Molecular mechanics of tropocollagen-hydroxyapatite biomaterials

Devendra Kumar Dubey, Purdue University

Abstract

Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage. For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength of TC-HAP biomaterials. In conjunction, a continuum level tension-shear-chain (TSC) model is also implemented to analyze fracture resistance characteristics in TC-HAP nanocomposites. Results and analyses shed light on the failure mechanisms in TC-HAP type nanocomposite systems with a chemo-mechanical understanding of the interfacial interaction between TC and HAP. Analyses show that (1) failure of TC-HAP nanocomposites at nanoscale is predominantly peak strain dependent phenomenon, (2) presence of water in most cases strengthens the TC-HAP biomaterial by acting as a bridge via hydrogen bond mediated crosslinks, (3) TC-HAP nanostructures with plate shaped HAP crystals show higher toughness and stability as compared to TC-HAP nanostructures with needle shaped HAP crystals, and (4) mutations in TC are responsible for Osteogenesis Imperfecta bone disorder in an indirect manner, wherein mutations in TC affect the shape and distribution of mineral phase during growth and nucleation period of bone. Overall study emphasizes that interfacial structural arrangement between polymer phase and mineral phase in TC-HAP and similar nanocomposite biomaterials is an important factor in determining their mechanical strength and should be carefully studied and selected for development of high performance nanocomposite biomaterials. Findings and understandings from this research have significant impact on polymer-ceramic nanocomposite mechanics, biomaterial and biomimetic materials development, and bone fragility disorders related medical science development.

Degree

Ph.D.

Advisors

Tomar, Purdue University.

Subject Area

Mechanics|Nanoscience|Materials science

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS