Jet impingement and primary atomization of non-Newtonian liquids

Jennifer A Mallory, Purdue University

Abstract

The effect of liquid rheology on the flowfield resulting from non-Newtonian impinging jets was investigated experimentally and analytically. Experimental data were acquired using a unique experimental apparatus developed to examine the jet impingement of non-Newtonian liquids. The analytical modeling was aimed at determining which physical mechanisms transform non-Newtonian impinging jets into a sheet with waves on its surface, how those waves influence sheet fragmentation and subsequent ligament formation, and how those ligaments break up to form drops (primary atomization). Prior to impinging jet measurements, the rheological properties of 0.5 wt.-% CMC-7HF, 1.4 wt.-% CMC-7MF, 0.8 wt.-% CMC-7MF, 0.06 wt.-% CMC-7MF 75 wt.-% glycerin, 1 wt.-% Kappa carrageenan, and 1 wt.-% Agar were determined through the use of rotational and capillary rheometers. Two approaches were used to experimentally measure solid-like gel propellant simulant static surface tension. All liquids exhibited pseudoplastic rheological behavior. At various atomizer geometric and flow parameters sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were measured from high-speed video images. Results showed that viscosity dependence on shear rate is not the sole factor that determines atomization likelihood. Instead, a key role is played by the interaction of the gelling agent with the solvent at the molecular level. For instance, despite high jet exit velocities and varying atomizer geometric parameters HPC gel propellant simulants did not atomize. The molecular nature of HPC results in physical entanglement of polymer chains when gelled, which resists liquid breakup and subsequent spray formation. However, atomization was achieved with Agar, which absorbs the water and forms a network around it rather than bonding to it. The measured liquid sheet instability wavelength, sheet breakup length, ligament diameter, and drop sizes were compared to predictions from a linear stability theory model, which employed the Bird-Carreau pseudoplastic rheology model and semi-empirical theories of sheet breakup length taken from the literature. Analytical results accurately predicted experiment data for all investigated formulations, with the exception of 1 wt.-% Agar. This is attributed to Agar's slightly different chemical molecular structure and its effect on resultant atomization. Overall, the linear stability theory developed here shows an improvement over previous linear stability theories which consistently over-predicted results.

Degree

Ph.D.

Advisors

Sojka, Purdue University.

Subject Area

Aerospace engineering|Mechanical engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS