Presenter Information

William A. Bauson, Taylor University

Location

West Lafayette, Indiana

Abstract

University students routinely design and launch small satellites into space, giving students the opportunity to gain experience in a wide variety of STEM disciplines. This paper describes work in progress on one such project, “MagnITO-Sat,” which consists of two picosatellites connected by a conductive tether. The ultimate aim of the tether is to provide electrodynamic thrust generation and power generation. This project will test three major components of the system: 1) the tether deployment mechanism; 2) the high-voltage biasing to enable current flow through a “phantom loop” formed by the conductive tether and the ionosphere; and 3) an optical (near-infrared) link that provides communication between the two picosatellites. A Globalstar radio transmits data and measurements to the ground.

Share

COinS
 

Tethered Picosatellites: A First Step towards Electrodynamic Orbital Control and Power Generation

West Lafayette, Indiana

University students routinely design and launch small satellites into space, giving students the opportunity to gain experience in a wide variety of STEM disciplines. This paper describes work in progress on one such project, “MagnITO-Sat,” which consists of two picosatellites connected by a conductive tether. The ultimate aim of the tether is to provide electrodynamic thrust generation and power generation. This project will test three major components of the system: 1) the tether deployment mechanism; 2) the high-voltage biasing to enable current flow through a “phantom loop” formed by the conductive tether and the ionosphere; and 3) an optical (near-infrared) link that provides communication between the two picosatellites. A Globalstar radio transmits data and measurements to the ground.