Hydrogen loading system development and evaluation of tritiated substrates to optimize performance in tritium based betavoltaics

Thomas E Adams, Purdue University

Abstract

State-of-the-art hydrogen loading system onto thin metallic films based on differential pressure in calibrated chambers has been developed for conditions pressures and temperatures up to 69 bar and 500°C, respectively. Experiments on hydrogen loading on to palladium films of thickness 50 and 250 nm were conducted at pressure ranging from 0.2 bar to 10 bar at temperature 310°C. For first time film hydrogen loading was carried out at 1 bar and at room temperature which temperature. Beta flux exiting surface of metal tritide films has been modeled with MC-SET (Monte Carlo Simulation of Electron Trajectories in solids). Surface beta flux simulations have been improved to account for density changes from tritium loading and decay. Simulation results indicate a 300 nm slab of MgT2 has a surface flux three times higher than in ScT2, and six times higher than in TiT2. Commercial betavoltaic cells were tested at different temperature environment for their evaluation and characterization.

Degree

Ph.D.

Advisors

Revankar, Purdue University.

Subject Area

Nuclear engineering|Energy

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS