2018

A Meta-Analysis of Gifted and Talented Identification Practices

Jaret Hodges

Juliana Tay

Purdue University, jtay@purdue.edu

Yukiko Maeda

Marcia Gentry

Follow this and additional works at: https://docs.lib.purdue.edu/edstgspubs

Recommended Citation

https://docs.lib.purdue.edu/edstgspubs/3

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
A Meta-Analysis of Gifted and Talented Identification Practices
Abstract

Researchers consider the underrepresentation of Black, Hispanic, and Native American students is largely due to the use of traditional methods of identification (i.e., IQ and standardized achievement tests). To address this concern, researchers created novel non-traditional identification methods (e.g., non-verbal tests, student portfolios, affective checklists). This meta-analysis of 54 studies, consisting of 85 effect sizes representing 191,287,563 students, provides evidence that non-traditional identification methods, while able to narrow the proportional identification gap between underrepresented (Black, Hispanic, and Native American) and represented (Asian and White American) populations, are still unable to address the issue of education inequity. An overall risk ratio of .34 was calculated for non-traditional methods of identification in comparison to a .27 risk ratio for traditional methods. While the non-traditional methods help identify more underrepresented students as gifted, the results of this meta-analysis show that better identification methods are needed to address inequities in identification.

Keywords: Gifted, identification, equitability, testing, underrepresentation, Black, Hispanic, Native American
A Meta-Analysis of Gifted and Talented Identification Practices

Lack of proportional representation of culturally, linguistically, and economically diverse (CLED) students in gifted programs is a critical issue in education. The common conception of a high ability student as an excellent classroom student with high grades and exceptional achievement on standardized tests ignores the latent potential in students and considers only manifest abilities (Briggs, Reis, & Sullivan, 2008). High ability and potential masked by socioeconomic and cultural factors can go undiscovered and underdeveloped (Briggs et al., 2008).

The lack of proportional representation of traditionally underrepresented groups in gifted programs within schools is likely the result of the identification methods that fail to accurately detect all students with high potential, especially students from diverse backgrounds coupled with inequities in opportunity. Thus, we conducted a meta-analysis to explore how the use of identification methods influence the proportional representation of Black, Hispanic, and Native American students as gifted.

Definitions of Giftedness and Identification Methods

The principles of education rest upon the idea of giving children what they need to be successful and achieve whatever dream they might have (Tyler, 1949). In other words, education should address the diverse needs of the students. Therefore, educators are morally bound to provide gifted and talented students with appropriately challenging educational opportunities to help them realize their potentials (Renzulli, & Reis, 1991).

Giftedness is defined by the National Association for Gifted Children (NAGC) (n.d.) as: Gifted individuals are those who demonstrate outstanding levels of aptitude (defined as an exceptional ability to reason and learn) or competence (documented performance or
achievement in top 10% or rarer) in one or more domains. Domains include any structured area of activity with its own symbol system (e.g., mathematics, music, language) and/or set of sensorimotor skills (e.g., painting, dance, sports) (para. 5).

This definition of giftedness extends to include a larger concept of talents from students from a wide variety of backgrounds and cultures in gifted education (Gentry, 2009). Under this definition, a child can be considered gifted if he or she shows talent in only one area. This definition is far more inclusive than more traditional definitions, which rely on strict cut-off scores based on aptitude measures (Feldhusen & Jarwan, 2000; Van Tassel-Baska, 2005).

Note that we do not intend to discuss in-depth the nuances of different definitions and conceptions of giftedness, or how they affect the identification of gifted students in this study because an abundant body of literature has already addressed these issues (e.g., Borland, 2003; NAGC, 2010; Renzulli, 1978). However, it is important to point out the various definitions adopted by states as these definitions have implications for the identification process. For example, a state that has adopted a definition of giftedness focused on intellectual and cognitive abilities is more likely to have an identification process using standardized achievement tests and other forms of verbal assessments. Conversely, if a state has a definition of giftedness that accounts for gifted potential, creativity, and/or implications from socioeconomic differences, the identification process is likely to include non-verbal assessments and other potentially more inclusive methods of identification.

Variant definitions of giftedness used by states. From the list of 50 state definitions of giftedness (NAGC, 2013), we found that 43 of the 50 states placed an emphasis on intellectual and academic abilities, whereas only half considered potential abilities as part of the definition of giftedness. As such, many schools still rely on use of traditional test scores as part of their
identification processes. The In the State of States by the Council of State Directors of Programs for the Gifted (CSDPG) and NAGC (NAGC & CSDPG, 2015) pointed out that 17 states used IQ scores and 15 states used achievement scores as part of the selection criteria. However, it is important to note that 20 states also reported using a multiple criteria model for their evaluation process even though they did not provide any information on the specific criteria (NAGC & CSDPG, 2015).

The variation in the identification methods can be attributed to the various definitions of giftedness, especially among adherents who support a definition based on a potential of gifts versus those who support a definition based on a manifestation of gifts. For our study, traditional identification methods refer to the use of standardized tests of achievement and ability, which include state-based achievement tests and IQ measures. In contrast, non-traditional methods refer to the use of assessments that have non-verbal and multiple criteria components aligned with the inclusive definition of giftedness of NAGC (n.d.). This categorization of the different methods of identification is what educators commonly use in their identification practices (Krisel, 2012; Van Tassel-Baska, 2005).

The consideration of talent potential is not new to the field. Passow and Frasier (1994) suggested the incorporating potential as part of the identification process. They believed that doing so would help create a more inclusive model for gifted programming as compared to one heavily reliant on test scores that reflect manifested achievements. Feldhusen and Jarwan (2000) also urged a more comprehensive method of identification that looks beyond performance and includes considerations related to “problems, weaknesses, and needs” (p. 279). Further, Renzulli (1978) highlighted the need to consider on gifted behaviors and characteristics and not only relying on performance on cognitive ability tests.
Another area in which states differ in their definitions of giftedness is the inclusion of terms that reflect diversity of student populations, such as racial groups and socioeconomic status, in the definition. For example, some states, such as Florida, North Carolina, and Washington, explicitly incorporate language concerning different socioeconomic status in their definitions. Other states, such as Alaska, Kansas, and Nevada, focus their definitions mainly on children with intellectual and academic giftedness without using other descriptors (NAGC, 2013). Additionally, states, such as Colorado, Iowa, and Maryland, have broader definitions that include creativity and leadership skills. As such, identification procedures among states may differ, ranging from more conservative philosophies of aptitude-based identification to liberal philosophies based on broader definitions of giftedness.

Controversies in identification processes stemming from definitions of giftedness. Gifted education provides students with the gifted and talented services they require to attain optimal educational outcomes (Gentry, 2009; Renzulli & Reis, 1991). This education may take place in the form of acceleration, curriculum compacting, or enrichment programs in areas of interests (Gentry, 2009; Renzulli & Reis, 1991). Researchers have consistently demonstrated that, without proper gifted services, students will not achieve their academic potential and in many cases may underperform (Subotnik, Olszewski-Kubilius, & Worrell, 2011). Therefore, it is imperative for educators to accurately identify those students who need differentiated services. In other words, a transparent, research-based, and purposeful identification process is a critical first process in providing appropriate learning opportunities to gifted youth.

However, the processes for identifying gifted students have often been contentious (Giessman, Gambrell, & Stebbins, 2013; Lakin & Lohman, 2011; Lee & Olszewski-Kubilius, 2011).
2006; Lohman, 2005; Lohman, Korb, & Lakin, 2008; Naglieri & Ford, 2003; Naglieri & Ford, 2005; Renzulli & Reis, 2012). For example, how to identify, what to identify, and when to identify are some of the questions that plague the field (Callahan, 2005; Erwin & Worrell, 2012; Feldhusen & Jarwan, 2000; McClain & Pfeiffer, 2012; McKenzie, 1986; Passow & Frasier, 1994).

With the differences in defining giftedness, the identification of giftedness can be broadly classified into two categories: one focusing on exhibited talent and the other on gifted potential (McKenzie, 1986; Pfeiffer & Blei, 2008). Researchers have focused on defining giftedness and, in turn, have developed identification procedures to address issues of manifest talents and latent talents. Manifest talents are talents displayed and readily apparent to the observer, for example, high scores on aptitude and/or achievement tests or clearly displayed precocious ability in a domain. In contrast, latent talents reflect unactualized potential that can be masked by environmental or social factors (e.g., the child who has the potential to be a musical prodigy but who has no access to a musical instrument).

Researchers (e.g., Pfeiffer & Blei, 2008; Sternberg & Davidson, 2005) have also debated whether identification should account only for the observed and measurable ability of a child or whether it should take into account a child's non-manifested potential. Traditionally, when exhibition of gifts has been considered, IQ scores have been used to define giftedness, with students scoring above a cut-off point being selected for the gifted programming (Lakin & Lohman, 2011; Peters & Gentry, 2012; Pfeiffer & Blei, 2008). The Wechsler Intelligence Scale for Children (WISC, Watkins, Greenawalt, & Marcell, 2002) is frequently used in the identification process of giftedness in schools across the United States (McClain & Pfeiffer,
In conjunction with cut-off scores from standardized achievement tests, these scores form the core of identification methods across the nation (NAGC & CSDPG, 2015). Using IQ tests as the sole instrument to select students for gifted programs has received much criticism in the field of gifted education, especially when doing so does not account for the recent changes in the definition of giftedness to include gifted potential and talent development (Krisel, 2012; Pfeiffer & Blei, 2008). As such, if schools are only using IQ scores to identify gifted students, Black, Hispanic, and Native American students who may not have the opportunities to develop their gifted potential are not likely to be identified and served.

Aside from the issue of using IQ as an assessment of giftedness, there is also the issue of the validity of using IQ tests for identification. In particular, the use of IQ tests has been considered as one reason for the underrepresentation of gifted minorities (Pfeiffer, 2012). Robinson (2008) cautioned against using IQ as a sole identification measure given its lack of context; whereas, Ford (1998) pointed out that many IQ tests are racially biased. Conversely, Erwin and Worrell (2012) noted that IQ tests might be biased, but that they measure exactly the constructs they are meant to measure and the question should be whether those constructs should be the sole traits that identify a child for gifted services. As IQ tests are verbal and quantitative, Black, Hispanic, and Native American students who do not have the chance to develop their abilities in these areas, are not likely to be able to excel in these tests. Further, with the high cutoff scores needed for students to be tested into gifted programs, differences between Black, Hispanic, and Native American students and their peers only widen, making proportional representation difficult to achieve.

An alternative definition, one that considers abilities and talents in students may be underdeveloped but with adequate support can manifest, uses criteria such as aptitude,
recommendations by teachers and peers, creativity, and non-verbal assessments for identifying gifts (Lohman & Nicpon, 2012). Foremost among the non-verbal ability tests are the Naglieri Non-Verbal Abilities Test (NNAT; Naglieri & Ford, 2003) and the Raven Standard Progressive Matrices (RAVEN; Raven, 2000), two of the most commonly administered tests by districts as a means for alternate identification. Raven (2000) highlighted the effect of culture and environment on intelligence when measured with the traditional standardized tests. Thus, he focused on two indicators of intelligence, “educative ability” and “reproductive ability” (Raven, 2000, p.2) as measures of intelligence in RAVEN. Naglieri and Ford (2003) also questioned the identification of gifted students through assessments of their academic abilities because they believed these assessments disadvantaged students who had limited verbal and quantitative skills. Rather they chose to focus on reducing cultural bias in their test items. Thus, NNAT and RAVEN focus on assessing students’ problem solving, reasoning, and observation skills and do not rely on language or cultural specific content knowledge (Lewis, DeCamp-Fritson, Ramage, McFarland, & Archwamety, 2007; Naglieri & Ford, 2003).

The NNAT has faced criticism from Lohman (2005) who questioned its effectiveness in identifying culturally and linguistically diverse students. Lohman claimed that the data presented by Naglieri and Ford (2003) did not corroborate their conclusions. In response Naglieri and Ford (2005) argued that more efforts could be spend on addressing the lack of representation rather than trying to undermine a tool that is used to help close the representation gap.

Some identification methods for giftedness combine elements from traditional and nontraditional forms of assessment by including a non-verbal component in the testing. This is done in hope of reducing the language bias that may exist within traditional verbal and quantitative assessments. The Cognitive Abilities Test (CogAT; Lohman, 2011) is one such test.
Currently in its seventh edition, the CogAT Form 7 uses verbal, quantitative, and non-verbal components to assess a student’s acquired abilities (Lohman, 2011). The inclusion of a non-verbal component was specifically designed to increase the identification of nontraditional gifted students.

Nevertheless, these standardized tests not only fail to silent the points of contention, but their use also raises more questions about the reliability of the data and the validity of the inferences based on the data they yield (Lewis et al., 2007; Lohman et al., 2008). For example, when comparing students who were identified based on their achievement on standardized tests or parents’ nominations with their performance on the ACT (American College Testing), Lee and Olszewski-Kubilius (2006) found that Hispanic students identified through parents’ nominations did better on the ACT than students who were identified via standardized tests. Additionally, Giessman et al. (2013) compared students’ performances on CogAT, NNAT, and WISC and found that the tests yielded different rates of identification for gifted students. Furthermore, the rates of identification also differed among the various racial groups. For example, the difference in WISC scores between Black students and their White peers was 17.2 points.

In examining only non-verbal methods of identification, Lewis, DeCamp-Fritson, Ramage, McFarland, and Archwamety (2007) conducted a study with 175 third to fifth graders and eighth graders in a Midwestern city and compared the effectiveness of RAVEN, NNAT, and ITBS in identifying Black, Hispanic, and Native American students. The researchers found that RAVEN identified a more ethnically diverse group of students than ITBS or NNAT. Interestingly, Lewis et al. (2007) found no difference in the proportion of Black, Hispanic, and Native American students identified by ITBS and NNAT, although ITBS as a traditional
achievement test is expected to identify fewer underrepresented gifted students than the NNAT (i.e., non-verbal method). In addition, Lohman (2007) found that of the three components of CogAT, the non-verbal component is the least correlated to academic achievement and should not be used as a sole measurement for giftedness. Lohman, Korb, and Lakin (2008) also raised questions about the validity of the non-verbal tests as an identification method in general. Using three different non-verbal tests, CogAT-NV, NNAT, and RAVEN, they found much variability in the scores obtained by the elementary students, which would in turn influence identification rates. In particular, they noted that the NNAT and CogAT-NV both showed a statistically significant difference in identification rates between English language learning (ELL) students and non-ELL students. Hence, even within the various non-verbal methods of identification, issues of validity are still being debated.

Another non-traditional method of identification involves using teachers to nominate children for services. Teacher nomination helps identify students who may not perform well on standardized achievement tests due to reasons such as language or cultural bias (Callahan & Miller, 2005; Renzulli, 2005). For example, the Having Opportunities Promotes Excellence (HOPE) Scale (Gentry, Peters, Pereira, McIntosh, & Fugate, 2015; Peters & Gentry, 2012) is an instrument that measures students’ academic and social characteristics of giftedness as identified by their teachers. However, such nomination processes by teachers have also been criticized for subjectivity and possible bias (McBee, 2006; Milner & Ford, 2007). Even if teachers are reliable identifiers of gifted students of similar cultural backgrounds, it is arguable whether they are able to reliably identify children from diverse backgrounds (McBee, 2006). Nevertheless, some researchers argue that teacher nominations should be included as one criterion or pathway in the identification process.
In the past decade, this issue of traditional versus non-traditional identification has often been debated among researchers (Giessman et al., 2013; Lakin & Lohman, 2011; Lohman et al., 2008; Naglieri & Ford, 2003). Although numerous researchers (Lakin & Lohman, 2011; Peters, 2012; Winsler & Kim, 2013) have conducted research on the effectiveness of different test batteries in identifying students for gifted programs, no single way of identifying gifted students exists because the identification process may include the various issues highlighted above (Reis & McCoach, 2000).

Further, there is the issue of equitable representation in gifted education, a position taken up recently by NAGC (2011). For equitable representation to exist, definitions of giftedness and identification methods must be congruent and concerned with equity. Should the definition focus only on measurable achievements or should it also take into consideration a student’s potential for growth? Similarly, is there a match between the identified students and the gifted services provided, and are the needs of the students being met (Peters, Matthews, McBee, & McCoach, 2013)? These are some questions that need to be addressed as the field moves toward achieving equitable representation.

Underrepresentation of Students in Gifted Programs

The lack of equitable representation in gifted programs has been an ongoing concern in the field of gifted education (Daniels, 1998; Ford & Harris, 1994; Naglieri & Ford, 2003; Yoon & Gentry, 2009). As the population of the United States continues to diversify the need for equitable representation in gifted programs is paramount. Despite increasing rates of inclusion for minority students in gifted programs since the 1970s (Donovan & Cross, 2002), CLED students are still vastly underrepresented compared to their peers (Erwin & Worrell, 2012; Ford, 2014; Konstantopoulos, Modi, & Hedges, 2001; Yoon & Gentry, 2009).
For example, Konstantopoulos et al. (2001) reported the odds ratio (OR) for being identified as gifted for Black, Hispanic and Native American students compared to Asian and White peers. They found that Black (OR = 0.37), Hispanic (OR = 0.45), and Native American Students (OR = 0.17) were all identified at lower rates compared to their White peers. Asian were identified at a higher rate than their White peers (OR = 2.17). Similarly, Yoon and Gentry (2009) found that Asian and White American students were overrepresented proportionately in gifted programs throughout the United States. With an in-depth state by state analysis of the identification of Black, Hispanic, and Native American students for gifted services, Yoon and Gentry found that Black and Hispanic students were underrepresented proportionately in 47 states and Native American students were underrepresented in 43 states. The recent report by the Office for Civil Rights (OCR, 2015), which examined the overall representation of students within the US public school system, supports Yoon and Gentry’s (2009) findings. Similar findings were also reported by Ford (2014), who used a Relative Difference in Composition Index to show that more than one-half million Black and Hispanic students remained unidentified as gifted students. She suggested that if a certain proportion of a school were comprised of a given minority, then that same proportion should be represented in its gifted programming.

Sullivan (2011) found that statistically significant predictors for admittance to gifted programs are not found within academic predictors; in fact, socioeconomic status and race can more accurately predict a child’s identification as a gifted student than academic predictors. Interestingly, in Utah, Warne, Anderson, and Johnson (2013) found that when controlling for academic achievement, there was proportional racial representation in that state in gifted
programs; that is, Black, Hispanic, and Native American gifted students were not underrepresented.

Lack of proportional representation in gifted programs is a critical issue in education. In 2001, the lack of educational equity across the spectrum in U.S. public education led to the introduction of No Child Left Behind (NCLB; Bush, 2001). However, unequal representation of races in gifted education continues. Hopkins and Garrett (2010) pointed out that the overrepresentation of Asian and White American students while Black, Hispanic, and Native American students were underrepresented constitutes de facto segregation within public schools. For example, Texas has seen the proportion of Hispanic students enrolled in public schools increase without a similar increase in Hispanic students identified as gifted (Esquierdo & Arregúín-Anderson, 2012). Furthermore, many still consider a high-ability student as a model student with good grades, taking into account only abilities that can be seen and measured by standards and tests (Briggs et al., 2008). Consequently, student’s socioeconomic and cultural factors may mask high ability and potential resulting in the student’s ability remaining undiscovered and underdeveloped by schools (Briggs et al., 2008).

The differing percentages of identified students from various racial groups in a district are likely to correlate with the decision making of the administrators (Raudenbush, Foitu, & Cheong, 1998) because school administrators determine the identification methods used in districts. These decisions can affect not only how students are identified, but also how financial resources are allocated to gifted education programs (Kettler, Russel, & Puryear, 2015). Thus, identification of CLED students for gifted services promotes social equity within a school district, along with funding and staff allocations (Grantham, 2011; Kettler et al., 2015;
Raudenbush et al., 1998). Grantham (2011) called for educators to be “upstanders” rather than just bystanders to the lack of proportional representation in gifted education. In the case of Black male students, he argued that allowing nearly 150,000 youth to remain unidentified for gifted services is socially unjust (Grantham, 2011).

Differential identification rates by grade level. Another concern in the field of gifted education is determining when children should be identified. Researchers have brought to attention the importance of early identification of gifted children, especially concerning the children’s cognitive, motivational, and social-emotional development (Heller & Hany, 2004; Perleth, Schatz, & Mönks, 2000; Shaklee, 1992). The National Association for the Education of Young Children (NAEYC, 2009) also highlighted the immediate and delayed influence of experiences and environment on children’s development. As such, it is not surprising that 26 out of 33 states identified children for gifted services in kindergarten and the elementary grades compared to 11 states that provided additional identification services during middle school and nine states during high school (NAGC & CSDPG, 2015).

However, early identification is not without its concerns. When examining the performance of elementary school students in a longitudinal study using ITBS and CogAT, Lohman and Korb (2006) found that students’ scores in reading and mathematics differed the most when they were tested in Grade 4 than when they were tested in Grades 6 and 9. This shows that students who are identified in Grade 4 based on their ITBS scores may not perform similarly in Grade 6 and 9.

Another consideration on early identification is about the form of gifted programming available to the identified students. Olszewski-Kubilius and Limburg-Weber (1999) highlighted the differences in needs between gifted elementary and gifted middle school students. The
requisite for advanced classes in preparation for high school and college, as well as real-life experiences, are more appropriate for the older students as they prepare for this stage in their development. In comparison, elementary gifted programs focus on accelerating and enriching content (NAGC, 2015).

Differential identification rates by geographic location. Implementing a unified identification process and method across differing states is not an easy feat to achieve. The issue is further compounded by variations in state laws and regulations concerning identification methods. The southern region of the United States faced litigation over underrepresentation of Black, Hispanic, and Native American students in gifted programs and made changes to identification processes (Stephen, Dudley, & Karnes, 2012). In *Lee vs Lee County Board of Education* (2007), the U.S. District Court mandated that the state of Alabama change its gifted education policy due to underrepresentation of Black students. Following the Office of Civil Rights investigation of the underrepresentation of Black students in South Carolina, that state implemented changes to its gifted programming, which led to increased equitable representation (Swanson, 2007).

In addition, demographic differences among the states exist. Part of the southwest region, Texas and Arizona have a higher population of Hispanic Americans than other regions. However, in recent years, the Midwest portion of the United States has also seen a surge in the Hispanic populations (Brown & Lopez, 2013). In comparison, the southern states have a higher population of Black Americans. There is little research on the identification of Native American students and it is unclear how geographic location influences this group of students.

Purpose of the Study
Proportional representation of students in gifted programming is a goal of gifted education researchers and practitioners. Identification methods affect the proportion of students from different races being served in gifted programs. Differences among the non-traditional identification tests have also yielded a variety of opinions among researchers about their effectiveness in identifying underrepresented students. Thus, the goal of this study is to shed light on the underrepresentation of CLED gifted students, specifically Black, Hispanic, and Native American students in gifted education programs. More specifically, we used a meta-analytic technique to gather and synthesize accumulated evidence of the under-identification of Black, Hispanic, and Native American gifted students reported in literature compared to that of Asian and White students as well as to examine the influence of traditional and non-traditional identification methods on the under-identification of these populations.

