DOI

10.5703/1288284314223

Abstract

The primary maintenance problem with bridges in Indiana has been deterioration of the concrete deck which is often related to corrosion of the reinforcing steel. While a corrosion protection system consisting of epoxy-coated reinforcement in combination with 2-1/2 in. of Class C concrete cover has been used in Indiana, research and experience have demonstrated that this system can be compromised. As an alternative solution to the corrosion problem in reinforced concrete, fiber reinforced polymer (FRP) bars which are corrosion resistant can be provided as reinforcement. This research was divided into two phases directed towards the implementation of a nonmetallic reinforced bridge deck. The first phase evaluated the bond strength of fiber reinforced polymer reinforcement with the goal of developing a design expression for the calculation of development and splice lengths. Forty-six glass FRP, carbon FRP, and steel reinforced concrete beams with unconfined tension lap splices were tested. The second phase consisted of the design, construction, and performance evaluation of a glass FRP bar reinforced concrete bridge deck. Based on this study, design recommendations are provided for the calculation of development and splice lengths of both FRP and steel reinforcement. Furthermore, the behavior of the FRP reinforced bridge deck is assessed and compared with its design assumptions. The findings of this study provide design tools and behavioral data that will assist in the future development and deployment of this technology.

Report Number

FHWA/IN/JTRP-2006/15-2

Keywords

bond; bridge deck, bridges, concrete, development length, durability, fiber reinforced polymer (FRP) reinforcement, nonmetallic reinforcement, splice length

SPR Number

2491

Project Number

C-36-56HHH

File Number

7-4-59

Performing Organization

Joint Transportation Research Program

Publisher Place

West Lafayette, IN

Date of this Version

2006

Share

COinS