhibition was

used to show that a single calcium dissociation constant with

magnesium acting as a competitive inhibitor against calcium

binding for the channel is capable of reproducing the experimental

data (consisting of both rat heart and liver mitochondria). The

Figure 1. A graphical representation of the bioenergetic elements and processes described by the model. Abbreviations: Oxphos,
oxidative phosphorylation elements; PYR, pyruvate; CoASH, coenzyme A; AcCoA, acetyl-coenzyme A; CIT, citrate; ISOC, isocitrate; aKG, a-
ketoglutarate; SCoA, succinyl CoA; SUC, succinate; FUM, fumarate; MAL, malate; OAA, oxaloacetate; GLU, glutamate; ASP, aspartate; NADH, reduced
nicotinamide adenine dinucleotide; NAD, GTP, guanidine triphosphate; GDP, guanidine diphosphate; oxidized nicotinamide adenine dinucleotide; Pi,
inorganic phosphate; UQ, ubiquinone; UQH2, ubiquinol; Cytc3+, oxidized cytochrome c; Cytc2+, reduced cytochrome c; PDH, pyruvate dehydrogenase;
CS, citrate synthase; ACH, acontinase; IDH, isocitrate dehydrogenase; aKGDH, a-ketoglutarate dehydroganse; SCoAS; succinyl CoA synthetase; SDH,
succinate dyhdrogenase; FH, fumarate hydratase; MDH, malate dehydrogenase; GOT, glutamate oxaloacetate transaminase; CI, Complex I; CIII,
Complex III; CIV, Complex IV; mHleak, proton leak; F1FO, F1FO ATP synthase; ANT, adenine nucleotide transporter; PIC, inorganic phosphate carrier;
GAE, glutamate/aspartate exchanger; OME, a-ketoglutarate/malate exchanger; DCC, dicarboxylate carrier; TCC, tricarboxylate carrier; PYRH, pyruvate-
proton cotransporter; GLUH, glutamate-proton cotransporter; mKATP, ATP-dependent K+ channel; mKHE, K+/H+ exchanger; mKleak, K+ leak; mNHE,
Na+/H+ exchanger; mNCE, Na+/Ca2+ exchanger; CaUNI, Ca2+ uniporter; AK, adenylate kinase.
doi:10.1371/journal.pcbi.1000632.g001

Modeling Mito. Bioenergetics with Volume Dynamics
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mNCE is similar to [2–3,14] with the noted addition of a

hypothetical matrix calcium activation mechanism. This calcium

activation mechanism resulted in comparable dynamics under the

calcium loading experiments used to fit Dash and Beard’s matrix

calcium inhibition mechanism for the CaUNI but was extended to

be analogous with the current experimental evidence regarding

the sarcolemmal isoform [29]. The mNHE was slightly modified

from Nguyen et al. to include a hill coefficient of 2 for the proton

regulation mechanism.

The ‘futile’ K+-cycle plays a major role in mitochondrial volume

homeostasis [30–34]. Potassium influx via the mKATP and

electrophoretically driven potassium uptake via leak pathways

must be balanced with potassium efflux from the mKHE.

Originally, the mKHE was thought to be regulated by the carrier

brake hypothesis [35]. This essentially involves some endogenous

element in the matrix, such as magnesium, that serves as the

‘‘carrier brake’’ that is reversibly released by matrix swelling.

Brierley and Jung call into question this hypothesis noting that

under physiological conditions, the known inhibitors of the

exchanger are present at concentrations much greater than their

respective inhibitory constants [36]. Garlid then proposed that the

mKHE is additionally regulated by matrix volume with membrane

Table 1. Modeled Mitochondrial Bioenergetic Reactions.

Reaction Enzyme Biochemical Reaction

Mitochondrial Reactions

JPDH Pyruvate dehydrogenase PYR + CoASH + NAD + H2O « CO2 + SCOA + NADH

JCS Citrate synthase OAA + AcCoA + H2O « CoASH + CIT

JACH Aconitase CIT « ISOC

JIDH Isocitrate dehydrogenase NAD + ISOC + H2O « aKG + NADH + CO2

JaKGDH a-Ketoglutarate dehydrogenase aKG + CoASH + NAD + H2O « CO2 + SCoA + NADH

JSCoAS Succinyl CoA synthase SCoA + GDP + Pi « SUC + GTP + CoASH

JSDH Succinate dehydrogenase SUC + UQ « UQH2 + FUM

JFH Fumarate hydratase FUM + H2O « MAL

JMDH Malate dehydrogenase NAD + MAL « OAA + NADH

JNDK Nucleoside diphosphokinase GTP + ADP « GDP + ATP

JGOT Glutamate oxaloacetate transaminase ASP + aKG « OAA + GLU

JCI Complex I NADH + UQ « NAD + UQH2

JCIII Complex III UQH2 + 2Cytc3+ « UQ + 2Cytc2+

JCIV Complex IV 2Cytcred + KO2 « 2Cytcox + H2O

JF1FO F1FO ATP synthase ADP + Pi « ATP + H2O

JAK Adenylate Kinase 2ADP « ATP + AMP

Exchangers and Ion Channels

JGAE Glutamate-aspartate exchanger GLUims + H+
ims + ASPmtx « GLUmtx + H+

mtx + ASPims

JOME a-Ketoglutarate-malate exchanger aKGims + MALmtx « aKGmtx + MALims

JPYRH Pyruvate-proton cotransporter PYRims + H+
ims « PYRmtx + H+

mtx

JGLUH Glutamate-proton cotransporter GLUims + H+
ims « GLUmtx + H+

mtx

JCITMAL Tricarboxylate carrier CITims + MALmtx « CITmtx + MALims

JISCOMAL Tricarboxylate carrier ISOCims + MALmtx « ISOCmtx + MALims

JSUCPi Dicarboxylate carrier SUCmtx + Piims « SU Cims + Pimtx

JMALPi Dicarboxylate carrier MALmtx + Piims « MALims + Pimtx

JANT Adenine nucleotide transporter ATPmtx + ADPims « ATPims + ADPmtx

JPIC Inorganic phosphate carrier Piims + H+
ims « Pimtx + H+

mtx

JmHleak Proton leak H+
ims « H+

mtx

JmKHE Potassium-hydrogen exchanger H+
ims + K+

mtx « K+
ims + H+

mtx

JmKATP ATP-dependent potassium channel K+
ims « K+

mtx

JmKleak Potassium leak K+
ims « K+

mtx

JCaUNI Calcium uniporter Ca2+
ims « Ca2+

mtx

JmNCE Sodium-calcium exchanger Ca2+
mtx + 3Na+

ims « Ca2+
ims + 3Na+

mtx

JmNHE Sodium-hydrogen exchanger Na+
mtx + H+

ims « Na+
ims + H+

mtx

Other Reactions Used in the Model

JHK Hexokinasea GLC + ATP « G6P + ADP

abbrev: mtx, matrix; ims, intermembrane space.
aReaction is not presented in Figure 1.
doi:10.1371/journal.pcbi.1000632.t001

Modeling Mito. Bioenergetics with Volume Dynamics
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stretching activating the exchanger [15]. Further evidence for this

mechanism is provided by the results of the analysis of the

mathematical model proposed in this manuscript discussed below.

Parameter Estimation
To parameterize the model, four independent data sets

consisting of 32 data curves were used from Bose et al. [8],

LaNoue et al. [9], Wan et al. [10] and Kowaltowski et al. [11]. In

the manuscript these studies will be henceforth referenced as the

Bose data set, LaNoue data set, Wan data set and Kowaltowski

data set, respectively. For each data set, the model was initialized

from a condensed, fully oxidized and de-energized state via

initialization simulations that replicated the experimental incuba-

tion conditions (i.e. Pi- and Ca2+-depletion) prior to parameter

estimation. The parameter identification was subsequently con-

ducted using simulation conditions closely mimicking those

of the experimental methods. The resulting values of the 42

adjustable parameters, their definitions, their best fit values and

their associated normalized local sensitivity coefficients (LSC) are

provided in Table 2. The following paragraphs describe the ability

of the model with these fitted parameter values to reproduce the

experimental results from these four independent experimental

data sets; pertinent details of the experimental conditions and their

replication through model simulations are described in the

Methods section.

The NADH-linked respiration components of the model were

fitted against the Pi-titration experiments performed by Bose et al.

[8]. In their manuscript, the authors reported a rich bioenergetic

data set using glutamate/malate energized, Pi-depleted mitochon-

dria under both state 2 and state 3 respiration conditions. State 3

was initiated and maintained with a sufficient bolus addition of

1.3 mM ADP. At this concentration, maximum respiration was

maintained for at least half a minute before the ANT exerted its

control due to limited substrate availability. Mitochondrial Dy,

NAD/NADH redox state, myocardial oxygen consumption

(MVO2), cytochrome c3+/c2+ redox state and matrix pH were

reported as the extra-mitochondrial Pi was progressively increased

from 0 to 10 mM. Figure 2 shows that the model was capable of

fitting this data set. Similar to the Wu et al. model, the model

presented in this manuscript produced state 3 Dy that reproduced

the Pi-titration trend but at 10–15 mV lower than the experi-

mentally measured state 3 Dy. To achieve the low matrix pH

levels observed experimentally, the mKHE was temporarily

replaced with an expression with sufficient activity to rapidly

equilibrate [K+]mtx[H+]ims/[K+]ims/[H+]mtx, and the initial matrix

[K+] was adjusted to approximately 125 mM. Without these

modifications for this data set, the model produced matrix pH of

up to 7.2–7.5 pH units under the experimental conditions

simulated. This issue is further explored in the Discussion. Overall,

the experimentally reported Dy, NAD/NADH redox state and

MVO2 Pi-titrations as well as the expected increase in volume with

increasing Pi are captured by the model.

The TCA cycle intermediate dynamics of the model were fitted

to the data set presented by LaNoue et al. [9]. In their

experiments, they used pyruvate/malate and pyruvate energized

mitochondria in both state 2 and state 3 respiration. State 3 was

initiated by the addition of 0.5 mM ADP and maintained using a

hexokinase trap. They reported detailed time series data of most of

the TCA cycle intermediates for each experimental condition. The

model was able to capture the salient features of the pyruvate/

malate energized mitochondrial TCA cycle intermediate dynamics

as shown in Figure 3. The model simulated pyruvate, citrate,

isocitrate, a-ketoglutarate, succinate and malate transients similar

to the experimental data. Figure 4 shows that the simulated

aspartate and glutamate dynamics using pyruvate energized

mitochondria under both state 2 and state 3 respiratory conditions

were also consistent with experimental data. In these simulations,

the endogenous matrix aspartate content provided sufficient

amino acid substrates for glutamate oxaloacetate transaminase

(GOT) while glutamate efflux via glutamate-H+ cotransporter

reduced the total available matrix asparate/glutamate pool.

The Na+/Ca2+ cycle was fitted to the steady state data from

Wan et al. [10]. In their experiments, they used ATP-energized

mitochondria and monitored steady state Ca2+ levels at varying

extra-mitochondrial Ca2+, Na+ and Mg2+ concentrations. The

ATP initialized the mitochondrial Dy to approximately 2120 mV

in the model simulations corroborating the data reported by

Territo et al. [37]. The model’s capability of fitting the extra-

mitochondrial Ca2+- and Na+-dependence on matrix steady state

Ca2+ concentrations is illustrated in Figure 5. The steady sate

matrix free Ca2+ data in the absence of extra-mitochondrial Na+ is

not shown nor was used in the parameter estimation, because the

Na+-independent calcium efflux was not included in the model

structure. (Note, with an electroneutral Ca2+/2H+ exchange

mechanism, the Na+-independent steady state matrix Ca2+ data

could be reproduced by the model; however, this mechanism was

not included in the current model formulation. The rationale for

this choice is described in more detail in the Discussion.)

The volume dynamics were fitted to the transient mitochondrial

matrix swelling data published by Kowalowski et al. [11]. They

measured the effect of varying matrix ATP levels on the swelling

dynamics in K-salt media with succinate-energized mitochondria.

Figure 6 shows that the volume dynamics were captured well by

the model. When a small amount of ATP was included in the

buffer in the presence of oligomycin, a F1FO ATP synthase

inhibitor, the mitochondria swelled to approximately 1.5 mL/mg

in about four minutes. When the ATP was supplemented with

ADP, oxidative phosphorylation was activated which lowered the

Dy and generated matrix ATP. This reduced the electrophoretic

potassium uptake and inhibited the mKATP channel, respectively,

so that the steady state volume reached a lower value of

approximately 1.2 mL/mg. When ATP was not present, all

residual matrix ATP was converted to ADP via reverse activation

of the F1FO ATP synthase. This fully activated the mKATP

channel, so that the final steady state volume reached a much

higher value of about 2.0 mL/mg.

Corroborating the Model through Simulation
Model corroboration was necessary to establish confidence in

the model resulting from these efforts. Herein, the corroboration

considered the robustness of the model to local parameter

perturbations, the qualitative agreement of predicted trends with

experimental observations, and the ability of the model to

reproduce experimental data that was not used in fitting its

parameters.

A local sensitivity analysis on the model was performed to

determine how robust the model simulations were to local

perturbations in the parameter values of all the experiments used

in the parameter identification. The absolute-value normalized

local sensitivity coefficients (LSC) were computed using Equation 2

as defined in the Methods section which considered variations for

every state variable dynamics uniformly throughout the simulated

experiment duration. The average LSC of all 359 parameters was

only 7.3861023 with a variance of 1.1861023. This implies on

average that a perturbation of 1% for a given parameter results in

less than a 0.738 +/2 0.118% change in the state dynamics of the

model for the experiments considered. Of the 42 adjustable

parameters, the average of the absolute-value normalized LSC

Modeling Mito. Bioenergetics with Volume Dynamics
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Table 2. Description of Adjustable Parameters (T = 25uC).

Parameter Definition Value (LSCx100) Units

VPDH
max

Pyruvate dehydrogenase max rate 127 (4.88) nmol/min/mg

VCS
max

Citrate synthase max rate 584 (1.64) nmol/min/mg

VACH
mf

Acontinase max forward rate 1.166105 (0.011) nmol/min/mg

VIDH
max

Isocitrate dehydrogenase max rate 6.846104 (0.341) nmol/min/mg

VaKGDH
max

a-Ketoglutarate dehydrogenase max rate 779 (2.18) nmol/min/mg

VSCoAS
mf

Succinyl CoA synthase max forward rate 3.936104 (0.216) nmol/min/mg

VSDH
mf

Succinate dehydrogenase max forward rate 7.006103 (2.26) nmol/min/mg

VFH
mf

Fumurate hydratase max forward rate 7.676105 (0.010) nmol/min/mg

VMDH
mf

Malate dehydrogenase max forward rate 965 (0.432) nmol/min/mg

KMDH
Pi

Malate dehydrogenase Pi binding constant 5.0061023 (0.156) M

bMDH
Pi

Malate dehydrogenase Pi activation constant 57.7 (0.193) unitless

VNDK
mf

Nucleoside diphosphokinase max forward rate 6.956103 (0.016) nmol/min/mg

VGOT
mf

Glutamate oxaloacetate transaminase max forward rate 1.096106 (0.251) nmol/min/mg

VPYRH
max

Pyruvate-hydrogen co-transporter activity 3.1261013 (0.651) nmol/M2/min/mg

VGLUH
max

Glutamate-hydrogen co-transporter activity 9.4461010 (0.763) nmol/M2/min/mg

VTCC
max

Tricarboxylate activity 7.136108 (0.471) nmol/M2/min/mg

VOME
max

a-Ketoglutarate-malate exchanger max forward rate 8.836103 (0.275) nmol/min/mg

VGAE
o

Glutamate-aspartate exchanger un-stimulated max rate 674 (0.865) nmol/min/mg

bGAE
Ca

Glutamate-aspartate calcium activation constant 27.2 (0.299) unitless

VDCC
max

Dicarboxylate carrier max rate 8.036103 (0.901) nmol/min/mg

VCI Complex I activity 5.636106 (0.962) nmol/M2/min/mg

VCIII Complex III activity 5.846105 (2.19) nmol/M3/2/ming/mg

KCIII
Pi

Complex III Pi binding constant 4.4061023 (0.976) M

bCIII
Pi

Complex III Pi activation constant 148 (1.54) unitless

VCIV Complex IV activity 44.0 (2.19) nmol/M/min/mg

VF1 FO

mf
F1FO ATP synthase activity 1.916107 (0.027) nmol/M/min/mg

VANT
mf

Adenine nucleotide translocase max rate 365 (7.52) nmol/min/mg

VPIC
max

Inorganic phosphate carrier max rate 7.596107 (0.012) nmol/min/mg

PmHleak
H

Proton permeability 8.066107 (5.01) nmol/M/min/mg

VmKHE
max

Potassium-hydrogen exchanger max rate 6.25 (3.58) nmol/nl/min/mg

GmKATP
K

ATP-dependent potassium channel conductance 6.75 (0.181) nmol/min/mg

KmKATP
iMgATP

ATP-dependent potassium channel MgATP inhibition constant 4.1061029 (0.061) M

KmKATP
iMgADP

ATP-dependent potassium channel MgADP inhibition constant 10.061026 (0.063) M

PmKleak
K

Potassium permeability 13.8 (4.87) nmol/M/min/mg

PCaUNI
Ca

Calcium uniporter calcium permeability 157 (0.403) nmol/min/mg

VmNCE
max

Sodium-calcium exchanger max rate 0.731 (0.360) nmol/min/mg

KmNCE
Ca

Sodium-calcium exchanger calcium binding constant 4.1761026 (0.326) M

KmNCE
Na

Sodium-calcium exchanger sodium binding constant 1.7261023 (0.018) M

KmNCE
aCa

Sodium-calcium exchanger calcium activation binding constant 1.6661026 (0.238) M

bmNCE
Ca

Sodium-calcium exchanger calcium activation constant 67.6 (0.296) unitless

VmNHE
max

Sodium-hydrogen exchanger max rate 9.456105 (0.061) nmol/min/mg

VHK
max

Hexokinase max rate 1.206105 (5.14) nmol/min/mg

abbrev: LSC, local sensitivity coefficient (Note, the LSC is an average of the absolute value 1st order sensitivity of a parameter with respect to all state variables, time
points and experimental conditions used in this study. It is explicitly defined in Equation 2. In brief, a d change in a given parameter translates to a dLSC change in the
model output defined in the Sensitivity Analysis section of the Methods.).
doi:10.1371/journal.pcbi.1000632.t002
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Figure 2. Model simulations (lines) of the Pi control exerted over mitochondrial bioenergetics shown in comparison with isolated
mitochondria experimental data (symbols) for the conditions outlined in Bose et al. [8]. Mitochondria were incubated in the assay buffer
identified in the Methods section under the Bose data set description. State 2 simulation results and experimental data are shown as solid lines and circles,
respectively. State 3 simulations results and experimental data are shown as dotted lines and squares, respectively. The simulated Pi-titration response is
shown with the experimentally measured data for the A) MVO2, B) redox state (percent NADH), C) Dy, D) reduced cytochrome c (percent c2+), E) matrix pH
and F) the simulated matrix volume.
doi:10.1371/journal.pcbi.1000632.g002

Figure 3. Model simulations (lines) of pyruvate/malate supported respiration on the levels of various TCA cycle intermediates
compared with isolated mitochondria experimental data (symbols) for the conditions outlined in LaNoue et al. [9]. Mitochondria were
incubated in the assay buffer identified in the Methods section under the LaNoue data set description. State 2 simulation results and experimental
data are shown as solid lines and circles, respectively. State 3 simulations results and experimental data are shown as dotted lines and squares,
respectively. The simulated TCA intermediate dynamics is shown with the experimentally measured data for A) the pyruvate utilization, B) the
accumulation of lumped citrate and isocitrate, C) the accumulation of extra-mitochondrial lumped citrate and isocitrate, D) the accumulation of
a-ketoglutarate, E) the accumulation of succinate and F) the residual malate content.
doi:10.1371/journal.pcbi.1000632.g003
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reported in Table 2 was 1.2661023 with a variance of 3.2361024.

These low sensitivities for the model parameter values did not

reveal any inherent problems with the model structure.

The model was also able to reproduce the well known

mitochondrial shrinkage/swelling dynamics in the presence of Pi

and ADP. Figure 2F shows that as the extra-mitochondrial Pi-

titration was increased, mitochondrial matrix water volume

increased with the state 3 volume being lower than the state 2

volume. Unfortunately, no volume data for the Bose data set was

given; however, the model results do corroborate the qualitative

observations presented therein with volume increasing for higher

amounts of Pi in the medium.

The model was directly corroborated by predicting the steady

state accumulation of extra-mitochondrial a-ketoglutarate during

state 2 respiration at various extra-mitochondrial malate concen-

trations as shown in Figure 7. As the extra-mitochondrial malate

concentration was increased, the total amount of a-ketoglutarate

generated from the oxidation of pyruvate was also increased

and exchanged with the malate in the media via the oxoglutarate-

malate exchanger. This exchanger is a critical component of the

malate-aspartate shuttle and is particularly important in heart

tissue.

Figure 4. Model simulations (lines) of pyruvate supported
respiration on the levels of the amino acids aspartate and
glutamate in comparison with isolated mitochondria experi-
mental data (symbols) for the conditions outlined in LaNoue et
al. [9]. Mitochondria were incubated in the assay buffer identified in
the Methods section under the LaNoue data set description. The
simulated accumulation of aspartate (solid line) and glutamate (dotted
line) are shown with experimentally measured aspartate (circles) and
glutamate (squares). A) State 2, B) State 3.
doi:10.1371/journal.pcbi.1000632.g004

Figure 5. Model simulations (lines) of the steady state matrix
free calcium relationship with respect to varying extra-
mitochondrial calcium levels in comparison with isolated
mitochondria experimental data (symbols) for the conditions
outlined in Wan et al. [10]. Mitochondria were incubated in the assay
buffer identified in the Methods section under the Wan data set
description. The steady state matrix free calcium concentration is
shown versus varying extra-mitochondrial calcium in the presence of 2
(solid line, circles), 5 (dashed, squares) and 20 (dotted line, diamonds)
mM NaCl with 5 mM MgCl2.
doi:10.1371/journal.pcbi.1000632.g005

Figure 6. Model simulations (lines) of the matrix volume
dynamics under various altered states of the mitochondrial
bioenergetics shown in comparison with isolated mitochon-
dria experimental data (symbols) for the conditions outlined in
Kowaltowski et al. [11]. Mitochondria were incubated in the assay
buffer identified in the Methods section under the Kowaltowski data set
description. A small amount of ATP, 200 mM, was included in the assay
buffer with either 0.5 mg/mg oligomycin (solid line, circles), 1 mM ADP
(dashed line, squares) or 0.5 mg/mg oligomycin+1 mM ADP (dotted line,
diamonds). In a separate experiment, no ATP was included in the assay
buffer with 0.5 mg/ml oligomycin (dash-dot line, triangles).
doi:10.1371/journal.pcbi.1000632.g006
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The model was again directly corroborated by predicting the

experimentally observed mitochondrial volume dynamics after

various bioenergetic and/or mKATP interventions. Figure 8

shows that when the mKATP channel was manipulated via

normal or pharmacological pathways, the model was capable of

predicting the matrix volume changes observed. This highlights

the interactions between K+-influx via mKATP and mKleak and

K+-efflux via mKHE and identifies their role in mitochondrial

volume regulation. Upon energization, electrophoretic uptake of

K-salts increased matrix volume in an osmotic fashion. The first

principles representation of mitochondrial volume dynamics was

captured well by the model.

Finally, the model’s ability to reproduce the expected trends in

bioenergetic variables under varying KCl buffer osmolarity

conditions was explored. Devin et al. [12] monitored changes in

state 2 and state 3 Dy, matrix pH, proton motive force, MVO2,

NADH level and matrix volume as the buffer osmolarity was

changed from a hypoosmolar to a hyperosmolar KCl medium

using rat liver mitochondria. Although the model presented in this

manuscript was optimized to reproduce experimental data

primarily from heart tissue, the effect of varying medium

osmolarities on key bioenergetic variables was qualitatively

reproduced. Only a partial quantitative comparison to this data

was possible due to tissue source differences, experimental

limitations, and model structure (as further described in the

Discussion). Figure 9A shows that the simulated state 2 MVO2

matched the experimental trend; however, the model simulated

the incorrect trend for state 3 MVO2. This is attributed to the

tissue source and model structure detailed below in the Discussion.

The simulated Dy trends matched the reported experimental

trends (state 2: 2140 to 2160 mV and state 3: 2125 to

2135 mV) as shown in Figure 9B. Also, the simulated DpH

(pHmtx-pHims) trends matched the reported experimental trends

(state 2: 230 to 245 mV and state 3: 235 to 250 mV) as shown

in Figure 9C. Although the simulated Dys and the DpHs are over-

and underestimated, respectively, the proton motive force (Dy +
2.303RT/F DpH) matched the experimental data very well as

shown in Figure 9D. In other words, as the medium osmolarity

varied the total thermodynamic driving force established by the

ETS was very similar to that observed experimentally. Devin et al.

observed that from hypoosmotic conditions, the NADH levels

increased and leveled off as the buffer osmolarity was increased

towards hyperosmotic conditions. As shown in Figure 9E, the

model was able to reproduce this trend very well. They also

reported that in hyperosmotic KCl medium, mitochondrial matrix

volume is efficiently regulated, such that the steady state volume is

essentially retained, but in hyposomotic KCl medium, the matrix

volume dramatically increases relative to isoosomotic conditions

Figure 7. Model predictions (line) of the steady state extra-
mitochondrial a-ketoglutarate concentrations during state 2
respiration with various extra-mitochondrial malate concen-
trations (symbols) is compared to the experimentally reported
values outlined in LaNoue et al. [9]. Mitochondria were incubated
in the assay buffer identified in the Methods section under the LaNoue
data set description. Extra-mitochondrial malate was incrementally
increased from 0 to 5 mM in the presence of 2 mM pyruvate. The
model was simulated at sufficient times to achieve a-ketoglutarate
steady state concentrations.
doi:10.1371/journal.pcbi.1000632.g007

Figure 8. Model predictions (lines) of mitochondrial volume in
comparison with isolated mitochondria experimental data
(symbols) for the conditions outlined in Kowaltowski et al.
[11]. Mitochondria were incubated in the assay buffer identified in the
Methods section under the Kowaltowski data set description. A) In each
case, 200 mM ATP was included in the assay buffer. Volume dynamics
were then measured with either 1 mM ADP and 30 mM diazoxide (solid
line, circles) or 1 mM ADP, 30 mM diazoxide and 300 mM 5-hydro-
xydecanoate (dashed line, sqaures) added to the assay buffer. B) In each
case, 0.5 ug/ml oligomycin was included in the assay buffer. Volume
dynamics were then measured with either 200 mM ATP (dashed line,
circles); 200 mM ATP and 30 mM diazoxide (solid line, square) or 200 mM
ATP, 30 mM diazoxide and 300 mM 5-hydroxydecanoate (dash-dot line,
diamond) added to the assay buffer (note, the dash-dot line is hidden
by the solid line).
doi:10.1371/journal.pcbi.1000632.g008
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[12]. Figure 9F shows that the model volume mechanics

adequately reproduced this phenomenon. Overall, the model

corroborated the trends of the changes in bioenergetic variables as

buffer osmolarity varies.

Discussion

The model presented in this manuscript is based on previous

models [1–4] and includes integrated calcium dynamics and a

detailed description of the K+-cycle and its effect on mitochondrial

bioenergetics and matrix volume regulation. Simulations were

used to fit 42 adjustable parameters to four independent

experimental data sets consisting of 32 data curves of both

transient and steady state data. A sensitivity analysis was

performed on the model to reveal the most sensitive components

of mitochondrial bioenergetics relative to the experimental

conditions modeled herein and revealed no inherent model

structural problems. Finally, several simulations were performed

to corroborate the model.

The mitochondrial volume dynamics and the associated K+-

cycle appear to play an important role in cellular and

mitochondrial bioenergetics [15,38]. Energy transduction, namely

adenine nucleotide outer membrane permeability, is regulated

under both physiological and pathophysiological conditions [39].

The IMS volume is partly responsible for this regulation by having

a direct effect on the cellular bioenergetics in vivo [38]. For

example, the adenine nucleotide outer membrane permeability is

typically high in freshly isolated mitochondria due to matrix

contraction following potassium depletion. During mitochondrial

swelling, the increase in matrix volume causes a reciprocal

decrease in IMS volume that enables creatine kinase to bind to

the voltage-dependent anion channel thus reducing the adenine

nucleotide outer membrane permeability. Matrix contraction also

occurs in vivo during ischemia. This contraction interferes with the

regulation of the adenine nucleotide outer membrane permeabil-

ity, thereby enabling mitochondria to burn up all the cells

available ATP and primes the cell for apoptosis before reperfusion.

As a natural defense, potassium influx via mKATP increases

matrix volume and helps mitigate the detrimental effects of

increased adenine nucleotide outer membrane permeability [38].

As a first step to consider these important volume regulatory

events, the model incorporates simple volume dynamics based on

osmotic pressures generated by the K+-cycle and other associated

processes. Future work studying this intricate energy transduction

mechanism is in the beginning stages of development.

The hypothesized volume-dependent mKHE by Garid [15] was

incorporated into the model. This volume dependence is necessary

to maintain sufficient potassium efflux at high Dy during mKATP

opening. Without this dependence, the mKHE would be an

ineffective volume regulatory mechanism, and the outer mem-

brane would rupture. Specifically, potassium influx induced upon

mKATP opening is maintained and essentially constant at a given

Dy because the current cannot sufficiently depolarize the Dy and

because of thermodynamic considerations [33]. Also, model

simulations revealed that matrix free Mg2+ only decreased from

0.4 mM to approximately 0.15 mM (depending on total amount

of Mg-ligands, such as ATP and Pi, present in the matrix and the

matrix volume) under the experimental conditions. This decrease

is insufficient to serve as the primary volume controller required by

the carrier-brake hypothesis. These observations require that

mKHE posses some sort of volume dependence enabling an

effective volume controlling mechanism. This hypothesis was

supported by simulation results presented in Figures 6, 8 and 9F

whereby the exquisite control of matrix volume exhibited by

mKHE was revealed.

