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Previous studies on heart rate variability �HRV� using chaos theory, fractal scaling analysis, and
many other methods, while fruitful in many aspects, have produced much confusion in the litera-
ture. Especially the issue of whether normal HRV is chaotic or stochastic remains highly contro-
versial. Here, we employ a new multiscale complexity measure, the scale-dependent Lyapunov
exponent �SDLE�, to characterize HRV. SDLE has been shown to readily characterize major models
of complex time series including deterministic chaos, noisy chaos, stochastic oscillations, random
1 / f processes, random Levy processes, and complex time series with multiple scaling behaviors.
Here we use SDLE to characterize the relative importance of nonlinear, chaotic, and stochastic
dynamics in HRV of healthy, congestive heart failure, and atrial fibrillation subjects. We show that
while HRV data of all these three types are mostly stochastic, the stochasticity is different among
the three groups. © 2009 American Institute of Physics. �DOI: 10.1063/1.3152007�

Determining whether heartbeat dynamics is chaotic or
stochastic is an important issue, both theoretically and
clinically. The problem is difficult to solve neatly, how-
ever, since heart rate variability (HRV) may exhibit both
nonlinear, and possibly chaotic, as well as stochastic be-
haviors. This motivates us to employ a recently developed
multiscale complexity measure, the scale-dependent
Lyapunov exponent (SDLE), to characterize HRV. SDLE
cannot only unambiguously distinguish chaos from noise
but also characterize various types of complex time se-
ries. Using SDLE, we are able to quantify the relative
importance of nonlinear, chaotic, and stochastic dynam-
ics in HRV of healthy, congestive heart failure, and atrial
fibrillation subjects.

I. INTRODUCTION

Despite extensive studies on HRV using chaos
theory,1–10 fractal scaling analysis,11–15 and many other meth-
ods in the last two decades, the issue of whether HRV is
chaotic or stochastic remains highly controversial. The de-
bate can hardly be settled if one does not go beyond the
standard theories of chaos and random fractals, since the
foundations for the two theories are different: chaos theory is
mainly concerned about apparently irregular behaviors in a
complex system that are generated by nonlinear deterministic
interactions with only a few degrees of freedom, where noise
or intrinsic randomness does not play an important role,
while random fractal theory assumes that the dynamics of the
system are inherently random.16 To shed new light on the
problem, here we employ a new multiscale complexity mea-
sure, the SDLE,16,17 to characterize HRV, especially the rela-
tive importance of nonlinear, chaotic, and stochastic dynam-

ics in HRV of healthy, congestive heart failure �CHF�, and
atrial fibrillation �AF� subjects.

II. HRV ANALYSIS BY SDLE

A. SDLE as a multiscale complexity measure

SDLE is defined in a phase space through consideration
of an ensemble of trajectories.16,17 In the case of a scalar time
series x�1� ,x�2� , . . . ,x�n�, a suitable phase space may be ob-
tained by using time delay embedding18–20 to construct vec-
tors of the form

Vi = �x�i�,x�i + L�, . . . ,x�i + �m − 1�L�� , �1�

where m and L are called the embedding dimension and the
delay time, respectively. For chaotic systems, m and L have
to be chosen according to certain optimization criterion.16

For a stochastic process, which is infinite dimensional, the
embedding procedure transforms a self-affine stochastic pro-
cess to a self-similar process in a phase space, and often m
=2 is not only sufficient but also best illustrates a nonchaotic
scaling behavior from a finite data set.16,17

We now become more concrete. Denote the initial dis-
tance between two nearby trajectories by �0 and their aver-
age distances at time t and t+�t, respectively, by �t and
�t+�t, where �t is small. The SDLE ���t� is defined by16,17

�t+�t = �te
���t��t or ���t� =

ln �t+�t − ln �t

�t
, �2�

or equivalently by

d�t

dt
= ���t��t or

d ln �t

dt
= ���t� . �3�

To compute SDLE, we can start from an arbitrary num-
ber of shells,

a�Author to whom correspondence should be addressed. Electronic mail:
jbgao@pmbintelligence.com. Telephone: �1 765-418-8025.
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�k � �Vi − Vj� � �k + ��k, k = 1,2,3, . . . , �4�

where Vi ,Vj are reconstructed vectors and �k �the radius of
the shell� and ��k �the width of the shell� are arbitrarily
chosen small distances ���k is not necessarily a constant�.
Then we monitor the evolution of all pairs of points �Vi ,Vj�
within a shell and take average. Equation �2� can now be
written as

���t� =
�ln�Vi+t+�t − Vj+t+�t� − ln�Vi+t − Vj+t��

�t
, �5�

where t and �t are integers in unit of the sampling time and
the angle brackets denote average within a shell. Figure 1
illustrates how the method is used to analyze HRV.

Note that the initial set of shells for computing SDLE
serves as initial values of the scales; through evolution of the
dynamics, they will automatically converge to the range of
inherent scales. This is emphasized by the subscript t in
�t—when the scales become inherent, t can then be dropped.
Also note that when analyzing chaotic time series, the
condition

�j − i� � �m − 1�L �6�

needs to be imposed when finding pairs of vectors within a
shell, to eliminate the effects of tangential motions, and for
an initial scale to converge to the inherent scales.16

At this point, it is important to note that SDLE is related
to the finite-size Lyapunov exponent �FSLE�.21 However,
there are important differences between the two metrics. The
two major ones are that �1� FSLE is always positive while
SDLE can be positive, zero, and negative and �2� SDLE is
much easier to compute than FSLE.

To better understand SDLE, we now point out a relation
between SDLE and the largest positive Lyapunov exponent
�1 for a true chaotic signal. It is given by16

�1 = 	
0

��

����p���d� , �7�

where �� is a scale parameter �for example, used for renor-
malization when using the algorithm of Wolf et al.22�, p��� is
the probability density function for the scale � given by

p��� = Z
dC���

d�
, �8�

where Z is a normalization constant satisfying 
0
��

p���d�=1,
and C��� is the well-known correlation integral of
Grassberger–Procaccia.23

We now list three interesting scaling laws of SDLE that
are most relevant to HRV analysis:

�1� For clean chaos on small scales and noisy chaos with
weak noise on intermediate scales,

���� = �1. �9�

To facilitate chaos analysis of HRV, we define chaos to
be observing scaling of Eq. �9� on a scale range of
�� ,r��, where r�1 is a coefficient.16,17,21 When low-
dimensional chaos is concerned, one may require r�2.
Note that such a definition of chaos is able to detect
chaos in intermittent time series with a long laminar
phase during which neighboring trajectories do not di-
verge, and a rapid divergence over a small part of the
state space, as well as chaos from time series with mul-
tiple positive Lyapunov exponents and very high dimen-
sion �say, more than 20�. However, it should be noted
that when the dimension of a signal is very high, the
scale range for observing Eq. �9� could be very narrow.

�2� For clean chaos on large scales where memory has been
lost and for noisy chaos �including chaos with
measurement/dynamic noise and noise-induced
chaos24–26� on small scales,

���� � − � ln � , �10�

where ��0 is a parameter. Recently, using an ensemble
forecasting approach, we have proven �but not published
yet� that �=D /D��0�, where D and D��0� are the infor-
mation dimension on infinitesimal and an initial finite
scale in ensemble forecasting. When a noisy data set is
finite due to lack of data, D would soon saturate when m
exceeds certain value. However, if the finite scale is
quite large, D��0��m for a wide range of m. Therefore,
��1 /m when m exceeds a certain value. This point will
be further discussed through the context of HRV
analysis.

�3� For random 1 / f2H+1 processes, where 0	H	1 is called
the Hurst parameter which characterizes the correlation
structure of the process: depending on whether H is
smaller than, equal to, or larger than 1/2, the process is
said to have antipersistent, short-range, or persistent
long-range correlations,16,27

���� � �−1/H. �11�

Note that the standard Brownian motion corresponds to
H=1 /2 and generally H	1 /2 for HRV.13–15
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FIG. 1. �Color online� A schematic showing how the method is applied to
HRV analysis.
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Note that the scaling law of Eq. �10� or Eq. �11� alone
does not indicate whether the time series under study is lin-
ear or nonlinear. However, there is a simple way to test for
nonlinearity if the system under study is dissipative. The
method involves calculating SDLE from the original and the
time-order reversed time series, xn ,xn−1 , . . . ,x2 ,x1. When the
system is dissipative, the SDLEs for the two time series are
very different. This indicates that SDLE is another effective
way to test for time irreversibility.28–30

It is helpful to illustrate the above scaling laws by using
an example. For this purpose, let us examine the Lorenz
system,

dx/dt = − 16�x − y� ,

dy/dt = − xz + 45.92x − y , �12�

dz/dt = xy − 4z .

Note that the system with dynamical noise was studied
earlier.16,17 To illustrate the similarities and differences of the
effects of measurement and dynamical noise on SDLE, here
we study measurement noise. For this purpose, we simply
add a Gaussian white noise of zero mean and variance D2
0

2

to the x-component of the system sampled with a time inter-
val of 0.06, where 
0

2�167 is the variance of the clean Lo-
renz data. The length of the time series is 10 000 and m=4,
L=2. Figure 2 shows a number of curves corresponding to
different D. We note that for the clean system, there are two
scaling laws. One is Eq. �9�, �����1.48, for small �; the
other is Eq. �10� for large � where memory has been lost. For
the noisy data, the scale region where the scaling law of Eq.
�9� shrinks when noise is increased. While this feature is
similar to that of dynamical noise, it is interesting to note
two differences: �1� the largest resolvable SDLE with dy-
namical noise is about 2.5, but that with measurement noise
is only about 2.0. Also, on small scales the scaling of Eq.
�10� is less smooth than that of dynamical noise; �2� in the
case of dynamical noise, parameter � does not appear to
depend on the noise strength. However, in the case of mea-

surement noise, � increases with the strength of noise. Note
that distinguishing measurement from dynamical noise is an
important but difficult issue.31 The different behaviors of
SDLE due to measurement and dynamical noise discussed
here may be used to develop a practical scheme to help dis-
tinguish measurement from dynamical noise �in fact, an in-
tegral form of SDLE has been applied to estimate the
strength of measurement and dynamical noise32–34�. We shall
carefully pursue this issue in the near future.

Finally, we illustrate how SDLE can deal with nonsta-
tionarity. When analyzing long HRV data sets, a common
experience is that there are at least two types of nonstation-
arity: �1� sudden jumps or outliers, where some of the jumps
are intrinsic to the system, while others may be caused by
errors during measurement; �2� oscillatory components due
to, for example, respiration. These nonstationarities often
lead to poor fractal scaling of raw HRV data. Since 1 / f-type
behavior is one of the most salient features of HRV, before
we carry out an analysis of HRV using SDLE, it is important
to first examine whether SDLE can meaningfully character-
ize 1 / f processes perturbed by the two types of nonstation-
arity identified above. Specifically, we study the following
two types of processes:

�1� Shift a 1 / f�, �=2H+1 process downward or upward at
randomly chosen points in time by an arbitrary amount.
For convenience, we call this procedure type-1 nonsta-
tionarity and the processes obtained broken-1 / f�

processes.
�2� At randomly chosen time intervals, concatenate ran-

domly broken-1 / f� processes and oscillatory compo-
nents or superimpose oscillatory components on
broken-1 / f� processes. This procedure causes a different
type of nonstationarity, which for convenience we shall
call type-2 nonstationarity.

We call the resulting random processes perturbed 1 / f�

processes. A number of examples of the ���� curves for such
processes, where the frequency of the perturbations is on
average 1% of the simulated data, are shown in Fig. 3. We
observe that Eq. �11� still holds very well when �����0.02.
Therefore, SDLE can readily characterize 1 / f processes per-
turbed by either of the nonstationarities identified.

