The increasing popularity of social networks, such as Facebook and Orkut, has raised several privacy concerns. Traditional ways of safeguarding privacy of personal information by hiding sensitive attributes are no longer adequate. Research shows that probabilistic classification techniques can effectively infer such private information. The disclosed sensitive information of friends, group affiliations and even participation in activities, such as tagging and commenting, are considered background knowledge in this process. In this paper, we present a privacy protection tool, called Privometer, that measures the amount of sensitive information leakage in a user profile and suggests selfsanitization actions to regulate the amount of leakage. In contrast to previous research, where inference techniques use publicly available profile information, we consider an augmented model where a potentially malicious application installed in the user’s friend profiles can access substantially more information. In our model, merely hiding the sensitive information is not sufficient to protect the user privacy. We present an implementation of Privometer in Facebook.


social networks, privacy, classification techniques, tagging

Date of this Version



Original manuscript



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.