Figure 9. Model predictions (lines) of mitochondrial bioenergetic parameters under differing osmotic KCl medium with isolated
mitochondria experimental data (symbols) for the conditions outlined in Devin et al. [12]. Mitochondria were incubated in the assay
buffer identified in the Methods section under the Devin data set description. As the osmotic pressure of the KCl medium was adjusted from
hypoosmotic to hyperosmotic conditions, A) MVO2, B) Dy, C) DpH (defined as pHmtx-pHcyt), D) proton motive force (Dy+2.303RT/FDpH), E) %NADH
level and F) matrix volume predicted by the model is presented.
doi:10.1371/journal.pcbi.1000632.g009
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To faithfully reproduce all the data sets, a certain network

topology had to be in place and some assumptions about uncertain

or unobserved experimental factors and conditions were explicitly

constrained. It was found that these network features and

experimental assumptions described below were necessary to

successfully recreate all the experimentally observed data and

trends. The necessity of these realizations contributes to our

collective understanding of the mitochondrial bioenergetics.

The intrinsic thermodynamic dissipation of a system can

override or mitigate enzymatic regulation [40]. For example, in

glutamate/malate energized mitochondria, aKGDH serves as a

key regulatory enzyme responsible for maintaining sufficient

NADH levels sustaining MVO2 rates in state 2 and state 3. This

reaction is far from equilibrium making it sensitive to its regulatory

mechanisms. In contrast, malate dehydrogenase (MDH) is much

closer to equilibrium so its regulatory mechanism less effectively

controls the dehydrogenase rate. In state 2, aKGDH is a major

enzyme in the pathway responsible for regenerating the matrix

ATP that is consumed by the F1FO ATP synthase to help the ETS

establish a high Dy. In state 3, this enzyme’s activity helps dictate

which path the carbon substrates flow through the TCA cycle.

The regulation for this enzyme helps enable mitochondria to

achieve the steady state NADH levels observed with the Bose Pi-

titration data seen in Figure 2B. The relative rates identified from

the model simulations (not shown) predicted that the regulation of

MDH played less of a role in the steady state NADH Pi-dependent

levels than the regulation of aKGDH.

Animal model species specific parameterization may be

required for detailed mathematical models of the mitochondrial

bioenergetics; however, at this time there is not sufficient data

from a single species to fully characterize the dynamics. For

example, all the kinetic parameters for the aKGDH expression

were found using independent data sets obtained from porcine

heart mitochondria as described in Part S3 of the Supplemental

Material (Text S1) [18–21]. Only VaKGDH
max , the maximum rate

constant, was refit with the fully integrated model simulations that

used data from both porcine and rat heart mitochondria. Future

compensation for the species specific enzyme kinetic differences

between these two isozymes may further improve the fit of the

simulated a-ketoglutarate dynamics to the experimental data in

Figure 3D.

The tissue type used for the supporting experiments is also

important for parameterization of a semi-mechanistic mathemat-

ical model. For example, in the model, several exchangers and

cotransporters are reported to possess low activity in heart tissue

compared with other tissues [41]. Although the definition for low

activity was ambiguous; herein to reproduce the experimental

data, it was necessary that some of these processes possess

unexpectedly elevated activities. For example without sufficiently

active glutamate-H cotransport, the model was unable to

reproduce the observed aspartate/glutamate dynamics reported

by LaNoue et al. [9] in Figure 4. The glutamate-H cotransporter is

responsible for the electroneutral transport of the amino acid

glutamate and a proton through the inner-mitochondrial mem-

brane down a concentration gradient. This provides a glutamate

leak pathway that reduces the matrix aspartate/glutamate pool.

Reducing aspartate availability in the matrix prevents the

thermodynamically favorable reaction catalyzed by GOT from

consuming all of the endogenous aspartate. Alternatively to the

proposed elevation in the activity of the cotransporter, it has been

argued that there may be two separate aspartate pools [42] in

mitochondria. Compartmentalizing the total aspartate pool with

slow or volume-dependent transport rates would also enable the

model to reproduce the aspartate/glutamate dynamics in the

LaNoue data set. As further indirect support for the proposed

elevated glutamate-H cotransporter activity, increased glutamate

influx helps enable state 2 and state 3 respiration on glutamate and

malate for the Bose data set simulations as shown in Figure 2. At

this point, neither mechanism has been proven experimentally.

Another exchanger reported to possess low activity in heart

tissue is the dicarboxylate carrier [43]. This carrier is responsible

for the exchange of primarily Pi, malate and succinate. However,

without sufficiently high activity, the succinate-energized mito-

chondrial matrix volume data reported by Kowaltowski et al. [11]

could not be reproduced by the model. Elevated DCC rates were

necessary to provide sufficient succinate influx allowing electro-

phoretic potassium uptake. If the DCC activity was limited to the

reported maximum rate [44], the mitochondrial Dy would not

polarize substantially and mitigate the reported potassium-

dependent volume increase.

The chosen substrates for the DCC also affected the model

simulation capabilities. In the model formulation, only Pi, malate

and succinate were assigned as the DCC substrates. Fumarate is

also reported to be a substrate for the DCC [45] but was not

included in the model due to insufficient data to characterize the

kinetics. Including fumarate in the list of the DCC substrates

would enable to the model to reproduce the accumulated fumarate

data from LaNoue data set (not shown). Also, the omission of

fumarate as a substrate for the DCC in addition to the DCC

elevated activity contributed to the simulated state 3 malate net

oxidation present in Figure 3F.

An additional tissue source related phenomena uncovered

during model development was the choice of the calcium

dissociation constant for the CaUNI. During model development,

a single calcium dissociation constant was chosen to model the

CaUNI kinetics from rat heart and liver tissue. This was achieved

by considering the competitive nature of magnesium inhibition

with respect to calcium binding. It is plausible that the major

difference between liver and heart CaUNI kinetics is due to

different expression levels versus different calcium binding

affinities (as may be plausible between different species); however,

more research concerning this matter needs to be done.

Mitochondria from specific tissue types are phenotypically

different and contain various amounts of electron transport

proteins, matrix proteins and lipid types optimized to support

their designated function. Specifically, heart mitochondria possess

much higher electron transport activity relative to liver mitochon-

dria [46]. Therefore, we partially attribute the discrepancies

between the simulated and reported values for the MVO2, Dy and

DpH, and under varying KCl buffer osmolarity conditions to

differences in the tissue source. The experiments outlined in Devin

et al. [12] were done using mitochondria isolated from rat liver

while the model was primarily developed to fit data obtained

from heart tissue. This is exemplified in Figure 9A–C. The model

simulated much higher state 3 MVO2 rates (200 versus

100 nmolO/min/mg); however, the state 2 MVO2 trends

(quantitative data not given) matched those reported. The

measured liver mitochondria Dys were several 10 s of mVs lower

relative to simulated Dys and is also partially attributed to the

model’s overestimation of state 3 Dy seen in Figure 2C. Although

the Dy and DpH energetic variables were quantitatively different,

it is interesting to note that the thermodynamic variable (proton

motive force) was consistent across the tissue types as would be

expected. Moreover, the authors suggested that the measured

hypoosmolar Dy may have been in error due to volume

dependent rhodamine 123 accumulation. This accumulation

may partially account for the discrepancy between the measured

hypoosmotic state 2 proton motive and that simulated. Thus the
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model predicts that the cardiac mitochondrial bioenergetic

response to varying buffer osmolarity under the conditions

presented in Devin et al. would produce Dys in the range of

2200 to 2140 mV, DpH in the range of 7 to 30 mV (0.2 to

0.5 pH units) and MVO2 rates in the range of 200 to 15 nmolO/

mg/min.

The translation of the biochemical processes to appropriate

mathematically descriptive expressions plays a large role in the

simulated dynamics. For example, the citrate and isocitrate

overestimation by the model as shown in Figure 3C is attributed

to the simple passive exchange process used to model the

tricarboxylate carrier (TCC). Replacing this exchange process

with a more kinetically descriptive mechanism [47] would help

prevent the simulated early accumulation of citrate and isocitrate;

however, there is insufficient data to parameterize such a

descriptive mechanism. Partially as a function of the simplified

description, the activity of the TCC is elevated even though it is

reported to possess low activity in heart tissue compared to that in

liver tissue [41]. Additionally, the passive TCC exchange process

required higher PDH rates in order to sustain sufficient citrate,

isocitrate, a-ketoglutarate and succinate levels during both state 2

and especially state 3 respiration seen in Figure 3. Together, the

TCC and DCC modeling approximations contribute to the

simulated higher malate net oxidation rates than those observed in

the LaNoue data set (Figure 3F) since the TCC also exchanges

malate across the inner-mitochondrial membrane [47].

During the model development, it is important to consider any

artifacts in the experimental data that may have been inadver-

tently generated during the mitochondrial isolation. For example,

the extraction medium must contain Pi to achieve stable, well-

coupled mitochondria [41]. To enable the Bose study with Pi-

depleted mitochondria, a special isolation procedure was neces-

sary. This Pi-depletion method may have dramatically changed

some of the mitochondrial protein phosphorylation states thus

having an unknown regulatory effect [48]. Within the short time

scales of the Bose experiments, the slower phosphorylation and

dephosphorylation events may not have sufficiently occurred upon

the Pi-titration. Specifically, the Pi-depletion method may have

altered the proton permeability via cation/proton exchange and/

or anion/proton cotransport activity. In these experiments, the

buffer pH was fixed at 7.1. With the mKHE rate expression

identical to that used with the other data sets, the simulated Dy is

underestimated while the DpH is overestimated, but the total

energetic contribution from both Dy and DpH was nearly

identical to that reported. This compensation results from their

thermodynamic equivalence with some important kinetic differ-

ences. To achieve the low DpH values reported experimentally,

the volume-dependent mKHE expression had to be replaced with

a high activity K+/H+ exchanger. It is postulated that the Pi-

depletion dramatically altered the proton permeability. This is

manifested in the model by essentially creating a high activity

rapid equilibrium exchanger mechanism that is not supported by

the volume-dependent mKHE expression. However, this high

activity K+/H+ exchanger is not compatible with the volume

dynamics presented in the Kowaltowski data set, so it is only used

for the Bose data set simulations since their isolation procedure

was done without Pi. Although we chose to address this

discrepancy using a high K+/H+ exchanger, there are several

alternative mechanisms that could also potentially describe or

contribute to the DpH discrepancy. For example, the mNHE

could be responsible for converting more of the DpH into the Dy
than the model predicted. It is possible the mNHE activity is

underestimated; however, the models ability to match the reported

steady state matrix free calcium concentration at varied buffer

sodium concentrations shown in Figure 5 indicate this is not the

case. Alternatively, the differences between porcine and rat heart

mitochondria may be responsible for the dramatic change in

proton permeability. The Bose data set was obtained using porcine

heart mitochondria, while rat heart mitochondria were used for all

the other datasets. It is not likely that the proton permeability

associated with these two species is significantly different.

Conversely, the volume-dependent mKHE expression may not

sufficiently capture the phenomena. The model fits and corrob-

oration simulations presented in Figure 6 and Figure 8, respec-

tively, refute this conclusion. From this discussion, it is evident that

more experimental data measuring DpH and Dy under various

conditions is needed to reduce this uncertainty.

To simulate the precise experimental conditions during model

development, a few explicit assumptions were necessary. For

example, the LaNoue data set reported using 3–4 mg of

mitochondrial protein; however, as little as a 25% change in

mitochondrial load can dramatically alter the total substrate

consumption and product accumulation during high MVO2 rates.

Hence for these simulations, the conditions needed to be known

with more certainty. The reported malate concentration was used

to estimate the mitochondrial load. The initial malate content in

state 2 and state 3 experiments with pyruvate was reported to be

1430 nmol/mg. This required that the mitochondrial load be

3.5 mg/mL using the stated 5 mM malate concentration. To

compute this estimate, it was necessary to also consider the

pyruvate concentration. The pyruvate concentration was 2 mM;

however after 8 minutes of state 3 respiration, the pyruvate

utilization was 848 nmol/mg. Considering the 1 mL chamber

volume, this implied that the total initial pyruvate concentration

was 2.5–3.4 mM and not 2 mM. In an attempt to address these

potential data inconsistencies, the model simulations were fit to the

data using a mitochondrial load of 3.5 mg/mL and the reported

state 3 pyruvate utilizations were subsequently adjusted to be

consistent with an initial pyruvate concentration of 2 mM.

All mathematical models are abstractions of the underlying

process; the level of detail included in the model is dependent upon

the application. This is particularly true for the calcium dynamics

associated with mitochondrial bioenergetics. There are known

omissions in this and previous models of these calcium dynamics.

The mitochondrial Na+/Ca2+ dynamics were simulated using a

simplified Na+/Ca2+ cycling mechanisms with only the CaUNI,

mNCE and mNHE processes represented. This simplification

prohibited a mechanistic representation of the actual physiological

event. For example, the omission of the rapid mode of calcium

uptake (RAM) [49] process necessitated a high CaUNI influx to

reach the steady state calcium measurements (from the Wan data

set) within a few minutes of extra-mitochondrial calcium addition.

(Note, with this higher calcium influx rates, the model still predicts

the Na+/Ca2+ cycle consumes less than 1% of the proton

electrochemical gradient established by the ETS.) Also, the Na+-

independent calcium efflux mechanism is not included in the

model formulation since the underlying process is uncertain

(electroneutral or electrogenic [50–52]) even though it is estimated

to contribute up to 33% of total calcium efflux in heart tissue [53].

This omitted calcium efflux mechanism is insensitive to magne-

sium and prevented adequate fits to the Mg2+-titration data

presented in Wan et al.; however, Mg2+-dependence of the

CaUNI and mNCE did enable the simulations to reproduce the

reported steady state matrix calcium levels within a few 100 nM

(not shown). An explicit, detailed study of the Na+/Ca2+ dynamics

should be modeled under various experimental conditions to fully

characterize and understand this process at a more mechanistic

level.
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In summary, the model presented in this manuscript proposes

an extended mitochondrial bioenergetics model targeted at the

cardiac myocyte with the parameters estimated using four

independent data sets consisting of 32 data curves. It was capable

of fitting the data with good fidelity, had relatively little parameter

sensitivity relative to the experimental conditions modeled herein

and was capable of adequately modeling metabolic trends during

the various conditions simulated. The resulting model simulations

reproduce observed mitochondrial volume dynamics lending

additional support to the current prevailing theory of mitochon-

drial volume regulation through the mKHE volume-sensitive

exchange rate. The model builds upon previous successes and

helps refine and establish a global model framework relating to

mitochondrial bioenergetics. During the model development, a

certain network topology had to be in place and some assumptions

about uncertain or unobserved experimental factors and condi-

tions were explicitly constrained to reproduce all the data sets.

Specifically, the effect of intrinsic thermodynamic dissipation of

the system on enzymatic regulation, importance of animal species

and tissue sources differences, mechanistic detail of the model and

potential impact of the experimental environment all help

constrain the model formulation contributing to the construction

of a successful and physiologically faithful model.

