Published in:

Proc. SPIE - Int. Soc. Opt. Eng. (USA) 7533,(2010) 753305 (9 pp.)-753305 (9 pp.);

Comments

Publisher retains content copyright.

Abstract

The motivating application for this research is the problem of recognizing a planar object consisting of points from a noisy observation of that object. Given is a planar Gaussian mixture model T (x) representing an object along with a noise model for the observation process (the template). Also given are points representing the observation of the object (the query). We propose a method to determine if these points were drawn from a Gaussian mixture Q(x) with the same shape as the template. The method consists in comparing samples from the distribution of distances of T (x) and Q(x), respectively. The distribution of distances is a faithful representation of the shape of generic Gaussian mixtures. Since it is invariant under rotations and translations of the Gaussian mixture, it provides a workaround to the problem of aligning objects before recognizing their shape without sacrificing accuracy. Experiments using synthetic data show a robust performance against type I errors, and few type II errors when the given template Gaussian mixtures are well distinguished.

Keywords

Gaussian processes, information retrieval, object detection, shape recognition, sparse matrices

Date of this Version

January 2010

DOI

http://dx.doi.org/10.1117/12.848604

 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.