PUMA-PCCS separate effect tests and RELAP5 code evaluation in PUMA

Sung Won Choi, Purdue University

Abstract

One of the key areas in the design of advanced nuclear reactors is to develop a reliable Passive Containment Cooling System (PCCS). The purpose of the current work is to better understand the condensation phenomena in PCCS for the downward co-current flow of a steam/air mixture through condenser tube bundles during the three PCCS operational modes, namely the bypass mode, the cyclic venting mode and the long-term cooling mode. A series of unique separate-effect PCCS test data were obtained for condensation heat transfer in the PCCS heat exchangers of the PUMA (Purdue University Multidimensional Integral Test Assembly) facility under a task sponsored by the U.S. Nuclear Regulatory Commission. Test conditions includes bypass mode, cyclic venting mode and long term mode, covering a wide range of Loss of Coolant Accident(LOCA) conditions with a parameters of pressure, mass flow rate, noncondensable(NC) gases, and PCCS pool water level. The parametric effect studies and a further validation of the PUMA-PCCS separate effect test data were performed. The evaluation of a best estimate system code (RELAP5/MOD3.3) was performed by using unique PUMA-PCCS separate effects data and PUMA-Main Steam Line Break (MSLB) integral test (1998). Through a sensitivity studies of nodalization method and physical models on the MSLB test simulations, deficiencies in RELAP5/MOD3.3 code were found as follows: (1) over prediction of heat removal rate by condensation models, (2) overestimation of SP heat transfer through the horizontal venting line and thermal stratification distortion, (3) underestimation of NC gas effects in PCCS by the distortion of cyclic venting phenomena and (4) overestimation of the DW and SP wall condensation. The improvement for the code calculation predictions could be obtained by removing the RELAP5/MOD3.3 code deficient factors in the PUMA MSLB integral test simulation. The unique PCCS NC gas venting visualizations were obtained according to various PCCS inlet NC gas conditions. Through the local control volume analysis on the NC gas venting phenomena, the NC gas mass flow rate was obtained in the long term mode and the cyclic venting effects on the PCCS heat removal rate were analyzed. In addition, the estimation of mass and energy transfer through PCCS cyclic venting phenomena was studied by using Computational Fluid Dynamic (CFD) code simulation (FLUENT).

Degree

Ph.D.

Advisors

Ishii, Purdue University.

Subject Area

Nuclear engineering

Off-Campus Purdue Users:
To access this dissertation, please log in to our
proxy server
.

Share

COinS