Document Type

Paper Presentation

Start Date

6-10-2023 1:30 PM

End Date

6-10-2023 2:30 PM

Abstract

High-Performance Computing (HPC) resources provide the potential for complex, large-scale modeling and analysis, fueling scientific progress over the last few decades, but these advances are not equally distributed across disciplines. Those in computational disciplines are often trained to have the necessary technical skills to utilize HPC (e.g. familiarity with the terminal), but many disciplines face technical hurdles when trying to apply HPC resources to their work. This unequal familiarity with HPC is increasingly a problem as cross-discipline teams work to tackle critical interdisciplinary issues like climate change and sustainability. CyberGIS-Compute is middle-ware designed to democratize to HPC services with the goal of empowering domain scientists, but a key challenge facing model developers on CyberGIS-Compute is creating a containerized software environment for their models. In this paper, we discuss our work to integrate the Cern Virtual Machine File System (CVMFS) into CyberGIS-Compute to provide consistent software environments across science gateways and HPC resources.

DOI

10.5703/1288284317677

Share

COinS
 
Oct 6th, 1:30 PM Oct 6th, 2:30 PM

Streamlined HPC Environments with CVMFS and CyberGIS-Compute

High-Performance Computing (HPC) resources provide the potential for complex, large-scale modeling and analysis, fueling scientific progress over the last few decades, but these advances are not equally distributed across disciplines. Those in computational disciplines are often trained to have the necessary technical skills to utilize HPC (e.g. familiarity with the terminal), but many disciplines face technical hurdles when trying to apply HPC resources to their work. This unequal familiarity with HPC is increasingly a problem as cross-discipline teams work to tackle critical interdisciplinary issues like climate change and sustainability. CyberGIS-Compute is middle-ware designed to democratize to HPC services with the goal of empowering domain scientists, but a key challenge facing model developers on CyberGIS-Compute is creating a containerized software environment for their models. In this paper, we discuss our work to integrate the Cern Virtual Machine File System (CVMFS) into CyberGIS-Compute to provide consistent software environments across science gateways and HPC resources.