To understand why the SDLE can deal with type-1 non-
stationarity, it suffices to note that type-1 nonstationarity
causes shifts in the trajectory in phase space; the greater the
nonstationarity, the larger the shifts. The SDLE, however,
cannot be affected much by shifts, especially large ones,
since it is based on the coevolution of pairs of vectors within
chosen small shells. In fact, the effect of shifts is to exclude
a few pairs of vectors that were originally counted in the
ensemble average. Therefore, so long as the shifts are not too
frequent, the effect of shifts can be neglected, since ensemble
average within a shell involves a large number of pairs of
vectors.

Let us now turn to type-2 nonstationarity which involves
oscillatory components. Being regular, oscillatory compo-
nents can only affect ���� where it is close to 0. Therefore,
type-2 nonstationarity cannot affect the positive portion of
���� either. Note that similar types of perturbations have

−1.6 −1.2 −0.8 −0.4
0

0.5

1

1.5

2

2.5

log
10

ε

λ(
ε)

D = 0
D = 0.01
D = 0.05
D = 0.1
D = 0.2
D = 0.5

FIG. 2. ���� curves for the clean and the noisy Lorenz system with mea-
surement noise.
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been carried out to clean and noisy chaotic data, and the
major features of Eqs. �9� and �10� are also robust, as
expected.

B. Analysis of HRV

We analyzed 15 HRV data sets downloaded from Phys-
ioNet entitled, “Is the normal heart rate chaotic? Data for
study,” five each for healthy, CHF, and AF subjects. We used
the original data instead of the data with outliers filtered out,
since outliers do not affect calculation of SDLE, as we al-
ready have discussed. Being able to directly work on raw
HRV data without any preprocessing is one of the merits of
SDLE.

We have found �and will show momentarily� that HRV
data are mostly stochastic in the sense that the scaling de-
scribed by Eq. �9� is not observed in any significant scale
range in any of the HRV data sets, no matter what embed-
ding parameters are used. The noisy nature of HRV suggests
that it is best to construct a phase space with m=2, L=1
when analyzing a finite data set. Below, we first discuss the
general behaviors of SDLE for HRV of the three types of
subjects, then summarize the effects of embedding param-
eters and data length on the behaviors of SDLE.

Figure 4�a1� illustrates the scaling of SDLE for HRV of
healthy subjects in general. We clearly observe the scaling
described by Eq. �10� on the smallest scales. When Fig. 4�a1�
is replotted in log-log scale, as shown in Fig. 4�a2�, we ob-
serve a linearlike relation on larger scales �corresponding to
where ���� is slightly positive� with a Hurst parameter H
=1 /6.93�0.14. Therefore, the dynamics of normal HRV
also contain a 1 / f-like behavior described by the scaling of
Eq. �11�. Note that the scale range where Eq. �11� holds is
necessary short since H here is very small �see also the two
leftmost curves in Fig. 3�.

The behavior of SDLE for HRV of CHF subjects is
markedly different from that of normal HRV. A typical result
is shown in Fig. 4�b1� in semilog scale. Note that the value
of ���� is now much closer to zero and the pattern of ���� is

somewhat oscillatory. Unable to resolve the dynamics on
scales with ���� markedly different from zero is a signature
of high-dimensional system.16 Therefore, the dimension of
HRV dynamics in CHF subjects is much higher than that in
normal subjects. Note that this behavior is termed as a de-
crease in cardiac chaos in CHF patients.10 When Fig. 4�b1� is
replotted in a log-log scale, as shown in Fig. 4�b2�, an ap-
proximate linear relation emerges almost on all scales. This
suggests that HRV in CHF subjects behaves as a 1 / f process
described by Eq. �11�. The slope in the figure gives a Hurst
parameter H=1 /5.19�0.19. At this point, it should be em-
phasized that the pattern of SDLE in Figs. 4�a2� and 4�b2� is
quite different from that of fractional Brownian motion
�fBm� processes shown in Fig. 3. Two reasons may be that
fBm processes are linear, monofractal random processes
while HRV dynamics are nonlinear10,35 and multifractal.15

Finally, we examine SDLE for HRV of AF patients. A
representative result is shown in Figs. 4�c1� and 4�c2� in
semilog and log-log scales, respectively �where the evolution
time starts from t� �m−1�L=1�. Since we only observe
�����0, we conclude that the dynamics in HRV of AF sub-
jects are like white noise. This suggests that the dimension of
HRV of AF subjects is the highest among the three groups.

