Published in:

Physical Review B 81,22 (2010)

Abstract

We propose that thermal noise in local stripe orientation should be readily detectable via STM on systems in which local stripe orientations are strongly affected by quenched disorder. Stripes, a unidirectional, nanoscale modulation of electronic charge, are strongly affected by quenched disorder in two-dimensional and quasi-two-dimensional systems. While stripe orientations tend to lock to major lattice directions, dopant disorder locally breaks rotational symmetry. In a host crystal with otherwise C-4 rotational symmetry, stripe orientations in the presence of quenched disorder map to the random field Ising model. While the low-temperature state of such a system is generally a stripe glass in two dimensional or strongly layered systems, as the temperature is raised, stripe orientational fluctuations become more prevalent. We propose that these thermally excited fluctuations should be readily detectable in scanning tunneling spectroscopy as telegraph noise in the high-voltage part of the local I (V) curves. We predict the spatial, temporal, and thermal evolution of such noise, including the circumstances under which such noise is most likely to be observed. In addition, we propose an in situ test, amenable to any local scanning probe, for assessing whether such noise is due to correlated fluctuations rather than independent switchers.

Date of this Version

June 2010

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.