Keywords

virtual source, FET, compact model, MOSFET, nanotransistor

Presentation Type

Event

Research Abstract

A simple semi-empirical compact MOSFET model has been developed, which is called MIT virtual source (MVS) model. Compare to other model used in industry, MVS model requires only a few parameters, most of which can be directly obtained from experiment, and produce accurate results. One aim of this paper is to test the applicability of the MVS model to transistor made from MoS2 rather than silicon. Another target is to determine the sustainability of the MVS model under different transistor tests. To achieve these goals, the MVS model will be used to fit the experimental data on MoS2 transistors . Also, various tests will be implemented on the MVS model to see whether it is able to pass the tests. After the above steps, the fitting result suggests that MoS2 device has some special characteristic which cannot be described using MVS model. And the MVS model passes the symmetry tests well but fails in some other tests. Thus, despite the simplicity and accuracy of the model, more research can be conducted on this model in order to improve its generality.

 

Assessing the MVS Model for Nanotransistors

A simple semi-empirical compact MOSFET model has been developed, which is called MIT virtual source (MVS) model. Compare to other model used in industry, MVS model requires only a few parameters, most of which can be directly obtained from experiment, and produce accurate results. One aim of this paper is to test the applicability of the MVS model to transistor made from MoS2 rather than silicon. Another target is to determine the sustainability of the MVS model under different transistor tests. To achieve these goals, the MVS model will be used to fit the experimental data on MoS2 transistors . Also, various tests will be implemented on the MVS model to see whether it is able to pass the tests. After the above steps, the fitting result suggests that MoS2 device has some special characteristic which cannot be described using MVS model. And the MVS model passes the symmetry tests well but fails in some other tests. Thus, despite the simplicity and accuracy of the model, more research can be conducted on this model in order to improve its generality.