The model can serve as a foundation for further extension and

refinement efforts. Future work may consider more detailed and

mechanistic mathematical abstractions for the ETS and TCC,

Ca2+ dynamics including the RAM and Na+-independent Ca2+

efflux pathways, catabolic (i.e., glutamate dehydrogenase) and

anabolic (i.e., pyruvate carboxyalse) reactions and b-oxidation

pathways enabling integration into whole cell models of cardiac

myocytes. Each of these additions will require additional

experimental data taken under well controlled and documented

conditions in order to be properly reproduced by the model

proposed in this manuscript. For example, changing the passive

exchange mechanism of the TCC to a more mechanistic, saturable

exchange process should enable better fits to the LaNoue data set.

This change would keep matrix citrate and isocitrate at sufficient

levels to maintain a-ketoglutarate and succinate concentrations

experimentally observed allowing fumarate to be included in the

list of DCC substrates. With fumarate being removed from the

matrix by the DCC, SDH inhibition would be mitigated and the

lower branch of the TCA cycle would accelerate and prevent net

oxidation of malate observed in the LaNoue experimental data set.

Additionally, reproducing the respiratory control ratios as done in

silico by Korzeneiwski and Mazat [54] using the experimentally

measured respiratory control ratios measure by Rossignol et al.

[55] would help constrain, define and corroborate the mathemat-

ical abstractions for the ETS, F1FO, ANT and PYRH mecha-

nisms. Experiment design with this model could further reduce

parameter uncertainties and help test alternative hypotheses

including some postulates made in the Discussion. Although much

work is ahead, we feel that this model takes a step towards a more

complete physiologically faithful mitochondrial bioenergetics

model.

Methods

Numerical Solutions
The DAEs describing the model were numerically integrated

using MATLABH (2008b) and the stiff ode solver ode15s (1023

relative tolerance and 1029 absolute tolerance for matrix and IMS

state variables and 1026 for all others). To increase computational

efficiency, vectorized functions were used during model develop-

ment in the MATLABH environment. Parameter optimizations

and sensitivity analyses were done on a cluster of four 8-core Intel

Xeon 3.4 GHz CPUs each with 16 GB of memory and running

the Windows 2003 server platform using the Parallel Computing

Toolbox. The results obtained were displayed using MATLABH.

Objective Function
The objective function used for parameterization of the model

is defined as

f pð Þ~
X

k

1

Mk

XMk

j~1

1

Nj,k

XNj,k

i~1

yi,j,k pð Þ{Yi,j,k

si,j,k

� �2

ð1Þ

where f is the objective function evaluated at a given parameter

point p, yi,j,k is the model output, either a state variable or

computed rate, corresponding to the ith experimental data point

in the jth experimental data curve for the kth data set evaluated at

the parameter point p, Yi,j,k is the ith experimental data point in

the jth experimental data curve for the kth data set, si,j,k is the

standard deviation for the ith experimental data point in the jth

experimental data curve for the kth data set, Nj,k is the number of

data points in the jth experimental data curve for the kth data set

and Mk is the number of data curves for the kth data set. When no

statistical data were given with the experimental data, a 5–10%

relative error was assumed.

Parameter Identification
Fitting such large, non-linear models to data with many

unknown parameters and initial conditions requires a robust

model structure and many independent data sets to appropriately

constrain the parameters. The model presented in this manuscript

consists of a total of 359 parameters. These parameters were

identified using three methods: i) 262 parameters were fixed

according to previously published values in the literature (see Part

S3 of the Supplemental Material (Text S1)), ii) 55 parameters were

found by minimizing the sum of the squares of the difference

between simulated rate expressions and the published data using

Equation 1 (see Part S3 of the Supplemental Material (Text S1)),

and iii) a custom parallelizable Monte Carlo optimization

algorithm based on simulated annealing was used to fit the

remaining 42 parameters by minimizing Equation 1 with

replicated experiments [8–11]. Global candidate points were first

identified using the simulated annealing approach and refined with

a local search using a gradient-based algorithm (MATLABH’s

fmincon function).

Sensitivity Analysis
The local sensitivity analysis was done using the absolute

normalized local sensitivity coefficient (LSC) for quantifying how

much the model output trajectories for the simulated experimental

conditions changed in response to small perturbations about the

identified parameter set. This LSC is defined as

LSC ‘ð Þ~ 1

H

X
k

1

Mk

XMk

j~1

1

Nj,k

XNj,k

i~1
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pð Þ p‘
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where LSC is the normalized local sensitivity coefficient for the ,th

parameter, yi,j,k is the model output of the ith state at the jth time

point for the kth experimental condition evaluated at the

parameter point p, p, is the parameter whose sensitivity is being

approximated, Nj,k is the number of states considered for the

analysis (note, all 73 states were included in the sensitivity analysis)

at the jth time point for the kth experimental condition, Mk is the
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time points used in the analysis (note, Mk was fixed and defined as

5 equally spaced time points) for the kth experimental condition

and H is the total number of experimental conditions replicated

from [8–11]. (Note that although the indices used for the LSC

computation are similarly defined, they have different meaning.)

Equation 2 was approximated using a centered finite difference

using the numerical methods outlined in Conn et al. [56]. To

minimize numerical artifacts when computing the LSCs, the

model was integrated with stricter tolerances (1029 relative

tolerance and 10212 absolute tolerance tolerance for matrix and

IMS state variables and 1029 for all others). This unit of measure is

used in Table 2 to discern the 1st order, one-at-a-time, effects of

small parameter perturbations. A parameter that possesses a large

LSC is interpreted as having a substantial influence on the model

state trajectories and steady state values.

Simulating the Experimental Conditions
To simulate the various data sets used to parameterize and

corroborate the model, the appropriate experimental conditions

were taken into consideration. The temperature at which the

experimental data were obtained, the mitochondrial loads applied

in each experiment, the initial state of the mitochondria in the

experimental system and the precise nature of the experimental

environment, specifically the buffer composition and osmolarity

were considered. These points are discussed below.

Temperature dependence. The rates of biochemical

reactions can be extremely sensitive to temperature. A

temperature induced change in activity can easily result in

doubling or even tripling of some enzymatic reactions for a

temperature difference of only 10uC. Since the experiments used

to parameterize the model were done at different temperatures,

the rates were adjusted according to a standard Q10 value of 2.25

or based specifically on the enzyme’s activation energy and the

Arrhenius rate law. The Arrhenius rate law temperature

correction is only truly valid for reactions whose substrates are

in rapid equilibrium with their respective substrate-enzyme

complexes, and the catalysis step is rate limiting [57]. This

becomes significant when dealing with convex Arrhenius plots.

The source of convexity is controversial and usually involves

different active substrate-enzyme isoforms at different

temperatures. We assumed that even though some of the

biochemical reactions in the model were not reactions whose

substrate-enzyme species were in rapid equilibrium, we could still

obtain a reasonable approximation of the temperature correction.

In the case of an enzymatic reaction displaying a convex Arrhenius

plot, only the linear region in the temperature range of 4–37uC
was used to adjust the rates. Table S1.3 in the Supplemental

Material (Text S1) shows the compiled list of activation energies

used in this model study.

Model initialization. It is especially important to use the

appropriate initial conditions by either including them in the

fitting procedure as variables or conditioning the model by

simulation to set common initial operating conditions. We chose

the latter and standardized the initial conditions by simulating the

model for sufficiently long times with the experimental conditions

outlined in each paper. For example, the Bose data set was derived

from de-energized, equilibrated mitochondria, the LaNoue data

set was derived from de-energized, non-equilibrated mitochondria,

the Wan data set was derived from energized, equilibrated

mitochondria, the Kowaltowski data set was derived from de-

energized, non-equilibrated mitochondria and the Devin data set

was derived from energized, equilibrated mitochondria. Once the

model was simulated to its fully oxidized state, appropriate

modifications to state variables were performed to mimic the

experimental conditions as described in each paper used for

parameter estimation.