Finally, we summarize the effects of embedding dimen-
sion and data length on calculating SDLE from HRV �fol-
lowing general practice, we fix L=1; in fact, different L does

10
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λ(
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H = 0.3
H = 0.4
H = 0.5
H = 0.6
H = 0.7
H = 0.8

FIG. 3. ���� vs � curves for perturbed 1 / f processes. Eight different H are
considered. To put all the curves on one plot, the curves for different H
�except the smallest one considered here� are arbitrarily shifted rightward.
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FIG. 4. �Color online� ���� curves for HRV of ��a1� and �a2�� normal, ��b1�
and �b2�� CHF, and ��c1� and �c2�� AF subjects. Plots in the left panel are in
semilog scale, while those in the right panel are in log-log scale. For better
comparison, results for data sets n1rr.txt, c1rr.txt, and a3rr.txt are shown here
since they have similar length �99 791, 75 543, and 85 304 points, respec-
tively�. The results are similar when only a part of these data is used.
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not change much the results�. �1� With fixed embedding pa-
rameters, for a long HRV data set, SDLE curves correspond-
ing to different shells defined by Eq. �4� often do not collapse
on one another but are parallel; similarly, the scaling of Eq.
�10� may shift horizontally when the data length changes.
However, � remains quite stable. �2� For a data set of finite
fixed length, when the embedding dimension m becomes big-
ger, the scale range defining the scaling of Eq. �10� becomes
shorter; also, as pointed out when discussing Eq. �10�, � is
roughly inversely proportional to m when m is large. Both
features suggest that the scaling of Eq. �10� no longer be-
comes well defined when a finite length time series is em-
bedded to a too high-dimensional phase space. �3� The scal-
ing of Eq. �11�, while becoming less well defined when a
data set becomes shorter, is independent of the embedding
dimension. This ought to be so. Otherwise, H becomes
meaningless.

The effect �1� above warrants an explanation. To under-
stand it, we first recall that the scale �t is the distance be-
tween two embedding vectors, �t= �Vi+k−Vj+k�, where t
=k�t and �t is the sampling time. Now suppose we have a
stationary time series xi�. We split it into two segments of
equal length. We then multiply all the elements in the second
segment by a constant a�1 and denote the resulting two
segments by yi� and zi�. The overall time series now has
become nonstationary. It is obvious that � in the space con-
structed by yi� and zi� also differs by a factor a, and the
scaling of Eq. �10� for yi� and zi� will also be separated by
a factor of a. Interestingly, both scalings of Eq. �10� for yi�
and zi� will be captured, since our algorithm involves a se-
ries of initial shells defined by Eq. �4�. Therefore, the parallel
shifting of scaling Eq. �10� for HRV of different data length
and corresponding to different shells suggests that the scaling
of Eq. �10� is an inherent property of HRV, and that HRV is
usually nonstationary.

III. CONCLUDING REMARKS

To shed new light on determining whether HRV is cha-
otic or stochastic, in this paper, we have employed SDLE to
characterize HRV. We have not observed the chaotic scaling
described by Eq. �9� on any significant scale ranges from any
of the HRV data sets. Therefore, the HRV data analyzed here
do not possess the defining property of standard chaos
theory—truly exponential divergence between nearby trajec-
tories in a phase space. Instead, we find that the dynamics in
HRV of healthy subjects are characterized by scalings of
Eqs. �10� and �11� on different scale ranges, and the dynam-
ics of HRV in CHF patients are mostly like 1 / f processes,
while that in AF patients are like white noise.

