•  
  •  
 

Proposal

Aerospace propulsion often involves the spray and combustion of liquids. When a liquid is sprayed, large drops form first, in a process known as primary atomization. Then, each drop breaks up into smaller droplets, in a process known as secondary atomization. This determines final drop sizes, which affect the liquid’s evaporation and mixing rates and ultimately influence combustor efficiency. Little has been published concerning the secondary atomization of visco-elastic non-Newtonian liquids, such as gels. These substances have special potential as aerospace propellants, because they are safer to handle than their Newtonian liquid counterparts, such as water. Additionally, they can be injected at varying rates, allowing for more control than solid propellants. To learn more about the atomization process of these liquids, a liquid drop generator and a high-speed camera were used to create and measure the conditions at which different breakup modes occurred, as well as the time required for the process. These results were compared to experimental and theoretical results for Newtonian liquids. Based on the data, one can conclude that solutions that are more elastic require higher shear forces to break up. In addition, while Newtonian liquids form droplets as they atomize, visco-elastic non-Newtonian solutions form ligaments. As a result, a combustion system utilizing these types of propellants must be capable of generating these forces. It may also be necessary to find a way to transform the ligaments into more spherically-shaped droplets to increase combustion efficiency.

Share

COinS