Mitochondrial loads. Each experiment used different

mitochondrial loads; therefore, for each data set, the buffer

water volume relative to the mitochondrial protein content was

varied. This is important because the higher the mitochondrial

load, the higher the absolute rate of consumption for carbon

substrates and oxygen making time series data essential for

parameterization purposes. The Bose data set experiments were

performed at a mitochondrial load of 1 nmolCyta/mL, or

approximately 1 mg mitochondria/mL [58–59]. The LaNoue

data set experiments used a much larger mitochondrial load of

3–4 mg mitochondria/mL. The reported 3–4 mg mitochondria/

mL for the simulations was averaged (as mentioned in the

Discussion). The Wan data set experiments were performed at

2 mg mitochondria/mL. The Kowaltowski data set experiments

used a mitochondrial load of 0.1 mg mitochondria/mL. The

Devin data set experiments reported using 1 mg/mL; however, for

the experimental conditions imposed, the liver mitochondria

maintained relatively low MVO2 rates (approximately 100 nmol

O/min/mg) for the duration of the 10 minute experiment. For

identical conditions, the model simulates MVO2 rates greater than

three times this value; therefore, in order to maintain pseudo-

steady state conditions for 10 minutes, the mitochondrial load had

to be adjusted to 0.1 mg/mL. This prevented the model from

simulating considerable ADP consumption rates in order to

maintain steady MVO2 rates for 10 minutes.

Bose experimental conditions. Before simulating the

experimental conditions (T = 37uC) in the Bose data set, the

model had to be initialized to recreate the Pi-depleted state of the

mitochondria. This was done by simulating the model to its fully

oxidative state in the presence of ATP followed by a quick Pi-

depletion step. Unfortunately, the exact details concerning the Pi-

depletion protocol could not be found. For parameter estimation,

the basic buffer composition consisted of 125 mM KCl, 15 mM

NaCl, 20 mM K-Hepes, 1 mM KEGTA, 1 mM K2EDTA, 5 mM

MgCl, 4 mM TPP+ at pH 7.1. The authors stated that the free

[Ca2+] was generally held between 500 and 600 nM using CaCl2.

For simulation purposes, the free [Ca2+] was fixed at 550 nM. To

initiate respiration, 5 mM glutamate/malate was added to the

buffer preceding the Pi-titrations for the simulations. For state 3

respiration, 1.3 mM ADP was added to the medium after the

glutamate/malate and Pi additions. For each Pi-titration, the free

[K+], [Na+] and [Mg2+] were calculated based on the dissociation

constants defined in the Supplemental Material (Text S1). After

glutamate/malate was added to the buffer, the model simulated

the 60 second experiment reaching pseudo-steady state. Next, Pi

was added to the buffer and the model was simulated for the next

60 second experiment reaching another pseudo-steady state. To

conclude the experiment, ADP was added to the buffer and the

model was simulated for the 30 second experiment reaching its

final pseudo-steady state.

LaNoue experimental conditions. For the LaNoue data set

simulations (T = 28uC), the model was first initialized to achieve

the fully oxidized state. The basic buffer composition used for

respiratory state initiation consisted of 150 mM KCl, 20 mM Tris-

Cl, 20 mM KPi, 5 mM MgCl2 and 30 mM glucose at pH 7.2.

The mitochondria were preincubated in the basic buffer

composition for 30 seconds before addition of substrates. For

state 2, either 2 mM pyruvate and 5 mM malate or 1 mM

pyruvate was added to the basic buffer composition, and the

model was simulated for the specified experimental time. (Note

that in the original reference, LaNoue et al. define state 4 as state 2

is defined in this manuscript. They used the previous state
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nomenclature defined by Chance and Williams [60]. The

definitions used here are consistent with those defined by

Nicholls and Ferguson [61]). State 3 was simulated similarly,

except for the addition of 0.5 mM ADP. With the addition of

ADP, the free [K+], [Na+] and [Mg2+] were recalculated based on

the dissociation constants defined in the Supplemental Material

(Text S1). A hexokinase trap was used to regenerate ADP in the

buffer. The simulated time was identical to that reported in the

experimental procedure.
Wan experimental conditions. The Wan Data set

simulations (T = 28uC) also required model initializations from a

fully oxidized state. The buffer composition consisted of 130 mM

KCl, 20 mM HEPES, 5 mM MgCl2, 5 mM ATP, 5 mM

KH2PO4, 5 mM NaCl and 1 mM EGTA at pH 7.0. For the

Na+- and Mg2+-titrations, the free [K+], [Na+] and [Mg2+] were

recalculated at each data point based on the dissociation constants

defined in the Supplemental Material (Text S1). ATP was included

to energize the mitochondria providing an electrophoretic driving

force for calcium uptake. The model simulated a 2 minute

experiment to ensure steady state and closely matches the time

observed in the original experimental procedure.
Kowaltowski experimental conditions. The Kowaltowski

data set simulations (T = 28uC) were simulated from a fully

oxidative and pre-osmotic equilibration state. The basic buffer

composition used for respiratory state initiation consisted of

135 mM KCl, 5 mM succinate, 2.5 mM Pi, 100 mM EGTA,

0.5 mM MgCl2 at pH 7.2. They applied various bioenergetic

pharmaceutical interventions and measured the matrix swelling

dynamics. To block the F1FO ATP synthase, 0.5 mg/ml

oligomycin was used. To simulate this condition, the parameter

defining the enzyme activity, VF1F0

maxf , was set to zero. When 30 mM

diazoxide, a mKATP channel opener, was used, the endogenous

inhibition of the mKATP channel was set to zero. When 300 mM

5-hydroxydecanoate, a mKATP channel closer, was used, the

parameter defining the channel conductance, GmKATP, was set to

zero. The simulated times are identical to the times reported in the

original experimental procedure.
Devin experimental conditions. For the Devin data set

simulations (T = 26uC), the model was first initialized to achieve

the fully oxidized state. The basic buffer composition used for

respiratory state initiation consisted of 5 mM TPMP+, 5 mM

DMO, 5 mM manitol, 20 mM Tris-HCl, 1 mM EGTA, 6 mM

Tris-glutamate, 6 mM Tris-malate, 5 mM Tris-Pi at pH 7.2 with

varying amounts of KCl used to adjust the osmolarity. The buffer

[K+] was approximated by setting it equal to half the reported

osmolarity. Since no divalent cation was present in the medium,

the adenylate kinase reaction was turned off. The model was

simulated under state 2 conditions until steady state was reached (a

simulated time of 5 minutes) under the varying osmotic conditions.

Then, at each osmotic condition, 1 mM of ADP was added to the

buffer and the model was simulated to a pseudo-steady state

reproducing the reported 10 minute experiments.

Supporting Information

Text S1 The supplemental material consists of three parts. Part

S1 lists the state variables comprising the model, updated Gibbs

free energy of formation values, additional and revised dissociation

constants, temperature correction method, and general model

parameters. Part S2 introduces of the set of 60 non-linear ODEs,

five algebraic conservation expressions (for ATP, GTP, NADH,

UQH2 and c2+), five matrix cation ODEs (for H+, K+, Na+, Mg2+

and Ca2+) and the algebraic expressions for computing matrix and

intermembrane space (IMS) water volumes and matrix Cl2 is

presented. Part S3 discusses the model rate equation derivations

and provides all the associated parameter definitions and values.

Found at: doi:10.1371/journal.pcbi.1000632.s001 (2.73 MB

DOC)
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