Abstract

We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In, Ga)Se-2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V < similar to 0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I-sh), across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V = 0, (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518509]

Keywords

HYDROGENATED AMORPHOUS-SILICON; CURRENT TRANSPORT; PIN DIODES; ALUMINUM; SPACE; DEPENDENCE; CONDUCTION; EFFICIENCY; CURRENTS; SOLIDS

Date of this Version

12-15-2010

Share

COinS