Research Website

https://engineering.purdue.edu/~janes/

Keywords

Hydrogen peroxide, Biosensors, Microelectrode arrays (MEA), Real-time flux, Astrocytes

Presentation Type

Poster

Research Abstract

Hydrogen peroxide (H2O2) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H2O2 is also an important cellular signalling molecule. Quantifying cellular influx of H2O2 will contribute to researchers’ understanding of the role H2O2 plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H2O2 consumption. Pancreatic beta cells (MIN6), astrocytes, and glioblastoma cells (GBM43 and GBAM1) were placed in 10 μM and 20 μM H2O2 solutions for up to 5 hours. The consumption of H2O2 was measured using an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes/Invitrogen). GBAM1 cells exposed to 20 μM H2O2 displayed the fastest rate of H2O2 consumption (4.8 ± 1.2 nmol H2O2/min/106 cells), followed by GBM43 cells (1.5±0.46), astrocytes (1.1±0.24), and MIN6 cells (0.29±0.075). Additionally, the rate of consumption increased with increases in H2O2 concentration. In the future, an on-chip micro-electrode array (MEA) will be used for real-time electrochemical experiments to measure influx of H2O2 by astrocytes and GBAM1 cells with spatio-temporal resolution that the current techniques lack. The results from the electrochemical experiments will be compared to results from the assay kit to determine the ability of the MEA to accurately measure H2O2 concentration and flux. The MEA can be extended to a wide variety of cellular environments for analysis of additional real-time biological events.

Session Track

Nanotechnology

Kriscovich_Hannah_PresentationFinal.pdf (1073 kB)
SURF Symposium Poster

Kriscovich_Hannah_TechPaper.pdf (671 kB)
Final Technical Paper

Share

COinS
 
Aug 4th, 12:00 AM

Measurement of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array

Hydrogen peroxide (H2O2) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H2O2 is also an important cellular signalling molecule. Quantifying cellular influx of H2O2 will contribute to researchers’ understanding of the role H2O2 plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H2O2 consumption. Pancreatic beta cells (MIN6), astrocytes, and glioblastoma cells (GBM43 and GBAM1) were placed in 10 μM and 20 μM H2O2 solutions for up to 5 hours. The consumption of H2O2 was measured using an Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes/Invitrogen). GBAM1 cells exposed to 20 μM H2O2 displayed the fastest rate of H2O2 consumption (4.8 ± 1.2 nmol H2O2/min/106 cells), followed by GBM43 cells (1.5±0.46), astrocytes (1.1±0.24), and MIN6 cells (0.29±0.075). Additionally, the rate of consumption increased with increases in H2O2 concentration. In the future, an on-chip micro-electrode array (MEA) will be used for real-time electrochemical experiments to measure influx of H2O2 by astrocytes and GBAM1 cells with spatio-temporal resolution that the current techniques lack. The results from the electrochemical experiments will be compared to results from the assay kit to determine the ability of the MEA to accurately measure H2O2 concentration and flux. The MEA can be extended to a wide variety of cellular environments for analysis of additional real-time biological events.

https://docs.lib.purdue.edu/surf/2016/presentations/65