Given the differing viewpoints on the effectiveness of identification methods in identifying Black, Hispanic, and Native American gifted students and the number of studies that have been conducted in the field of gifted education, a meta-analysis was appropriate to synthesize the wide range of studies. This was done in order to effectively gauge the gap in identification rates through non-traditional testing of underrepresented students compared to their counterparts in gifted programs as well as to examine the differences in identification rates between identification processes. More specifically, this meta-analysis was conducted based on the hypothesis that the identification methods are partially accountable for the lack of proportional representation and thus act as a barrier to gifted services among Black, Hispanic, and Native American students. In our study, Black, Hispanic, and Native American students are grouped as underrepresented students in gifted programming; whereas, Asian and White American students are considered as represented students. Specific research questions are:
1. How do the proportional identification rates for gifted program services of Asian and White American students versus rates of Black, Hispanic, and Native American students differ?

2. How does the identification method (i.e., traditional vs. non-traditional), location and/or grade level of students moderate the difference in proportional representation between Black, Hispanic, and Native American students identified as gifted compared to the proportion of Asian and White American students identified as gifted?

Method

Study Identification

Target literature for this meta-analysis was limited to studies reported only in the United States because this study is framed around NCLB (Bush, 2001), a law adopted in the United States. In addition, we chose to focus on studies reported between 2002 and 2015, setting the dates to coincide with the educational shift that came with the induction of NCLB. Although the main focus of NCLB was on general students, the policy resulted in a reduced focus on gifted students and limited funding spent on their special needs (Gentry, 2006). Another influence of NCLB on gifted students was related to closing the achievement gaps among the various groups of students, including English language learners, those from different racial groups, and those from different socioeconomic classes (Gallagher, 2004). Further, we limited the studies to those conducted in K-12 education because identification instruments and processes are largely used on students when they are within the K-12 school systems (Heller & Hany, 2004; NAGC & CSDPG, 2015; Perleth et al., 2000).

The keywords we used in our search were: *Gifted, identification, intelligence, I.Q., equity, testing, high-ability, talented, representation, underrepresented, underrepresentation,*
minority, and measurements. Different combinations of keywords and all of the keywords were used in the search. Some of the keywords (e.g., gifted and talented) were also chosen as they are often used interchangeably within the field of gifted education.

The meta-analysis commenced first with a search for literature using electronic databases including Google scholar, ERIC, PsycINFO, Thesis and dissertation platforms such as ProQuest. These databases have a large inventory of published and unpublished educational and psychological research. We considered these databases as sufficient starting points to identify potential studies for our meta-analysis. Potential articles were selected for inclusion through database searches; this was followed by a review of references in these studies to identify additional studies for inclusion in the meta-analysis.

Inclusion and exclusion criteria. To be included in the meta-analysis a study needed to meet the following four criteria:

(a) **Studies conducted in the United States with K-12 students after 2002.** Studies concerning populations outside the United States or those dealing with Undergraduates/post graduates and pre-K students were excluded;

(b) **Studies that involved gifted students as their study sample.** Studies that included in their sample both gifted and non-gifted student were included. Given that the meta-analysis was concerned with the difference in representation of Black, Hispanic, and Native American gifted students in gifted programming and general populations, those studies that only contained information about the gifted students in their sample were excluded, unless they indicated the size and composition of the general population;

(c) **Studies that reported the identification information by race.** Studies that did not describe the racial makeup of their sample were excluded; and
(d) Studies that reported sufficient and relevant statistics that computed the identification rate by race. Literature reviews and qualitative studies were excluded. The proportion of Black, Hispanic, and Native American students in the general population and gifted population (or data provided to derive them) was necessary for inclusion.

The initial electronic search yielded 7,746 studies potentially related to our study. After screening the abstracts using the inclusion and exclusion criteria above, the number of articles potentially included in the meta-analysis was reduced to 183. We also conducted a manual search for studies that reported in the four major journals in gifted education (*Gifted Child Quarterly*, *Roeper Review*, *Journal of Advanced Academics*, and *Journal for the Education of the Gifted*). This step was put in place to verify that we included any potential articles not found through the initial search with the electronic databases. Each article published in these journals between the years 2002 and 2015 ($k = 1,526$) was scanned and assessed individually for inclusion in the meta-analysis. Further, we examined available education statistical databases (OCR, 2015; Texas Education Agency, 2015) and state reports on state education websites. The two additional search methods identified additional 55 articles and reports for 238 potential articles identified after the three initial screening. These articles were then examined by reading the texts carefully to retrieve effect sizes using the provided data in the reports. With the additional checks and computation, 186 studies were eliminated due to missing information in reporting of population, study sample, or identification methods. Thus, the final set of the studies included in this meta-analysis consisted of 45 journal articles, four dissertations, and five state reports, for a total of 54 studies. Figure 1 shows the search process. From these 54 studies and reports, that together included 191,322,595 students, we obtained 92 effect sizes. After
accounting for dependent effect sizes, 85 independent effect sizes were extracted. The additional seven effect sizes were retrieved from Texas’ Public Education Information Management System (PEIMS) and OCR. We used the effect sizes calculated from PEIMS and OCR only for descriptive purposes. Table 1 lists the characteristics of the studies included in the meta-analysis.

Coding Process and Coded Variables

Before coding articles, a coding sheet was drafted and agreed upon by the team of researchers consisting of two graduate students, a researcher with expertise in gifted education, and a researcher with expertise in research methodology including meta-analysis. Following the development of a coding sheet, an initial pilot examination of 20 articles by the team led to revisions of the coding sheet for clarity. The revised coding sheet included authorship, geographic location of the sample, year of publication, grade level, what identification method the researchers of primary studies employed, demographic data about the student sample, as well as quantitative information to be used for computing an effect size. In conjunction with the type of identification method, whether that method constituted a verbal or non-verbal method was also coded. These variables are described and summarized in Table 1, and are also considered as potential moderators in the subsequent inferential analyses.

(a) Identification methods. The identification methods reported in examined studies were first classified into two categories: non-traditional and traditional depending on the identification tests and procedures used. These methods were further sub-categorized by the specific test being used into three non-traditional methods (RAVEN, NNAT, and CogAT-NV) and two traditional methods (IQ tests and achievement tests). This coincides with the literature since these are the most commonly used identification methods (Giessman et al., 2013; Lakin & Lohman, 2011; Lohman et al., 2008; NAGC & CSDPG, 2015; Naglieri & Ford, 2003).
(c) **Geographic location.** We coded the location where the data were collected using six regional categories (i.e., North, Northwest, Southwest, South, West, and Midwest). However, no studies included samples from the Northwest portion of the United States. In addition, only two were included from the West, an insufficient number for including it in a moderator analysis.

(d) **Grade level.** Students in grades Kindergarten to Grade 5 were coded as elementary students \((k = 33)\); studies that included students in Kindergarten to Grade 8 were coded as elementary-middle school students \((k = 9)\); and Grades 7-12 as middle-high school students \((k = 11)\). Studies that involved a student sample across all grade levels (K-12) were not included in moderator analysis for grade level. We coded in this manner to preserve information about elementary students and how identification and representation differed from upper grade levels. Testing for gifted services is primarily done during elementary years (Sternberg & Davidson, 2005), and this is evident given the number of studies involving elementary students \((k = 42)\).

Two members of the research team completed the coding. Digital copies of the articles were kept in a shared folder to provide research team members access to all articles. A common coding problem encountered by the coding team was that majority of the identified studies did not provide a clear description of their participants, which necessitated further calculations to obtain the effect sizes. Studies needing calculations were set aside after the first round of coding for further evaluation of coding validity. Once initial coding of all studies was completed, one member of the coding team analyzed the studies with missing data and completed all necessary computations to conclude coding, while another member of the team worked on keying in the information into the data sheet. Both members referred to all identified articles to ensure that the information was recorded correctly, and any disagreement concerning the coding was discussed between coders. The third research team member confirmed the computation of all effect sizes.
The coded data were cross-checked again by the coders and another member of the research team before conducting inferential analyses.

