Description

A new measurement technique based on the transient hot strip technique has recently been developed for studying anisotropic thermal transport properties of thin crystalline films. A micrometer-sized hot strip sensor is evaporated on the surface of the crystalline film sample, which has been deposited on a substrate wafer of limited thickness. From a pulsed transient recording, using sub-millisecond square-shaped pulses, a thermal probing depth that is less than the film thickness is assured. In the ongoing work of verifying the technique, we show results from measurements on z-cut crystal quartz and fused silica, using thermal probing depths of only 30 μm, which closely conform to bulk values found in the literature.

Keywords

transient Hot Strip (THS) technique, anisotropic, thermal transport properties, crystalline film, thermal probing depths

DOI

10.5703/1288284315554

Share

COinS
 

Sub-Millisecond Measurements of Thermal Conductivity and Thermal Diffusivity Using Micrometer-Sized Hot Strips

A new measurement technique based on the transient hot strip technique has recently been developed for studying anisotropic thermal transport properties of thin crystalline films. A micrometer-sized hot strip sensor is evaporated on the surface of the crystalline film sample, which has been deposited on a substrate wafer of limited thickness. From a pulsed transient recording, using sub-millisecond square-shaped pulses, a thermal probing depth that is less than the film thickness is assured. In the ongoing work of verifying the technique, we show results from measurements on z-cut crystal quartz and fused silica, using thermal probing depths of only 30 μm, which closely conform to bulk values found in the literature.