A formulation to analyze system-of-systems problems: A case study of airport metroplex operations

Sricharan Kishore Ayyalasomayajula, Purdue University


A system-of-systems (SoS) can be described as a collection of multiple, heterogeneous, distributed, independent components interacting to achieve a range of objectives. A generic formulation was developed to model component interactions in an SoS to understand their influence on overall SoS performance. The formulation employs a lexicon to aggregate components into hierarchical interaction networks and understand how their topological properties affect the performance of the aggregations. Overall SoS performance is evaluated by monitoring the changes in stakeholder profitability due to changes in component interactions. The formulation was applied to a case study in air transportation focusing on operations at airport metroplexes. Metroplexes are geographical regions with two or more airports in close proximity to one another. The case study explored how metroplex airports interact with one another, what dependencies drive these interactions, and how these dependencies affect metroplex throughput and capacity. Metrics were developed to quantify runway dependencies at a metroplex and were correlated with its throughput and capacity. Operations at the New York/New Jersey metroplex (NYNJ) airports were simulated to explore the feasibility of operating very large aircraft (VLA), such as the Airbus A380, as a delay-mitigation strategy at these airports. The proposed formulation was employed to analyze the impact of this strategy on different stakeholders in the national air transportation system (ATS), such as airlines and airports. The analysis results and their implications were used to compare the pros and cons of operating VLAs at NYNJ from the perspectives of airline profitability, and flight delays at NYNJ and across the ATS.^




Daniel A. DeLaurentis, Purdue University.

Subject Area

Engineering, Aerospace|Transportation

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server