Definition of Effect Size

Given that inclusion (either a student is identified as gifted or not) is a dichotomous outcome, a risk ratio (RR; Borenstein, Hedges, Higgins, & Rothstein, 2009) that compares the rates of inclusion in gifted program between underrepresented and represented populations was deemed the most appropriate effect size for analysis and most meaningful for interpretation. First, the subgroups that had been designated by race were consolidated into two groups: traditionally underrepresented populations (i.e., Black, Hispanic, and Native American students), which served as our focal group, and traditionally overrepresented populations (i.e., White and Asian students), which served as the reference group. The RR compares the occurrence of identification of gifts in the focal group compared to that in the reference group. More specifically, in our meta-analysis, the overall effect size is defined as:

$$Risk Ratio \ (RR) = \frac{P_{URG}}{P_{RG}}$$

Where P_{URG} = the proportion of Black, Hispanic, or Native American students who were identified or in a gifted program, P_{RG} = the proportion of White or Asian students who were identified or in a gifted program. We also computed the RR for comparing the proportion in a gifted program for a specific racial group (e.g., Black) to traditional group, using the above-described formula.

An RR greater than one indicated that the focal group (i.e., underrepresented group) is overrepresented in a gifted program relative to the reference group (i.e., overrepresented group); whereas, a RR less than one indicated underrepresentation of the focal group compared to the
reference group. For example, a RR of 2 is interpreted as the probability of being identified for gifted is as twice as high for the focal group compared to that for the reference group. Alternatively, a RR of .5 means that the probability of being identified for the focal group is a half of that in the reference group. A RR of 1 indicates that all demographics are equally represented in a gifted program in a primary study. Table 1 also reports the RRs obtained from studies used in the analysis.

Handling multiple effect sizes. In some cases ($k = 12$), multiple effect sizes were extracted from a single journal article. For example, Giessman and his colleagues (2013) examined how identification methods at different cutoff scores led to different levels of proportional identification. In this case, three different identification methods were examined at three cutoff scores leading to nine effect sizes. Biased parameter estimates associated with multiple effect sizes from the same study, when they are dependent of each other, have often been noted in meta-analysis literature (e.g., Wood, 2008). As remedies, several methods of handling dependent effect sizes were suggested including selecting one representative effect size from each uniquely identified sample (e.g., Card, 2012; Steenbergen-Hu & Olszewski-Kubilius, 2016), averaging the multiple effect sizes within the study to obtain a synthetic effect size (e.g., Sutton, Abrams, Jones, Sheldon, & Song, 2000), using shifting unit of analysis (Cooper, 2010), estimating dependency with three-level multilevel modeling (Van den Noortgate, López-López, Marín-Martínez, & Sánchez-Meca, 2013, 2015), applying multivariate methods to analyze dependent effect sizes by modeling the covariance structure (e.g., Olkin & Gleser, 2009), using a robust variance estimation method (e.g., Hedges, Topton, & Johnson, 2010). Although the multivariate approach is likely to offer minimal estimation errors (Hedges et al., 2010), the method was not feasible in our study due to the relatively small k for applying the method and
limitation of required additional statistical information, such as the covariance structure of residuals, Hedges et al. (2010) also claim that the method is rarely used in practice for the additional data requirements and the time-consuming process. Robust variance estimation method and three-level multilevel model approaches are attractive options for handling dependencies when clusters of inter-related effect sizes are observed in primary studies. However, Hedges et al.’s method (2010) also requires correlation estimates for any pairs of effect sizes within a primary study. Furthermore, the application of three-level multilevel modeling will suffer low statistical power and biased estimation of variance components when the sample size is small. As our study has only seven studies that reported dependent effect sizes from 54 studies, and the application of either of these methods may not be feasible for the current study. Card (2012) noted that the method of selecting the most representative effect size should be applied only when it is clear that one particular effect size should be included whereas others should not (p. 193) because the selection decision may be an additional source of bias due to researchers’ subjectivity (Wood, 2008). Thus, we used the method of averaging the effect sizes and Cooper’s (2010) shifting units of analysis, depending on the purpose of the analysis. Although we acknowledge our selections of handling the multiple effect sizes may also have limitations, Hedges et al. (2010) observes our methods have commonly utilized in practice.

(a) Averaging the effect sizes. A single effect size for each identification method was extracted by averaging the effect sizes with their associated standard error as weights, assuming these represent, in some extent, the same population effect size within the study. Then, we included the synthetic effect sizes (the study-average effect sizes, Hedges et al., 2010, p. 40) to compute the average effect size across studies. For example, Lohman & Gambrell (2012), averaged two extracted effect sizes to handle the dependency.
(b) **Shifting unit of analysis.** When calculating the average effect size by study characteristics (e.g., identification methods), shifting the unit of analysis technique (Cooper, 2010) was employed to preserve k for each follow-up moderator analyses, while handing dependency. Giessman et al. (2013) applied shifting the unit of analysis method to compute the weighted average effect sizes by identification methods (i.e., verbal vs. non-verbal) to minimize the dependency. When conducting the moderator analysis with identification methods, the average verbal effect size was then removed from the analysis where pertinent. This procedure was replicated for all cases in which verbal and non-verbal effect sizes were extracted from the same study.

Outliers. Before inferential analysis was conducted, the distribution of the risk ratios was examined for any outliers. Outliers should be eliminated when illegitimately present in a dataset; but their exclusion should be approached with rigor and caution (Barnett & Lewis, 1994). Tukey (1960, 1977) espoused elimination of outliers that exist three times the interquartile range of either the 75th or 25th percentiles. One study fit this criterion. Wilson (2015) conducted a study observing differences between young children with high intellectual abilities and their peers in cognitive and social play. A sample-adjusted meta-analytic deviancy statistic (Huffcutt & Arthur, 1995) was calculated for the study and indicated that inclusion or exclusion of the study would have minimal influence on estimating the population parameters due to the small primary sample size ($n = 34$) in the Wilson (2015) study. As the study was minimally impactful, it was only included in analysis for the overall effect size and was excluded from subsequent analysis.

Data Analysis

A random-effects model was used as the theoretical framework for conducting a meta-analysis. Given that these effect sizes are associated with social science data, no perfect measure
can be derived to accurately formulate the parameter that describes the population of analysis, and thus some of the variation might be simply due to error. However, we view the population value for the effect sizes retrieved from primary studies as not identical, but follow a hypothetical distribution. Thus, the observed variation in effect sizes is also caused by differences of design in the studies, in particular by different methods of identification and student population in primary studies.

The computation of average RR and exploration of variance in RRs. We computed the average \(RR \) to determine if Black, Hispanic, and/or Native American students are proportionally represented in gifted programs. In order to compute the average \(RR \), we first transformed \(RR \) to log risk ratio \((LRR) \) by taking the natural logarithm of \(RR \) to maintain a symmetric distribution of effect sizes (Borenstein et al., 2009). The standard error of the \(LRR \) is defined as:

\[
SE_{LRRi} = \sqrt{\frac{1}{URG_i} - \frac{1}{UR_i} + \frac{1}{RG_i} - \frac{1}{R_i}}
\]

Where, \(UR_i \) is the number of Black, Hispanic, and/or Native American students in study \(i \), \(URG_i \) is the number of Black, Hispanic, and/or Native American students who were identified as gifted among \(URG_i \), \(R_i \) is the number of White and Asian students in the same study, and \(RG_i \) is the number of White and Asian students who are identified among \(R_i \). We used the weight, which is the inverse of total variance, to compute the average \(LRR \), so that the primary study with large sample size will obtain larger weight than that with small sample size. We ran \(Q \) test of heterogeneity to judge if observed variance is beyond sampling errors. Second, we used \(I^2 \) (Higgins & Thompson, 2002) and \(\tau^2 \) indices to understand the extent of the variance resulted in between-study difference relative to total variation in \(LRR \).
We repeated the above-mentioned analyses for (a) the combined group of traditionally underrepresented students (i.e., Black, Hispanic, and Native American students) compared to the combined group of White and Asian students, and (b) each racial minority group compared separately to the combined group of White and Asian students. Note that we could not conduct a subgroup analysis for Native American students because of the small number of effect sizes ($k = 9$). All results of inferential analyses were transformed back to the original metric and reported in results section.

