Description

Despite its many limitations, the Fung “quasi-linear viscoelastic” constitutive model continues to serve as a workhorse of the biomechanics community. A central challenge in applying the model is that it requires a specific form for the relaxation spectrum that is difficult to relate to easily obtained experimental spectra such as a generalized Maxwell relaxation spectrum. Here, we present a simple and general technique for obtaining a from relaxation data a viscoelastic spectrum appropriate to the Fung model. We apply the model to identify several biomaterials that are modeled reasonably by a Fung model, and many more that are not.

Share

COinS
 

Viscoelastic spectrum analysis and the identification of a fung viscoelastic material

Despite its many limitations, the Fung “quasi-linear viscoelastic” constitutive model continues to serve as a workhorse of the biomechanics community. A central challenge in applying the model is that it requires a specific form for the relaxation spectrum that is difficult to relate to easily obtained experimental spectra such as a generalized Maxwell relaxation spectrum. Here, we present a simple and general technique for obtaining a from relaxation data a viscoelastic spectrum appropriate to the Fung model. We apply the model to identify several biomaterials that are modeled reasonably by a Fung model, and many more that are not.