Radiation-hard semiconductor detectors for SuperLHC

Authors

M. Bruzzi
J. Adey
A. Al-Ajili
P. Alexandrov
G. AlfieriFollow
P. P. Allport
A. Andreazza
M. Artuso
S. Assouak
B. S. Avset
L. Barabash
E. Baranova
A. Barcz
A. Basile
R. Bates
N. Belova
S. F. Biagi
G. M. Bilei
D. Bisello
A. Blue
B. Blumenau
V. Boisvert
G. Bolla
G. Bondarenko
E. Borchi
L. Borrello
D. Bortoletto
M. Boscardin
L. Bosisio
T. J. V. Bowcock
T. J. Brodbeck
J. Broz
A. Brukhanov
A. Brzozowski
M. Buda
P. Buhmann
C. Buttar
F. Campabadal
D. Campbell
A. Candelori
G. Casse
A. Cavallini
A. Chilingarov
D. Chren
V. Cindro
M. Citterio
P. Collins
R. Coluccia
D. Contarato
J. Coutinho
D. Creanza
W. Cunningham
V. Cvetkov
G. F. Dalla Betta
G. Davies
I. Dawson
W. de Boer
M. De Palma
R. Demina
P. Dervan
A. Dierlamm
S. Dittongo
L. Dobrzanski
Z. Dolezal
A. Dolgolenko
T. Eberlein
V. Eremin
C. Fall
F. Fasolo
T. Ferbel
F. Fizzotti
C. Fleta
E. Focardi
E. Forton
S. Franchenko
E. Fretwurst
F. Gamaz
C. Garcia
J. E. Garcia-Navarro
E. Gaubas
M. H. Genest
K. A. Gill
K. Giolo
M. Glaser
C. Goessling
V. Golovine
S. G. Sevilla
I. Gorelov
J. Goss
A. Gouldwell
G. Gregoire
P. Gregori
E. Grigoriev
C. Grigson
A. Grillo
A. Groza
J. Guskov
L. Haddad
J. Harkonen
R. Harding
F. Hauler
S. Hayama
M. Hoeferkamp
F. Honniger
T. Horazdovsky
R. Horisberger
M. Horn
A. Houdayer
B. Hourahine
A. Hruban
G. Hughes
I. Ilyashenko
K. Irmscher
A. Ivanov
K. Jarasiunas
T. Jin
B. K. Jones
R. Jones
C. Joram
L. Jungermann
E. Kalinina
P. Kaminski
A. Karpenko
A. Karpov
V. Kazlauskiene
V. Kazukauskas
V. Khivrich
V. Khomenkov
J. Kierstead
J. Klaiber-Lodewigs
M. Kleverman
R. Klingenberg
P. Kodys
Z. Kohout
S. Korjenevski
A. Kowalik
R. Kozlowski
M. Kozodaev
G. Kramberger
O. Krasel
A. Kuznetsov
S. Kwan
S. Lagomarsino
T. Lari
K. Lassila-Perini
V. Lastovetsky
G. Latino
S. Latushkin
S. Lazanu
I. Lazanu
C. Lebel
K. Leinonen
C. Leroy
Z. Li
G. Lindstrom
L. Lindstrom
V. Linhart
A. Litovchenko
P. Litovchenko
V. Litvinov
A. Lo Giudice
M. Lozano
Z. Luczynski
P. Luukka
A. Macchiolo
A. Mainwood
L. F. Makarenko
I. Mandic
C. Manfredotti
S. M. Garcia
S. Marunko
K. Mathieson
A. Mozzanti
J. Melone
D. Menichelli
C. Meroni
A. Messineo
S. Miglio
M. Mikuz
J. Miyamoto
M. Moll
E. Monakhov
F. Moscatelli
L. Murin
F. Nava
D. Naoumov
E. Nossarzewska-Orlowska
S. Nummela
J. Nysten
P. Olivero
V. Oshea
T. Palviainen
C. Paolini
C. Parkes
D. Passeri
U. Pein
G. Pellegrini
L. Perera
M. Petasecca
B. Piatkowski
C. Piemonte
G. U. Pignatel
N. Pinho
I. Pintilie
L. Pintilie
L. Polivtsev
P. Polozov
A. I. Popa
J. Popule
S. Pospisil
G. Pucker
V. Radicci
J. M. Rafi
F. Ragusa
M. Rahman
R. Rando
R. Roeder
T. Rohe
S. Ronchin
C. Rott
P. Roy
A. Roy
A. Ruzin
A. Ryazanov
H. F. W. Sadrozinski
S. Sakalauskas
M. Scaringella
L. Schiavulli
S. Schnetzer
B. Schumm
S. Sciortino
A. Scorzoni
G. Segneri
S. Seidel
A. Seiden
G. Sellberg
P. Sellin
D. Sentenac
I. Shipsey
P. Sicho
T. Sloan
M. Solar
S. Son
B. Sopko
N. Spencer
J. Stahl
I. Stavitski
D. Stolze
R. Stone
J. Storasta
N. Strokan
W. Strupinski
M. Sudzius
B. Surma
J. Suuronen
A. Suvorov
B. G. Svensson
P. Tipton
M. Tomasek
C. Troncon
A. Tsvetkov
E. Tuominen
E. Tuovinen
T. Tuuva
M. Tylchin
H. Uebersee
J. Uher
M. Ullan
J. V. Vaitkus
P. Vanni
J. Velthuis
G. Verzellesi
E. Verbitskaya
V. Vrba
G. Wagner
I. Wilhelm
S. Worm
V. Wright
R. Wunstorf
P. Zablerowski
A. Zaluzhny
M. Zavrtanik
M. Zen
V. Zhukov
N. Zorzi

Published in:

Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 541,1-2 (2005) 189-201;

Abstract

An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 1035 cm-2 s-1 has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 1016cm-2. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Float Zone silicon), the improvement of present detector designs and the understanding of the microscopic defects causing the degradation of the irradiated detectors. The latest advancements within the RD50 collaboration on radiation hard semiconductor detectors will be reviewed and discussed in this work. 2005 Published by Elsevier B.V.

Keywords

high-resistivity silicon;; photoinduced transient spectroscopy;; oxygen-enriched silicon;; ion-implanted silicon;; float-zone silicon;; irradiated silicon;; czochralski silicon;; semiinsulating gan;; point-defects;; sic detectors

Date of this Version

1-1-2005

Share

COinS