In the literature, based on entropy measures on certain
fixed scales �say, 15% or 20% of the standard deviation of
the data�,1–3 it is often concluded that normal HRV is more
complex than CHF HRV, since the entropy values on average
are larger for normal HRV. Extending such an argument to
SDLE, one would have to reach the same conclusion, since
the largest value of SDLE for normal HRV is typically larger
than that for CHF HRV. One even has to conclude that AF
HRV is the least complex. We do not think this is the case for
the following reasons. �1� The results based on entropy mea-

sures could change if a different scale �say, 3% of the stan-
dard deviation� is chosen. Such a behavior has indeed been
observed with SDLE. �2� The inference that AF HRV is the
least complex is simply inconsistent with the fact that AF
HRV is like white noise, and hence, has the largest entropy.
These considerations and the relation between the small
scale behavior of SDLE and dimension of the data compel us
to think that the greater difficulty in resolving scaling of Eq.
�10� in CHF and AF subjects implies that the dimension of
HRV increases from normal to CHF to AF and suggests that
a healthy cardiovascular system is a tightly coupled system
with coherent functions, while components in a malfunction-
ing cardiovascular system are somewhat loosely coupled and
function incoherently, and thus need more variables to fully
describe the dynamics.

ACKNOWLEDGMENTS

This work is partially supported by NSF �Grant No.
CMMI-0825311�.

1J. S. Richman and J. R. Moorman, Am. J. Physiol. Heart Circ. Physiol.
278, H2039 �2000�.

2S. M. Pincus and R. R. Viscarello, Obstet. Gynecol. 79, 249 �1992�.
3M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. E 71, 021906
�2005�.

4D. T. Kaplan and A. L. Goldberger, J. Cardiovasc. Electrophysiol. 2, 342
�1991�.

5A. L. Goldberger and B. J. West, Ann. N.Y. Acad. Sci. 504, 195 �1987�.
6J. K. Kanters, N. H. Holstein-Rathlou, and E. Agner, J. Cardiovasc. Elec-
trophysiol. 5, 591 �1994�.

7M. Osaka, K. H. Chon, and R. J. Cohen, J. Cardiovasc. Electrophysiol. 6,
441 �1995�.

8M. Costa, I. R. Pimentel, T. Santiago, P. Sarreira, J. Melo, and E. Ducla-
Soares, J. Cardiovasc. Electrophysiol. 10, 1350 �1999�.

9L. Glass, J. Cardiovasc. Electrophysiol. 10, 1358 �1999�.
10C. S. Poon and C. K. Merrill, Nature �London� 389, 492 �1997�.
11M. Kobayashi and T. Musha, IEEE Trans. Biomed. Eng. 29, 456 �1982�.
12J. T. Bigger, R. C. Steinman, L. M. Rolnitzky, J. L. Fleiss, P. Albrecht, and

R. J. Cohen, Circulation 93, 2142 �1996�.
13C. K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L.

Goldberger, Phys. Rev. Lett. 70, 1343 �1993�.
14Y. Ashkenazy, P. C. Ivanov, S. Havlin, C. K. Peng, A. L. Goldberger, and

H. E. Stanley, Phys. Rev. Lett. 86, 1900 �2001�.
15P. C. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosen-

blum, Z. R. Struzik, and H. E. Stanley, Nature �London� 399, 461 �1999�.
16J. B. Gao, Y. H. Cao, W. W. Tung, and J. Hu, Multiscale Analysis of

Complex Time Series: Integration of Chaos and Random Fractal Theory,
and Beyond �Wiley, New York, 2007�.

17J. B. Gao, J. Hu, W. W. Tung, and Y. H. Cao, Phys. Rev. E 74, 066204
�2006�.

18N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev.
Lett. 45, 712 �1980�.

19F. Takens, in Dynamical Systems and Turbulence, Lecture Notes in Math-
ematics Vol. 898, edited by D. A. Rand and L. S. Young �Springer-Verlag,
Berlin, 1981�, p. 366.

20T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65, 579 �1991�.
21M. Cencini, M. Falcioni, E. Olbrich, H. Kantz, and A. Vulpiani, Phys.

