Development of a model of startle resulting from exposure to sonic booms

Andrew J Marshall, Purdue University

Abstract

Aircraft manufacturers believe that it is possible to create supersonic business jets that would have quieter sonic booms than those that lead to the current ban on overland commercial supersonic flight over the US. In order to assess if the impact of these "low booms" is acceptable to the public, new human subject testing must occur. In recent studies, it was found that subjects' judgments of annoyance were highly correlated to judgments of startle and were unable to be fully explained by loudness judgments alone. However, this experiment utilized earphones for playback, which was unable to reproduce low frequencies (< 25 Hz) well. Building upon this study, an additional semantic differential experiment was conducted using a sonic boom simulator for playback which could reproduce these frequency components. Results of both experiments were similar and again it was found that average startle and annoyance ratings were highly correlated and that statistics of time-varying loudness were highly correlated with subjects' responses. However, it was unclear if subjects' judgments of startle corresponded to physiological responses associated with startle. To examine if physiological responses associated with startle were evoked by the low booms, two studies were conducted; a pilot study and a repeatability study. While physiological responses associated with startle were evoked by low booms, startle responses were found to have occurred infrequently. However, subjects' judgments of startle were found to be correlated with physiological responses and to have less day-to-day and subject to-subject variance. Candidate startle models were estimated from data obtained from an experiment where subjects' judged the startle evoked by a series of low amplitude sonic booms and boom-like noises. These candidate startle models were then tested in an additional study which used a more diverse set of stimuli. It was found that a linear model consisting of the maximum long-term Moore and Glasberg's time-varying loudness, maximum sharpness and duration (as calculated from time-varying loudness) was the best simple model that predicted subject responses in both modeling studies well. Details of the physiological responses commonly evoked by low booms and investigations into the use of loudness-rate metrics to predict startle will also be discussed.

Degree

Ph.D.

Advisors

Davies, Purdue University.

Subject Area

Mechanical engineering|Acoustics

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS