Conference Year



Oil-free compressor, The FEM simulation, Self-lubricating piston ring, Pressure distribution, The friction heat


Abstract: This paper presents the numerical simulation and experimental investigation on impact factors on premature failure of the self-lubricated piston rings in oil-free compressor. In this paper, the finite element method (FEM) was applied to study the non-uniform pressure distributions among the piston rings and the friction process between the self-lubricating piston rings and the cylinder wall, which influence the failure of the self-lubricated piston rings most. In order to verify the mathematic model, a test rig was built to measure the dynamic pressure distributions and temperature field between the piston rings. Both the theoretical and experimental results showed that the first piston ring afford more than 75% of the total pressure difference which was the main reason for the non-uniform wear and thus lead to early invalidation. The friction heat produced between the first piston ring and the cylinder was far more than the rest, which cannot be diffused rapidly through the low conductivity self-lubricating plastics and led to thermal failure of the self-lubricating piston rings. The results provide the theoretical basis to determine the design parameters and the thermal performance of piston rings reasonably.

1485_presentation.pdf (423 kB)
Investigation on Premature Failure of the Self-lubricated Piston Rings in Oil-free Compressor