Moderator Analysis

Three factors were primarily explored in the moderator analyses to explain the variation in RRs; 1) type of identification methods (five methods), 2) geographic locations (four regions), and 3) grade level (three grade levels). To address the second research question, we considered analyzing all three categorical moderators simultaneously with a Meta-Regression. However, conducting the regression analysis resulted analyzing nine dummy variables in the model using a reduced number of effect sizes ($k=30$). The reduction of the sample size occurs because not all studies include information for all variables. For example, in the study by Lohman, Korb, and Lakin (2008), the authors only provided information on Hispanic and white student populations but did not include any information about the Asian and Black students. As a result, this study would not be included in the regression analysis. Eliminating studies that did not provide information on all variables in regression analysis for listwise deletion reduced the sample size, which would result in lowering the statistical power and affecting the precision and accuracy of the estimations. In addition, although regression analysis allows researchers to examine an additive effect of each moderator when controlling other moderators in the model, while the interpretation of those coefficients become more complex. In fact, we found that the three
moderators were relatively independent in our preliminary analyses (i.e., $|r_{IDLocation}| = .07-.33$, $|r_{IDGrade}| = .01 -.16$, $|r_{LocationGrade}|=.004 -.14$, all are non-significant, except for IQ and Midwest), suggesting that no specific application of identification method is used at a particular region or grade level and thus the influence of intercorrelation among moderators was minimal.

Furthermore, Higgins and Thompson (2002) indicated that a meta-regression with multiple covariates (in our case, nine dummy variables with one intercept) will increase the likelihood of committing a Type I error when evaluating individual effects. Based on methodological consideration for the current data conditions and for ease of interpretation, we chose to use Meta-ANOVA to analyze each moderator separately. In addition, due to the increased possibility of committing a Type I error with multiple ANOVA analyses, we adjusted alpha level to alpha=0.01 for statistical evaluation. Comprehensive Meta-Analysis software (Version 3.1.1; Borenstein, Hedges, Higgins, & Rothstein, 2014). was used for the analyses using Meta-ANOVA.

Sensitivity Analysis

Publication bias. Since studies with contradictory or null results are less likely to be published than studies with significant results in the expected direction, description of unpublished studies is required. Among the studies in the current meta-analysis, 45 of them are published, four of them are unpublished dissertations, and the remaining five are state and technical reports. We constructed a funnel plot to describe the distribution of effect sizes in terms publication bias (Figure 2). The idea behind the funnel plot is that if the effect sizes are distributed symmetrically in a funnel shape (with the idea that the larger the sample size, the closer to the true population mean) then there can be assumed to be little publication bias.
Analysis of the funnel plot showed minimal publication bias as indicated by the roughly symmetrical shape. A classic fail-safe analysis was conducted as an alternative test for publication bias and indicated that 4,113,553 studies would be needed for $p > .05$ to be observed. Orwin’s fail-safe was also used to test how many studies would need to be added to the meta-analysis for the null to be accepted ($RR = 1$). The test results indicated 6,115,182 null studies would need to be added for the observed effect with the current pool of studies for the null result to be accepted.

Results

Representation of Black, Hispanic, and Native American students in Gifted Program

The overall average RR, that compares the proportion of Black, Hispanic, and Native American students identified as gifted and/or served in a gifted program to that of the reference group, was 0.34 with a standard error of 0.01. The RR of 0.34 indicates that the probability of being identified for Black, Hispanic, and Native American students is about one-third that of the probability of being identified for White and Asian students. This means that students in the focal group remain largely under-identified for and underrepresented in gifted programs in the United States. However, as shown the variability of RRs in Table 2, the Q result also indicated that the significant variation exists among retrieved RR ($Q (84) = 149,293.87$, $p < 0.0$, $\tau^2 = 0.081$). Because the I^2 index of 99.99% indicates heterogeneity of effect sizes are mainly due between study variance, this supports the need of moderator analyses (Hox & Leeuw, 2003).

Moderator analyses. Because not all studies reported identification methods, only 56 of 85 effect sizes were associated with a description of the identification procedures used in their respective studies. For example, a study only containing information on grade level would only be included in the Meta-ANOVA regarding grade level. A test for heterogeneity supports that
significant variability across effect sizes existed \((Q (55) = 8,277.60, I^2 = 99.08, p < .01, \tau^2 = 0.09)\). As reported in Table 2, the average \(RR\) for non-verbal identification methods is 0.34 \((k = 28, SE = 0.08)\); whereas, for 30 effect sizes were aggregated to provide a risk ratio effect size of 0.27 \((SE = 0.06)\) for the traditional methods. However, the difference in the average \(RRs\) was not statistically significant, \((Q (1) = 2.31, p > .50)\). The inclusion of additional effect sizes in the meta-ANOVA breakdown by a specific identification instrument also suggested that the difference is not statistically significant \((Q (4) = 3.21, p > .50)\). The average \(RR\) was 0.42 for RAVEN \((k = 7, SE = 0.26)\) while the average \(RRs\) were 0.27 for NNAT \((k = 11, SE = 0.12)\) and 0.34 \((k = 4, SE = 0.26)\) for the CogAT-NV, respectively. Conversely, the average \(RR\) for IQ tests was 0.31 \((k = 10, SE = 0.16)\) and that of achievement tests was 0.24 \((k = 20, SE = 0.08)\).

This suggests that regardless of the identification instruments, the probability of being identified for the underrepresented group is persistently about one-third of that for the overrepresented group. Similarly, the chance of being identified is persistently lower across all grade levels for underrepresented groups compared to overrepresented group \((Q (2) = 3.63, p = .16)\) in the meta-ANOVA.

An examination of the effect sizes for location suggested that there existed a difference in identification rate across location \((Q (3) = 31.05, I^2 = 99.56, p < .001, \text{ see Table 2})\). We found the average \(RR\) of 0.47 for Southwest \((k = 19, SE = 0.09)\) and 0.32 for the South \((k = 21, SE = 0.06)\), while the \(RRs\) for North and Midwest are 0.23 \((k = 6, SE = 0.08)\) and .24 \((k = 24, SE = 0.04)\), respectively. This indicates that the Southwest had the highest rates of proportional identification with underrepresented populations being identified at nearly 50% of the rate of populations who are traditionally identified for services.

Representation of Black Students in Gifted Education Program
An overall RR was $0.28 (k = 74, SE = 0.03)$ with significant variation in RR across studies ($Q (73) = 122,697.08, p < .001, I^2 = 99.90$). The subsequent moderator analyses identified patterns like those we observed in the results with overall underrepresented population, except participant grade level in the Meta-ANOVA. More specifically, the identification bias is persistent regardless of identification instruments.

In addition, in the Meta-ANOVA with only Black students in the focus group, we found that the RR was higher ($RR = 0.47 k = 9, SE = 0.25$) when studies combined elementary and middle school students in their sample, compared to elementary only ($RR = 0.17, k = 31, SE = 0.08$). We also found strong moderator effect by location ($Q (3) = 68.87, p < .001$). The probability of being identified for Black students compared to White and Asian students is less than one-fifth that of the Midwest (i.e., $RR = 0.17, k = 24, SE = 0.03$). However, the probability of being identified in southwest is greater ($RR = 0.46, SE = 0.10$), but still about 50% less likely compared to the reference group.

