Date of Award

2013

Degree Type

Thesis

Degree Name

Master of Science in Engineering (MSE)

Department

Aeronautics and Astronautics

First Advisor

Tom Shih

Committee Chair

Tom Shih

Committee Member 1

Steven Collicott

Committee Member 2

Alina Alexeenko

Abstract

Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was Ω = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has ReD = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, Ω was 3,600 rpm.

The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions.

When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge. These recirculating flows spiral from the ribs towards the exit of the L-shaped duct, and the spiraling brings cool fluid from the middle of the passage to the walls. Each pin fin was found to induce a pair of counter-rotating separated regions behind it and has horse-shoe vortices that wrap around it next to the top and bottom walls. The heat transfer is highest just upstream of the each rib, around the pin fins, and when the cooling fluid impinges on walls, and very low in the separated region next to the tip.

When there is rotation, Coriolis force creates a pair of counter-rotating vortices that bring the cooler fluid to the trailing wall in the inlet duct. Thus, the trailing wall has higher heat transfer than the leading wall. In the inlet duct, centrifugal buoyancy causes a massive flow separation on the leading wall. In the expanded portion of the L-shaped duct, the centrifugal-buoyancy-induced separation on the leading wall is limited to the region with the ribs, and the separation degenerates into a series of smaller spiraling separation bubbles, one between every set of consecutive ribs. On the leading and trailing walls, the ribs and the pin fins induce the same kind of flows as they did under non-rotating conditions.

Because of centrifugal-buoyancy-induced flow separation on the leading face, the heat transfer on the leading wall is 10-15% lower than that on the trailing wall, which is not significant. The adverse effects of centrifugal buoyancy were mitigated because the separation bubbles between the ribs are spiraling from the side wall to the trailing-edge exit and are constantly supplied by new coolant. The heat transfer on the side and back walls is higher near the trailing wall because centrifugal buoyancy directed most of the coolant flow towards the trailing wall. The size of the separation bubble at the tip of the L-shaped duct essentially disappeared when there is rotation for both the lab and engine-relevant conditions.

Share

COinS