Rev. E 62, 427 �2000�.
22A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica D 16, 285

�1985�.
23P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 �1983�.
24J. B. Gao, S. K. Hwang, and J. M. Liu, Phys. Rev. Lett. 82, 1132 �1999�.
25J. B. Gao, C. C. Chen, S. K. Hwang, and J. M. Liu, Int. J. Mod. Phys. B

13, 3283 �1999�.
26K. Hwang, J. B. Gao, and J. M. Liu, Phys. Rev. E 61, 5162 �2000�.
27J. B. Gao, J. Hu, W. W. Tung, Y. H. Cao, N. Sarshar, and V. P. Roy-

chowdhury, Phys. Rev. E 73, 016117 �2006�.

028506-5 Heart rate variability characterization Chaos 19, 028506 �2009�

Downloaded 24 Feb 2012 to 128.210.124.59. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevE.71.021906
http://dx.doi.org/10.1111/j.1540-8167.1991.tb01331.x
http://dx.doi.org/10.1111/j.1749-6632.1987.tb48733.x
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01300.x
http://dx.doi.org/10.1111/j.1540-8167.1994.tb01300.x
http://dx.doi.org/10.1111/j.1540-8167.1995.tb00417.x
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00190.x
http://dx.doi.org/10.1111/j.1540-8167.1999.tb00191.x
http://dx.doi.org/10.1038/39043
http://dx.doi.org/10.1109/TBME.1982.324972
http://dx.doi.org/10.1103/PhysRevLett.70.1343
http://dx.doi.org/10.1103/PhysRevLett.86.1900
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1103/PhysRevE.74.066204
http://dx.doi.org/10.1103/PhysRevLett.45.712
http://dx.doi.org/10.1103/PhysRevLett.45.712
http://dx.doi.org/10.1007/BF01053745
http://dx.doi.org/10.1103/PhysRevE.62.427
http://dx.doi.org/10.1103/PhysRevE.62.427
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1103/PhysRevLett.50.346
http://dx.doi.org/10.1103/PhysRevLett.82.1132
http://dx.doi.org/10.1142/S0217979299003027
http://dx.doi.org/10.1103/PhysRevE.61.5162
http://dx.doi.org/10.1103/PhysRevE.73.016117


28M. Costa, A. L. Goldberger, and C. K. Peng, Phys. Rev. Lett. 95, 198102
�2005�.

29C. Diks, J. C. Vanhouwelingen, F. Takens, and J. Degoede, Phys. Lett. A
201, 221 �1995�.

30L. Stone, G. Landan, and R. M. May, Proc. R. Soc. London, Ser. B 263,
1509 �1996�.

31M. Strumik, W. M. Macek, and S. Redaelli, Phys. Rev. E 72, 036219
�2005�.

32J. Hu, J. B. Gao, and K. D. White, Chaos, Solitons Fractals 22, 807
�2004�.

33J. B. Gao, Physica D 106, 49 �1997�.
34C. J. Cellucci, A. M. Albano, P. E. Rapp, R. A. Pittenger, and R. C.

Josiassen, Chaos 7, 414 �1997�.
35G. Q. Wu, N. M. Arzeno, L. L. Shen, D. K. Tang, D. A. Zheng, N. Q.

Zhao, D. L. Eckberg, and C. S. Poon, PLoS ONE 4, e4323 �2009�.

028506-6 Hu, Gao, and Tung Chaos 19, 028506 �2009�

Downloaded 24 Feb 2012 to 128.210.124.59. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.95.198102
http://dx.doi.org/10.1016/0375-9601(95)00239-Y
http://dx.doi.org/10.1098/rspb.1996.0220
http://dx.doi.org/10.1103/PhysRevE.72.036219
http://dx.doi.org/10.1016/j.chaos.2004.02.061
http://dx.doi.org/10.1016/S0167-2789(97)00024-9
http://dx.doi.org/10.1063/1.166214
http://dx.doi.org/10.1371/journal.pone.0004323

	Purdue University
	Purdue e-Pubs
	2009

	Characterizing heart rate variability by scale-dependent Lyapunov exponent
	J Hu
	J. Gao
	W. Tung
	Repository Citation


	tmp.1330116664.pdf.xEmf4