Representation of Hispanic Students in Gifted Education Program

The moderator analyses for Hispanic students showed a somewhat different pattern from than that for Black students. An overall risk ratio is $0.36 (SE = 0.03)$ with significant variation across studies ($Q (71) = 82,541.03, p < .001, I^2 = 99.12$), which is similar to the overall RR for Black students. Although it was not statistically significant with the specified alpha of .01 ($Q (1) = 4.13, p = .04$) possibly large variation in RRs within the category, it is worth noting that the RR for identification by non-verbal tests was $0.50 (k = 22, SE = 0.26)$; whereas, it was only $0.26 (k = 27, SE = 0.12)$ for verbal identification measures (see Table 3). Further, inconsistent with the result of Black students, there is no difference in RRs by grade level ($Q (2) = 0.88, p > .50$). Like the results with Black students, we found no significant differences in RR among specific
identification tests we explored ($Q (4) = 1.36, p > .50$). We also found that significant variation in the average RR by geographical location for Hispanic students. Similar to the finding with Black students, identification bias is less in the South ($RR = 0.35, k = 20, SE = 0.11$), and Southwest ($RR = 0.49, k = 21, SE = 0.13$) ($Q (3) = 11.86, p = .01$). Thus, the probability of being identified for Hispanic students living in south and southwest is greater than for those students in the same racial group who live in other region in the United States, but still about 50% less likely compared to the reference group.

Discussion

Scholars in the field of gifted education have observed discrepancies in racial representation in gifted programming (Yoon & Gentry, 2009) as well as in identification by traditional testing methods, including state standardized tests and IQ tests (Ford, 2014). With an overall risk ratio of .34, this means that the probability of historically underrepresented students being identified is 66% less than for Asian and White students. This supports previous findings that Black and Hispanic students continue being largely under-identified and underrepresented in gifted programs in the United States for decades (Daniels, 1998; Erwin & Worrell, 2012; Ford, 2014; Yoon & Gentry, 2009). However, when this risk ratio is examined using a moderator of location or grade, the results indicate a more positive outlook for some groups in certain regions.

Black students were identified with a risk ratio of 0.28, evidenced their underrepresentation in gifted programs. This finding is aligned with the body of research that details the inequity in representation reported by numerous researchers (e.g., Daniels, 1998; Erwin & Worrell, 2012; Ford, 2014; Ford & Harris, 1994; Lakin & Lohman, 2011; Naglieri & Ford, 2003, Yoon & Gentry, 2009). Additionally, when this national rate is examined by region, the Midwest woefully under-identifies Black students ($RR = 0.17$). In comparison, the South
identifies Black students at almost twice the rate of the Midwest ($RR = 0.30$) and the Southwest identifies them at almost three times the rate of the Midwest ($RR = 0.46$). The identification gap observed by many researchers for Black students exists across throughout the United States.

Warne et al. (2013) reported an odds ratio (OR) of identification of Black students ($OR = 0.81$), Hispanic ($OR = 0.95$), and Native American ($OR = 0.54$) students in Utah. An OR of 0.81 meant that the Black students are being identified at 81% the rate of identification when compared with their White peers. The researchers used their findings to state that there was no unified underrepresentation across the United States for traditionally underrepresented populations due to the comparatively high rates of identification in Utah. In comparison, the identification statistic calculated for Black students in our study is closer to the one observed by Konstantopoulos et al. (2001), in which they reported an odds ratio of 0.37 for Black students in comparison to their White peers. Given that equitable identification of Black students was not observed in other authors’ studies, it is likely that the findings of Warne et al. (2013) are unique to the state of Utah. As such, these findings supported the conclusion drawn by the authors that there was variability in identification by region. These findings also support the work of Yoon and Gentry (2009), who documented variability by state in identification rates by using the OCR reporting database. Some explanations for the uneven identification rate could be due to the litigation leveled within some southern states in particular (Stephen et al., 2012), which has led to changes in policy and resulting identification practices.

With an overall risk ratio of 0.36, Hispanic students, like Black students, are underrepresented in gifted programs. In addition, when examined by region, the South ($RR = 0.35$) and Southwest ($RR = 0.49$) have higher levels of proportional identification than other regions, particularly the Midwest ($RR = 0.29$). Esquierdo and Arreguin-Anderson (2012) voiced
their concern over the lack of proportional identification in the Southwest among Hispanic students, but compared with the national trend, these students are identified as gifted at 33% greater in this region than in other areas of the country. Using the data presented by Esquierdo and Arreguín-Anderson (2012), a risk ratio of 0.48 was reported for Hispanic students in the Southwest. This coincides with the risk ratio found in our study. This higher level of proportional identification suggests that the education systems in the Southwest are having success in the methods and policies it uses for identification.

There is also a likely corollary between districts with large numbers of Hispanic students and higher identification rates (Raudenbush et al., 1998). Consequently, the Midwest, which is currently experiencing an increase in enrollment in public schools by Hispanic students (Brown & Lopez, 2013), is below the national average for proportional identification of Hispanic students. This supports the findings of Yoon and Gentry (2009). In the South and Southwest regions of the country, despite the increase in identification of Hispanic students, they are still largely underrepresented in gifted programs.

In comparing the identification rate between Black and Hispanic students, Black students are identified at lower rates than their Hispanic peers in all regions examined. The greatest contrast between the two rates in comparison to the overall rate is in the Midwest (Black $RR = 0.17$, Hispanic $RR = 0.29$). This is a new finding in the field. Scholars who have examined underrepresentation have largely focused on the South and Southwest regions of the United States (Esquierdo & Arreguín-Anderson, 2012; McBee, 2006). As such, a large gap in proportional identification existing in the Midwest among Black students and their Hispanic peers is a finding that warrants further investigation.
Statistically significant differences in terms of grade level were only observed for Black students. These students were identified at higher rates in the middle grades ($RR = 0.47$) compared to the elementary ($RR = 0.17$) and high school ($RR = 0.18$) levels. Consequently, this suggests that the trend of closing performance gaps on tests at the later elementary and the middle level observed by Lohman and Korb (2006) may have led to higher identification rates. The large standard error associated with the effect size for middle grades suggests a large amount of variance among identification rates of middle school Black students. However, Black students may have been less likely to be identified as gifted because many enter public school with less academic exposure than other students (Ford, Grantham, & Whiting, 2008). These students “catch up” to their peers by late elementary and middle school and are therefore more likely to be identified as gifted at that time.

The moderator analysis of identification methods provided notable empirical evidence contradicting the claims of researchers who have developed non-verbal methods as a means to close the proportional representation gap (Lohman, 2013; Naglieri & Ford, 2003; Pfeiffer & Jarosewich, 2007; Sarourphim, 2003; Van Tassel-Baska, Johnson, & Avery, 2002). Overall, we found no statistically significant difference in the risk ratio between verbal and non-verbal methods of identification. In addition, no statistically significant differences existed for the testing methods examined in this meta-analysis. The non-verbal tests were specifically created to address the proportional gap in identification of underserved students (Naglieri & Ford, 2003), but the gap persists.

An examination of the influence of verbal and non-verbal methods of identification in
Black and Hispanic students, separately, revealed a difference in the average risk ratios for the two groups. Black students were not only being identified at the same rate with regard to verbal and non-verbal identification methods, but both rates were also remarkably low ($RR = 0.17$ and $RR = 0.19$, respectively). These rates of identification demonstrate that despite researchers’ best efforts (Lohman, 2013; Naglieri & Ford, 2003; Pfeiffer & Jarosewich, 2007; Sarouphim, 2003; Van Tassel-Baska et al., 2002), Black students remain under-identified and underserved regardless of identification method (Erwin & Worrell, 2012; Yoon & Gentry, 2009). This gap in representation is unlikely to be closed by only a test without further support in the form of programs and funding (Kettler et al., 2015; Peters et al., 2013).

The findings for Hispanic students were the same as those for Black students. There was no statistically significant difference between verbal and non-verbal identification methods. This provides evidence that Hispanic students also experience no increase in proportional identification rates when non-verbal tests are used in place of traditional identification methods. As the Hispanic population continues to grow in public schools (Brown & Lopez, 2013), the results of the meta-analysis show that there has not been similar growth in gifted identification rates as well. Esquierdo and Arreguín-Anderson (2012) cautioned against the prospect of excluding Hispanic students from gifted services. The results from this study demonstrate that non-traditional methods of identification are unlikely to address the concerns of Esquierdo and Arreguín-Anderson (2012).

The results of this study coincide with Erwin and Worrell’s (2012) findings, but not with their conclusion. In their analysis of assessment practices, they found that, when controlling for achievement, there was no difference in identification rates. Like Warne et al. (2013), they
argued that a combination of socioeconomic factors was the cause for under-identification and not the actual identification methods. This conclusion is supported by the results for Black and Hispanic students for whom there was no significant difference between the verbal and non-verbal tests.

Due to the limited number of effect sizes \((k = 15)\), we were unable to conduct similar analyses for Native American students. Of the 10 retrieved studies, seven were from state reports and three were from national survey data. An overall \(RR\) effect size of 0.49 was obtained from the available data with a standard error of 0.11. The lack of usable data found through this meta-analysis of the Native American students is discouraging in many ways. First, this is reflective of how researchers generally do not report on this population when examining gifted students in schools (Gentry, Fugate, Wu, & Castellano, 2014). This is troubling as the national information derived from the state reports and national surveys indicates that Native American students are underrepresented in gifted programming. However, we do not have information on how underrepresented they are in comparison to Black and Hispanic students, nor do we know if the \(RR\) for the Native American students is similar to that of the different regions of the country or among different grade levels. Second, this lack of information makes it difficult for all stakeholders to implement policies to address representation of Native youth in gifted programs. In this meta-analysis, we found the use of non-verbal methods were able to identify almost twice as many Hispanic students for gifted programming than the use of verbal methods. However, the same cannot be said for Native American students as there is not enough information about their identification rates on the various methods of scholastic assessments. This makes it difficult to understand baseline or to measure improvement concerning proportional representation of Native American students.
A final finding is that articles published in gifted education journals lack a standardized reporting procedure for their samples. Of the 1,526 articles reviewed in the four major gifted education journals, the methods for reporting samples varied. Some authors reported a sample as being gifted without any description of how those students were identified as gifted. Given the broad spectrum of definitions for giftedness and the varied identification methods (Erwin & Worrell, 2012), trying to draw cohesive inferences about the population is problematic.

In essence, making inferences on a population that is ill-defined frequently leads to error and/or bias. Two studies might examine gifted populations, but if those two studies drew upon samples that were identified using different methods and under various definitions, then trying to generalize between the two samples becomes difficult if not outright impossible. In other words, the term “identified gifted” has a large amount of variance in what it means. When analyzing the effects of given interventions and identification methods, researchers should provide greater clarity concerning the demographics of their sample and the identification procedures used to determine giftedness.

Limitations

The study has several limitations that affect the generalizability of the results. First, a relatively small number of effect sizes were used for analysis of the three specific identification tests (NNAT, RAVEN, and CogAT-NV) as compared to the other moderators (Grade and Region). This limitation is mitigated by the small standard errors due to the large sample size within the primary studies, but with an increased number of effect sizes from large samples, the validity of the results will increase. Further, the small number of effect sizes limits the scope of moderator analyses. Our analysis could investigate three key moderators. Because these three moderators are little correlated, our conclusion with Meta-ANOVA maintains a statistical
conclusion validity. However, the fact that unexplained variances remain among effect sizes suggests the possibility for the existence of other moderators which are not revealed in the current analysis. There are many other factors that can influence proportional identification. Factors such as the social-economic status of the districts, the effects of poverty and immigration (e.g. language challenges, cultural differences), as well as systematic racism are likely to contribute to the underrepresentation of Black, Hispanic, and Native American students receiving gifted services. If a newly found moderator is related to one of three moderators used in current investigation, the analysis with Meta-ANOVA does not identify the unique impact of the moderators without accounting for the correlated moderators. Thus, further investigation of other potential moderators will not only require additional k, but also require the use of more sophisticated statistical analysis, such as the application of multilevel modeling (Hedges & Maier, 2013) to fully entangle the complex phenomena of identification gap in gifted program. It is also important to mention that further investigation is needed to facilitate our understanding of the roles these factors play as well as the strength of their influences on identification in primary studies.

Second, because of the lack of consistency in reporting practices, some effect sizes have been impossible to calculate. Unless researchers studying gifted students are clear about the demographics of their sample and how the students were identified as gifted, it will be difficult to obtain the necessary effect sizes needed to increase the validity of the results.

Third, the samples from the Northeast and Western regions of the United States were not included in a moderator analysis. This is partially due to the limited number of studies that have been conducted in these two regions with gifted populations. Since we found that identification gaps differ by region, without information from the Northeast and Western regions of the
country, we do not know if these regions are achieving proportional representation in their gifted populations. The field of gifted education will benefit from high quality studies conducted on the gifted population in these regions with detailed reporting that clearly explains the sample demographics along with the methods used to identify the gifted students.

Finally, we were unable to conduct analyses for Native American students due to a lack of studies that report statistics for this population. The Native American population is about 1.2% of the total population of the United States. Although this is a small part of the population, it does not mean that Native Americans should not receive the same attention that the Black and Hispanic populations receive from researchers (Gentry et al., 2014). Gifted students can (and should) be found in all racial groups, and they deserve a chance to develop their potentials. With few authors including Native students their work, the findings and inferences of this meta-analysis Native youth are severely limited.

Conclusion

Achieving proportional representation for students identified as gifted is a goal worth attaining and an issue critical within the field of gifted education. Denying a large proportion of the public-school children such services is not only socially unjust but also lacks foresight due to the population trends in the United States.

The results of this study provide evidence that disproportionality in gifted identification persists across all racial groups regardless of method used to identify the students as gifted. However, some areas in the United States have better proportional representation. And, on verbal assessments have mitigated to some degree underrepresentation of Hispanic youth as gifted. Researchers should examine what the South and the Southwestern regions of the United States are doing to close the gap in representation, and they should continue to use nontraditional means
of identification together with other pathways to address disproportionality. The use of multiple identification methods and pathways would address the limitation of a single method. However, it is also important to adopt a more inclusive process in selecting gifted students for services. This can be done by providing services to students who are identified through any of the methods used by the schools and not requiring them to only be served when identified through multiple methods (McBee, Peters, & Waterman, 2014). Implementing talent development programs for traditionally underserved youth in which they can develop strengths, skills, and interests might help these students demonstrate and develop their potentials and thereby be identified for further services. The representation gap will likely take years to close, but this should not discourage researchers and educators from seeking to improve proportionality in gifted programs.
References

References marked with an asterisk indicate studies included in the meta-analysis.

doi:10.1080/02783190209554134

doi:10.4219/jeg-2008-794

doi:10.1177/0016986207302723

doi:10.1002/pits.20338

doi:10.1177/002246699803200107

*Jones, N. L. (2010). Culturally and linguistically diverse students and gifted and talented programs (Doctoral dissertation), Retrieved from ProQuest LLC. (3428485)

*Lindsey, C. D. (2012). An investigation of the combined assessments used as entrance criteria for a gifted English middle school program (Doctoral dissertation), Retrieved from ProQuest LLC. (3525542)

and talented education services (pp. 287–335). Mansfield Center, CT: Creative Learning Press.

doi:10.1177/1932202X11424880

doi:10.4219/jsge-2006-686

doi:10.1177/0016986213513794

doi:10.1177/001698628603000210

doi:10.1177/001698620004400302

doi:10.1177/0162353213506068

