Conference Year

2016

Keywords

Solar, Heat Pump, BIPV/T, Simulation, TRNSYS

Abstract

ASHRAE Vision 2020 has defined market viable net-zero energy buildings as a key objective for new construction in North America. Designing for this target requires the effective integration of renewable energy systems into the building. However, many buildings have limited roof and façade areas in which to integrate these systems, making it difficult to achieve a net zero energy design. Building Integrated Photovoltaic and Thermal (BIPV/T) offers a potential solution to this issue by converting the building envelope into an active producer of both thermal and electrical energy. Commonly, BIPV/T systems in North America have used air as a working fluid. While this offers easy integration with the building ventilation system, air also has a lower thermal capacitance, reducing thermal energy extracted from a BIPV/T collector. Liquid based systems offer working fluids with higher thermal capacitance, along with the ability to easily integrate with existing thermal storage systems. However, these systems often circulate warm water in order to directly meet heating and hot water loads, resulting in reduced thermal and electrical efficiencies and less durable BIPV/T modules. Circulating cooler water to the collectors can significantly improve both the thermal and electrical efficiencies of liquid based BIPV/T systems. However, the low grade thermal energy collected must then be upgraded for use within the building. This paper examines the potential of using liquid based BIPV/T systems with cool storage and heat pump technologies to meet the thermal demands of a high performance Canadian home. An innovative liquid based BIPV/T system is proposed in which the collector array is connected to a cool storage tank, while a heat pump is used to upgrade and deliver thermal energy to the building. Both sensible and ice-based latent storage options are examined as cool storage possibilities. To perform the analysis, TRNSYS is used to simulate the proposed system integrated into a high performance home in Montreal, Canada. Annual simulation results are presented and compared with typical base case designs. A more detailed temporal analysis of electrical loads is also performed in order to examine the impact of the proposed system on the electricity grid.Â

Share

COinS