Overwintering survival of strawberry (Fragaria x ananassa): Proteins associated with low temperature stress tolerance during cold acclimation in cultivars

Gage Koehler, Purdue University

Abstract

Winter survival is variable among commercially grown strawberry ( Fragaria × ananassa) cultivars. The main objectives of this study were to evaluate the molecular basis that contribute to this difference in strawberry cultivars and to identify potential biomarkers that can be used to facilitate the development of new strawberry cultivars with improved overwintering hardiness. With these goals in mind, the freezing tolerance was examined for four cultivars, ‘Jonsok’, ‘Senga Sengana’, ‘Elsanta’, and ‘Frida’ (listed from most to least freezing tolerant based on survival from physiological freezing experiments) and the protein expression was investigated in the overwintering relevant crown structure of strawberry. Biomarker selection was based on comparing the protein profiles from the most cold-tolerant cultivar, ‘Jonsok’ with the least cold-tolerant cultivar ‘Frida’ in a comprehensive investigation using two label-free global proteomic methods, shotgun and two dimensional electrophoresis, with support from univariate and multivariate analysis. A total of 143 proteins from shotgun and 64 proteins from 2DE analysis were identified as significantly differentially expressed between ‘Jonsok’ and ‘Frida’ at one or more time points during the cold treatment (0, 2, and 42 days at 2 ºC). These proteins included molecular chaperones, antioxidants/detoxifying enzymes, metabolic enzymes, pathogenesis related proteins and flavonoid pathway proteins. The proteins that contributed to the greatest differences between ‘Jonsok’ and ‘Frida’ are candidates for biomarker development. The novel and significant aspects of this work include the first crown proteome 2DE map with general characteristics of the strawberry crown proteome, a list of potential biomarkers to facilitate the development of new strawberry cultivars with improved cold stress tolerance.

Degree

Ph.D.

Advisors

Randall, Purdue University.

Subject Area

Biology|Molecular biology

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS